dc.contributor.author | Schmidt, Henrik | |
dc.contributor.author | Glattetre, John | |
dc.date.accessioned | 2018-10-11T14:06:36Z | |
dc.date.available | 2018-10-11T14:06:36Z | |
dc.date.issued | 1986/03 | |
dc.identifier | 1876 | |
dc.identifier.govdoc | SR-96 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12489/274 | |
dc.description.abstract | A three-dimensional fast field program (FFP) model based on the global matrix method will be presented. Compared to traditional propagator matrix methods, the global matrix method allows for a more efficient, and, furthermore, numerically stable computation. The three-dimensional expansion does not restrict sources to be on the center axis, but allows for an arbitrary source geometry-as opposed to earlier two-dimensional versions. As a consequence, the solution includes simultaneously both vertically and horizontally polarized shear waves. A mathematical description will be given and the numerical aspects will be discussed. Some of the features of the model will be illustrated in two test cases: free-space and shallow water with strongly reflecting bottom. The free-space case shows that the three-dimensional solution gives results identical to those obtained by the two-dimensional model except for ranges close to the axis r=O of a cylindrical coordinate system. For the shallow water case, the well-known energy transportation in discrete modes above critical wavenumber is first demonstrated. Then the model is used to analyze the field radiated by a long horizontal array, and it is shown that different modes will propagate in slightly different directions. | |
dc.format | 10 p. : ill. ; 6 fig. | |
dc.language | English | |
dc.publisher | NATO. SACLANTCEN | |
dc.relation.ispartofseries | ADA170268 | |
dc.source | In: Journal of the Acoustical Society of America (1985), 78, pp. 2105-2114. | |
dc.subject | Acoustic propagation | |
dc.subject | Seafloor | |
dc.subject | Seismo-acoustic propagation | |
dc.subject | Shallow water | |
dc.subject | Wave propagation | |
dc.subject | Shear waves | |
dc.title | A fast field model for three-dimensional wave propagation in stratified environments based on the global matrix method | |
dc.type | Papers and Articles | |
dc.type | Scientific Report (SR) | |