dc.contributor.author | Alvarez, Alberto | |
dc.contributor.author | Orfila, Alejandro | |
dc.contributor.author | Sellschopp, Jürgen | |
dc.date.accessioned | 2018-10-11T14:09:05Z | |
dc.date.available | 2018-10-11T14:09:05Z | |
dc.date.issued | 2000/05 | |
dc.identifier | 12509 | |
dc.identifier.govdoc | SM-375 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12489/564 | |
dc.description.abstract | We employ a nonlinear ocean forecasting technique based on a combination of genetic algorithms and empirical orthogonal function (EOF) analysis. The method is used to forecast the space-time variability of the sea surface temperature (SST) of the ocean area around the Island of Elba. The genetic algorithm identifies the equations that best describe the behaviour of the different temporal amplitude functions in the EOF decomposition and therefore, enables global forecasting of future time-variability. | |
dc.format | vi, 29 p. : ill. ; 12 fig. | |
dc.language | English | |
dc.publisher | NATO. SACLANTCEN | |
dc.subject | Remote sensing | |
dc.subject | Genetic algorithms | |
dc.subject | Empirical Orthogonal Function (EOF) technique | |
dc.subject | Elba Island | |
dc.subject | Sea surface temperature (SST) | |
dc.title | A satellite based ocean forecasting system to support naval operations in crisis situations | |
dc.type | Scientific Memorandum (SM) | |