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a b s t r a c t

Forward looking sonars (FLS) are nowadays popular for many different applications. In particular, they can be

used for Automatic Target Recognition (ATR) in the context of Mine Countermeasures. Currently, ATR tech-

niques are applied to raw data which generates many false positives and the need for human supervision.

Mosaicing FLS data increases target contrast and thus reduces false positive rate. Moreover, it implies a con-

siderable data size reduction which is important if one thinks of exchange of data in real time through an

acoustic channel with very limited bandwidth. Results of applying a real-time mosaicing algorithm to FLS

data generated during Mine Countermeasures missions are shown and discussed thoroughly in this article.

© 2015 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Sonars have been used as a possible alternative to optical cameras

due to the optical cameras’ limitations. Sonars work under conditions

which affect deeply optical cameras such as turbidity and lack of illu-

mination. They become especially useful in underwater vehicles that

lack artificial light or work too far from the bottom or in surface ve-

hicles working in non-shallow waters, as the light attenuation in the

water gives a very limited range to optical cameras.

Sonars can have several applications including but not limited

to; obstacle avoidance (Karabchevsky, 2011; Petillot, Ruiz, & Lane,

2001), bathymetric mapping (Singh, Roman, Pizarro, Eustice, & Can,

2007), chain inspection (Hurtos et al., 2014b; Yong, 2011), motion

estimation (Dolbec, 2007), 3D reconstruction of objects (Aykin &

Negahdaripour, 2013) or ATR (Beaujean, Brisson, & Negahdaripour,

2011; Galceran, Djapic, Carreras, & Williams, 2012; Reed, Petillot, &

Bell, 2004; Williams & Groen, 2011). Many of these applications are

based on data collected with Side-Scan Sonars (SSS), Synthetic Aper-

ture Sonar (SAS) or high resolution forward-looking sonars (FLS).

Forward-looking sonars with lower resolution are also used because

of their satisfactory range resolution and lower cost. Their dimen-

sions and power requirements allow them to be mounted on Re-

motely Operated Vehicles (ROVs), Autonomous Underwater Vehicles

(AUVs) and Autonomous Surface Vehicles (ASVs) of medium size.
� A shorter version of this paper was presented at the 19th IFAC World Congress,

Cape Town, South Africa, August 24–29, 2014.
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vladimir.djapic@navy.mil (V. Djapic), michele.micheli@cmre.nato.int (M. Micheli),

massimo.caccia@ge.issia.cnr.it (M. Caccia).
One of the applications that a FLS allows is mosaicing. In the op-

ical imaging domain, mosaicing is quite common and many exam-

les can be found not only working in real-time (Ferreira, Veruggio,

accia, & Bruzzone, 2012; Richmond & Rock, 2007) but also offline

ith higher quality both in 2D (Negahdaripour & Xu, 2002) and 3D

applications (Pizarro, Eustice, & Singh, 2009). In the sonar imag-

ing domain, there exist Commercial Off-the-Shelf (COTS) software

products for post-processing and real-time mosaicing of numerous

sidescan, subbottom and bathymetric sonars, such as SonarWiz5n

(SonarWiz, 2013). However, in particular for FLS data, much less

work has been published on mosaicing and specifically on real-time

mosaicing.

Nonetheless, real-time mosaicing of FLS data can be extremely

useful in applications such as Mine Countermeasures. In the context

of an underwater mine detection, providing a mosaic in real-time is

important to fulfill the ultimate goal of the full mission (target recog-

nition). Typically, target recognition algorithms run on raw sonar data

instead of mosaics. As it shall be seen, the Signal-to-Noise ratio (SNR)

increases for mosaic data comparing it with the raw data. The mosaic

can provide a better input image to the Target Detection algorithm

and diminish the number of false positives, an important issue in ATR.

While building a mosaic for sonar data, special care has to be taken

due to the peculiarities of acoustic cameras. Nevertheless, in recent

years, mosaicing algorithms for sonar data have been evolving and

the current state of the art is promising.

Namely, the initial work of Kim, Neretti, and Intrator (2005) shows

mosaics composed of 40 images of a boat wreckage obtained with a

high-resolution FLS, Dual-Frequency Identification Sonar (DIDSON).

