Show simple item record

dc.contributor.authorPapa, Giuseppe
dc.contributor.authorBraca, Paolo
dc.contributor.authorHorn, Steven A.
dc.contributor.authorMarano, Stefano
dc.contributor.authorMatta, Vincenzo
dc.contributor.authorWillett, Peter K.
dc.date.accessioned2019-06-19T13:09:59Z
dc.date.available2019-06-19T13:09:59Z
dc.date.issued2019/06
dc.identifier.govdocCMRE-PR-2019-089en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12489/829
dc.description.abstractIn practical tracking applications, the target detection performance may be unknown and also change rapidly in time. This work considers a network of sensors and develops a target-tracking procedure able to adapt and react to the time-varying changes of the network detection probability. The proposed adaptive tracker is validated using extensive computer simulations and real-world experiments, testing a network of high-frequency radars for maritime surveillance and an underwater network of autonomous underwater vehicles for antisubmarine warfare.en_US
dc.format17 p. : ill. ; digital, PDF fileen_US
dc.language.isoenen_US
dc.publisherCMREen_US
dc.sourceIn: IEEE Transactions on Aerospace and Electronic Systems, volume 52, issue 5, October 2016, pp. 2193-2209, doi: 10.1109/TAES.2016.150522en_US
dc.subjectTarget trackingen_US
dc.subjectComputer simulationen_US
dc.subjectSensor networksen_US
dc.subjectMaritime surveillanceen_US
dc.subjectUnderwater surveillanceen_US
dc.subjectShip trackingen_US
dc.subjectAnti-Submarine Warfare (ASW)en_US
dc.subjectRadar targetsen_US
dc.subjectSignal to noise ratio (SNR)en_US
dc.subjectBayesian statistical decision theoryen_US
dc.titleMultisensor adaptive Bayesian tracking under time-varying target detection probabilityen_US
dc.typeReprint (PR)en_US
dc.typePapers and Articlesen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record