Show simple item record

dc.contributor.authorCazzanti, Luca
dc.contributor.authorPallotta, Giuliana
dc.date.accessioned2019-06-21T12:01:19Z
dc.date.available2019-06-21T12:01:19Z
dc.date.issued2019/06
dc.identifier.govdocCMRE-PR-2019-122en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12489/862
dc.description.abstractThis paper discusses machine learning and data mining approaches to analyzing maritime vessel traffic based on the Automated Information System (AIS). We review recent efforts to apply machine learning techniques to AIS data and put them in the context of the challenges posed by the need for both algorithmic performance generalization and interpretability of the results in real-world maritime Situational Awareness settings. We also present preliminary work on discovering and characterizing vessel stationary areas using an unsupervised spatial clustering algorithm.en_US
dc.format6 p. : ill. ; digital, PDF fileen_US
dc.language.isoenen_US
dc.publisherCMREen_US
dc.sourceIn: Proceedings of the OCEANS 2015 MTS/IEEE Conference, 18-21 May 2015, Genoa, Italy, doi: 10.1109/OCEANS-Genova.2015.7271555en_US
dc.subjectShip movementsen_US
dc.subjectMaritime route extractionen_US
dc.subjectAutomatic Identification Systems (AIS)en_US
dc.subjectMaritime situational awarenessen_US
dc.subjectBig dataen_US
dc.subjectMachine learningen_US
dc.subjectData miningen_US
dc.subjectCluster analysis - Data processingen_US
dc.titleMining maritime vessel traffic: promises, challenges, techniquesen_US
dc.typeReprint (PR)en_US
dc.typePapers and Articlesen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record