However, the algorithm is not real-time. Later, in Kim, Neretti, and

Intrator (2008), more results of a mosaic built with 80 images of a

http://dx.doi.org/10.1016/j.arcontrol.2015.09.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/arcontrol
http://crossmark.crossref.org/dialog/?doi=10.1016/j.arcontrol.2015.09.014&domain=pdf
mailto:fausto.ferreira@cmre.nato.int
mailto:vladimir.djapic@navy.mil
mailto:michele.micheli@cmre.nato.int
mailto:massimo.caccia@ge.issia.cnr.it
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hip-hull inspection are presented. It is shown that the algorithm is

mplemented to work in real-time, but it is uncertain if it can pro-

ide the claimed resolution with the enhancement (up to 10 times

he original) in real-time. As a result of this work, a commercial soft-

are for sonar image enhancement and mosaicing (processing time

f 3.5 frames/s) is available (AcousticView, 2013). According to the

uthors, with this software, it is possible to obtain a mosaic of up

o 1000 frames depending on the level of free memory. In compari-

on, our approach was tested in datasets as big as 8000 frames with

o issues. Moreover, this software does not support zigzag sequences

nd the manual advises to perform straight lines scanning. The in-

tructions refer to the fact that the algorithm can fail if there are no

anchor points” [sic], i.e., features tomatch and that a 60–70% of over-

ap is advisable. Another drawback is that it is specific for DIDSON, a

hort range and high-resolution FLS. While the range itself is not a

imitation for extending the algorithm, the decrease in resolution as-

ociated to higher ranges may bring issues to the image registration.

nother very recent software (SAMM, 2014), creates mosaics in real-

ime by stitching the images based on the GPS position without any

mage registration or navigation filtering. In this case, the algorithm

s able to work with several different sonars. No maximum number

f frames is mentioned. However, navigation filtering is only avail-

ble in post-processing and no image registration is used neither in

eal-time nor in post-processing. In our approach, both navigation fil-

ering and, when suitable, image registration are done online and in

eal-time.

Mosaicing FLS data is a very challenging task due to the approxi-

ate imaging model and commonly appearing artifacts. A very good

nalysis of the most important issues in mosaicing of FLS data can be

ound in Negahdaripour, Aykin, and Sinnarajah (2011). In Thomas, Iv,

nd Reed (2011), the gap produced by the nadir of the SSS is filled

ith FLS data. Only FLS data corresponding to the nadir of the SSS

s mosaiced together with the SSS data. This method was tested in

post-tsunami survey with good results. Objects that would not be

een in the SSS data were foundwith the FLS. This diminishesmission

ime, as to see the same objects using only SSS would take more tran-

ects (due to the nadir) and thus more time. No details about com-

utational time are given in this article. In Hurtos, Cuf’, Petillot, and

alvi (2012), an innovative phase correlation-based mosaicing algo-

ithm was applied to FLS data in a ship hull inspection scenario. The

aximum number of frames registered was 834 and the algorithm

ook around 1 h to compute the whole set of links between the dif-

erent frames. More recently, a chain inspection based on FLS small

reas (4 × 7m2) mosaics was presented in Hurtos et al. (2014b). None

f these were used in real-timemissions. For these works, the expen-

ive high-resolution low range DIDSON sonar is used which is not

uitable for Mine Countermeasures missions where lower cost and

esolution but higher range FLS are preferable. Recent evolutions of

hese two works can be found in the journal paper (Hurtós, Ribas,

ufí, Petillot, & Salvi, 2015). Again, the method should be able to be

xtended to higher ranges sonars but might suffer from the quality or

ack of features. Bear in mind that, for low range and high resolution

LS like DIDSON, the size of the features found in applications such

s ship-hull or chain inspection is considerably large when compared

o the image size. Instead, in our work, the higher range FLS were

sed to image farther objects (at depths that can reach 30 m) and

hus the features size is much smaller increasing the complexity. In

ong (2011), mosaicing techniques were investigated for FLS data. In

hat Master thesis, the algorithmworks near real-time but the results

re focused only on ship-hull inspection (small area covered). In this

ase, the maximum number of frames was 200.

As described above, the algorithms presented in the literature are

ot suitable to work for a wide range of applications, in real-time and

or large scale areas. The state of the art methods try to solve a spe-

ific problem and are not focused on the real-time constraint. The

ork presented here overcomes all these limitations. It tries to be
s generic as possible while maintaining the real-time constraint and

orking in any area of any dimension. It generates georeferencedmo-

aics that can be easily overlapped in a satellitemap. Namely, it can be

onsidered for ATR applications, large area survey and post-mission

nalysis, among others. The algorithm is flexible to work with vari-

us sonars (BlueView and Reson tested thus far) and in different se-

ups (fixed to a pier or mounted onto a moving ASV or onto a mov-

ng ROV tested so far). The results presented here are more related

ith the application of Mine Countermeasures, specifically ATR. For

ore results on large scale areas please consult (Ferreira, Djapic, &

accia, 2015). Due to the few works found in the literature regarding

onar mosaicing, the reasons that motivate this line of research are

ntroduced in the next section together with its application to Mine

ountermeasures. A description of the mosaicing algorithm follows

n Section 3. Section 4 describes the target recognition algorithm. The

esults are presented and discussed in Section 5. Finally, Section 6

oncludes the article and proposes future work.

. Motivation and applications

.1. Motivation

Forward looking sonars have seen an impressive technological de-

elopment in the past few years with higher frequency sonars in

he range of MHz. Some of the latest commercial forward looking

onars can go over 1 MHz up to 3 MHz providing high quality im-

ges for ranges between fewmetres and dozens ofmetres. This allows

ew applications such as sonar-aided navigation (Johannsson, Kaess,

nglot, Hover, & Leonard, 2010), chain inspection (Hurtos et al.,

014b) or mosaicing. Due to their high quality, sometimes, forward-

ooking sonars are named acoustic cameras. In what follows, these

wo terms are interchangeable.

There are several reasons that motivate the mosaicing of FLS data.

ne of them is the filtering of the acoustic noise. Reducing the noise

ncreases the SNR. This happens because of the averaging effect in-

olved in the mosaicing process. Comparing with optical cameras,

coustic cameras have intrinsically more noise due to the physics of

he image formation. For optical systems, the experimental condi-

ions can be defined in a way that minimizes noise (e.g., using ho-

ogeneous illumination). In the acoustic domain, the noise is con-

iderable and mosaics can reduce it significantly. Defining favourable

xperiments like mounting the sonar in an overactuated stable robot

an only help to reduce the influence of perturbations. However, this

s not enough to diminish the noise sufficiently. The physics of an

coustic device such as a forward looking sonar implies that several

onsecutive images will not be very similar. For instance, backscatter

nd reflections coming from the water column occur independently

f the stability of the platform and affect the data quality.

For surface vehicles, the sea state influences the sonar noise level.

aves can have a considerable impact in pitch and roll variations.

hese degrees of freedom are not controlled normally. Their instabil-

ty affects the insonified area and incident angle. Fig. 1 exemplifies

his inhomogeneous insonification natural phenomena. It shows two

lmost consecutive frames (separated by one frame and half a sec-

nd) with different insonifications even though the vehicle is prac-

ically in the same place. This can severely affect the performance

f object detection algorithms as an object can be seen clearly or

ardly depending on the insonification. Several frames with differ-

nt insonifications are normalised by the averaging process implied

n the building of a mosaic, solving that issue.

Other acoustic devices constitute also sources of acoustic noise.

amely, echosounders and DVL can interfere with a FLS when

ounted onto the same vehicle and working in frequencies within

he operational range of the FLS. The same averaging effect of mo-

aicing can substantially decrease this source of noise. To better un-

erstand this issue, real data collected during sea trials exemplifies



Fig. 1. Two frames obtained at close times (0.5 s difference) with different insonifica-

tions at a range of 50 m.

Fig. 2. Raw data showing a target in the middle and echosounder interferences to the

left and right of the target.

Fig. 3. An example of the interference provoked by the DVL. Note the 3 rectangular

shapes in the range direction on the top left, middle and right. Range of the sonar is

50 m.
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this situation in Fig. 2. This is an example of the interference that an

echosounder can introduce. For this particular case, the echosounder

works at 200 kHz while the operating frequency of the FLS is 450 kHz

and the range is set to 50 m. The BlueView P450-130 sonar also de-

tects echos between 300 kHz and 600 kHz. In Fig. 2, the reader can

see very bright interferences coming from the second harmonic of

the echosounder (400 kHz). This sonar is made of six heads and thus

six bright blobs can be noticed, one per each sonar head. As it will

be seen in the Results section, this interference provokes a consid-

erable number of false positives in an Automatic Target Recognition

(ATR) application. This happens because the echo coming from the

echosounder harmonic is similar and brighter than the one coming

from the target to be detected and recognised.

Another acoustic device that can interfere is the DVL. In our exper-

iments, it revealed to be less problematic than the echosounder as its

operating frequency was 600 kHz. This is the limit frequency that the
lueView P450-130 can detect. Fig. 3 shows the kind of interference

he DVL can provoke. It is less problematic when compared to the

chosounder mainly because of the way the sonar is built, its oper-

ting frequency and kind of signal. Without going into details, only

DVL-related blobs are present for a given image as it can be seen

n Fig. 3. Moreover, due to its bigger pulse length, the DVL creates

onger patterns in the range directionwhich, in turn, makes the shape

f the interference completely different of the objects to be recog-

ised. However, if bigger/other shape objects were considered, the

VL interference would be more harmful. The algorithm presented

ere aims to be as generic as possible. Therefore, regardless of the ap-

lication, eliminating the DVL interference is another reason to mo-

aic the data.

Finally, a very important reason to mosaic forward looking sonar

ata is the improvement at the image contrast and detail level. Image

ontrast improves clearly with the averaging effect of the mosaicing

rocess. With a better contrast, both man-made and natural objects

resent in the seabed are much more easily identified. In the raw

ata, an object can be occluded and not visible for some of the frames.

oreover, it is hard to identify details that cross several frames. In-

tead, in a mosaic, even if the object is not seen for a particular frame,

t can be easily identified in the next one. Due to the stitching of sev-

ral frames, an object is insonified more than once and it can be seen

nmultiple views. The final result is thatmore details can be observed

n the mosaic and long continuous objects are well identified. For in-

tance, longmooring cables can be hard to recognise in raw data with

artial viewswhile they are very clear on amosaic. Themore detailed

osaic has also a better resulting contrast than each single image.

Mosaicing forward looking sonar is useful for the reasons enun-

iated above. Its performance in real-time can be extremely helpful

o evaluate a mission and further plan future missions or possibly

e-plan the missions in real-time. Human operator can immediately

nspect the surveyed area while the robot is moving without waiting

ntil the mission’s end. Moreover, an operator can define previously

hen to inspect partial mosaics by defining start and stop geographic

oordinates that correspond to a transect in a lawn mowing pattern

or instance. In particular for FLS data, this can be important to avoid

rtifacts.

.2. Application to Mine Countermeasures

There are several applications for the mosaicing of FLS data in-

luding chain inspection, survey of large areas and object detection.

The reader can refer to Ferreira et al. (2015) for large scale areas mo-

saicing and its motivation. Hereby, the specific application of Mine

Countermeasures in general, and Automatic Target Recognition (ATR)

in particular, are introduced.



c

t

o

b

A

m

t

t

d

i

p

c

T

u

s

s

o

b

a

c

t

b

T

g

A

d

d

m

s

i

u

o

t

o

p

o

s

c

m

s

p

s

i

e

i

t

a

t

t

g

t

n

d

t

o

a

r

p

n

t

t

n

u

Fig. 4. Correlation-based sonar mosaicing architecture.
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As it was described in the previous subsection, mosaics improve

ontrast with respect to raw data. This enhancement is reflected in

he performance of an ATR system running on mosaiced data instead

f raw data. In a typical mission, a list of possible targets is given

y an AUV equipped with a high-resolution SAS or SSS system to an

SV with a lower resolution FLS. The list of targets can include infor-

ation such as the targets’ estimated position, their orientation and

heir shape. The ASV performs a closer inspection in the area around

he expected target location. The inspection can be performed with

ifferent motion patterns, namely circling around the target, keep-

ng the distance to it or a cross-pattern that makes perpendicular and

arallel tracks to the target. For any of these patterns, partial mosaics

an be built and used as input of the target recognition algorithm.

arget recognition algorithms run typically on raw data. However, by

sing mosaics as input, the false positive rate diminishes as it will be

hown in the Results section. Special care has to be taken when con-

idering mosaics for ATR, e.g., in circular missions where the shape

f the targets can change considerably. For cylindrical-shaped targets,

oth the shape and the shadow vary with the angle in such a way that

target recognition algorithm has to deal with the several different

ases. Thus, instead of a full mosaic for a 360° turn, partial mosaics

hat cover an area where the shape does not change greatly have to

e produced. This ensures a consistent representation of the target.

hese mosaics are then provided as input to a target recognition al-

orithm. The mosaicing algorithm presented here is connected to the

TR algorithm developed in Galceran et al. (2012) and recently up-

ated in Ferreira, Djapic, Micheli, and Caccia (2014).

In the context of ATR, the Post-Mission Analysis (PMA) time can

ecrease greatly if good detections are provided by running ATR on

osaics. Current state of the art AUVs used in Mine Countermea-

uresmissions are pre-programmed. The robot collects the data using

ts onboard sensors (side-scan, and recently forward-looking sonars

sed as gap fillers) and the operators involvement is required for PMA

f the sonar data. Typically, human operators spend hours analysing

he waterfall display of the data in order to find potential mine-like

bjects. This operation tends to be very exhausting. The operators are

rone to make unintentional mistakes after some hours of such an

peration. Nonetheless, nowadays, human operators still outperform

oftware ATR algorithms. Even if the probability of detection can be

lose to the human operators, computer ATR algorithms tend to have

uch greater false-alarm rates. This is undesirable if some additional

earch patterns are implemented to take a closer look at the com-

uter ATR targets as they can dramatically increase the overall mis-

ion time. Namely, if the number of false positives on the initial search

s much greater than the real targets, any autonomy search pattern,

ven if maximally optimized (travelling salesman, etc.), will further

ncrease the already long mission time as the ATR results imply that

he AUV must take many “second looks.” Thus, the decrease in false-

larm rates by using mosaics instead of raw data is very important in

his context. Diminishing the false-alarm rates avoids extra inspec-

ion missions which decreases the overall mission time.

Finally, still in the context of ATR, mosaics can be useful to distin-

uish between a bottom target and a moving target. For instance, for

heMine Countermeasuresmissions considered here, after the recog-

ition of a target by the FLS onboard the ASV, a small Unmanned Un-

erwater Vehicle (UUV) is launched by the ASV. This UUV has to reach

he bottom target previously detected by the ATR algorithm running

n themosaics. The UUV is detected after the launch and then tracked

long its way until it reaches the bottom target by analysing the FLS

aw data. The guiding of the vehicle until the bottom target is ex-

lained in Miskovic, Djapic, Nad, and Vukic (2011) and it is based on

avigation updates sent acoustically by the ASV to the UUV. One of

he issues that can occur in this mission is a situation where the au-

omatic tracker of the UUV fails and the UUV gets lost as the received

avigation updates are wrong. This can happen commonly in two sit-

ations: 1) either the tracker gets another blob in the image such as
ea grass (Posidonia) or rocks when the UUV is passing by one, or, 2)

he tracker jumps to the bottom target when the UUV is reaching it.

n both cases, the mosaic images can be very useful not only in post-

rocessing but also in real-time. Namely, the latter case is very hard to

dentify in the raw images in real-time. When the UUV is very close

o the bottom target, the vehicle and the target look like one single

lob. If a mosaic of this mission phase is built, then it is very easy to

ee in real-time in the mosaic that the robot has passed the bottom

arget. A mosaic can be useful especially if background subtraction is

mplemented, as it shall be described in Section 5.4.

. Description

The general architecture for the forward looking sonar mosaicing

acoustic camera) is inspired in Ferreira et al. (2012) and shown in

ig. 4. That work describes a vision-based real-time mosaicing algo-

ithm that used the Simultaneous Localisation and Mapping (SLAM)

utput for optical image registration purposes. However, due to the

se of acoustic images, its specific application of Mine Countermea-

ures and the tested datasets, SLAM is not included as a basis for the

osaicing process here. Instead, correlation is used to correct themo-

ion estimation guess and complete the registration process. This re-

lacement is due to the lack of good features for the loop closing.

losing the loop with false positives can produce substantially wrong

osaics. It is better to have some drift but make sure the data is con-

istent than risking getting very inconsistent results because of the

alse positives in the data association SLAM process. This is object

f future work as the final goal is to include SLAM in the mosaicing

rocess.

The other major difference is that with acoustic cameras, it might

e very hard to estimate the motion of the vehicle for the same rea-

on. The lack of good features to track makes sonar odometry a very

ifficult task. While for optical cameras, a vision-based motion esti-

ation was performed, here, the motion can be estimated recurring

o the navigation sensors of the vehicle. Namely, for an ASV, GPS or

GPS (in our case) estimates are available for the motion estimation.

or a ROV, different options exist for its navigation and localisation

ncluding Long BaseLine (LBL), Ultra-Short BaseLine (USBL), DVL, In-

rtial Navigational Systems (INS), Inertial Measurement Units (IMUs),

tc. In our particular case, the ROV is equipped with a PHINS INS that

ntegrates a high-precision IMU, DVL and USBL measurements. Sim-

larly, instead of using a magnetic compass, heading information is

vailable from the DGPS system or the PHINS unit.

In order to relate the motion estimated by the robot to sonar co-

rdinates, an image formation model is needed. In a forward looking

onar insonifying the sea bottom, the 3D points of the insonified area

an be represented in spherical coordinates (r, θ , φ). Fig. 5 shows the

onar image geometry. For a matter of simplicity and without loss of



Fig. 5. Imaging sonar projection model.
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generality, the sonar centre is the world reference frame. The range of

the sonar r, the bearing angle θ and the elevation angle φ define the

3D coordinates of a cartesian point P as shown in Eq. (2). The conver-

sion between cartesian coordinates to spherical coordinates is as in

Eq. (1).

P =
[
x
y
z

]
=

[
r cos θ cosφ
r sin θ cosφ

r sinφ

]
(1)

S =
[
r
θ
φ

]
=

⎡
⎣

√
x2 + y2 + z2

tan−1 (x/y)

tan−1 (z/(
√
x2 + y2))

⎤
⎦ (2)

Thismodel is not very useful to process the data. The raw data that

the sonar provides includes only slant range and bearing. Therefore,

an approximative model is needed that translates 3D points into 2D

points. A forward looking sonar is normally mounted with a certain

tilt angle illuminating the seafloor. Generally, this tilt angle is small

(5°). For typical FLS, the vertical beam width of the sonar is about

10°. These two conditions are necessary to make a 2D approxima-

tion of the real 3D scene. As in similar work in the literature (Hurtos

et al., 2012), the 3D point P is projected onto the 2D point p. Eq. (3)

resents the projected 2D point p̂ using an orthographic projection as

pproximation with m and n the approximated x and y coordinates.

his approximation is valid as long as the scene relief is negligible

hen compared to the sonar range. This applies if the two conditions

bove are true. In that case, the elevation angle φ is small making

cos (φ) ≈ 1 and sin (φ) ≈ 0 validating Eq. (3).

p̂ =
[
m
n

]
=

[
r cos θ
r sin θ

]
(3)

Considering the orthographic projection, an affine transformation

can be used to relate two consecutive frames. The rotationmatrix and

translation parameters for the affine transformation can be directly

obtained from the navigation systems of the vehicles that carry the

FLS. In the case of the ASV, the DGPS system can provide the trans-

lation vector and the heading variation. There is a coordinate trans-

formation from the DGPS receiver position to the sonar head. Addi-

tionally, the sonar head is mounted on a variable depth pole and has

a pan-and-tilt unit. The depth of the pole only matters when georef-

erencing the mosaic as it induces a difference in the slant range with

respect to the surface. Instead, the pan-and-tilt unit has to be consid-

ered in the affine transformation. As written above, as long as the tilt

angle is small, the approximation holds. The pan angle is treated as a

pure rotation around the elevation axis. In case of the ROV, the sonar

was fixed but the robot was fully actuated. It was able to control the

six translational and rotational degrees of freedom (DoF). The pitch

angle was purposely kept at 0° and the robot depth was controlled
o obtain optimal sonar position with respect to the sea bottom. The

obot was also stable in roll. The ROV integrated navigational system

rovides the translation vector and rotation angle. Eq. (4) represents

the affine transformation with (m, n) being the pixel coordinates of

a projected point. For a matter of convenience, Eq. (4) can be rewrit-

ten in homogeneous coordinates for the projected point (m, n, 1). The

final formula is shown in Eq. (5) with R, rotation matrix and t, trans-

lation vector.

m2

n2

]
= R

[
m1

n1

]
+ t (4)

m2

n2
1

]
=

[
R t

01x2 1

][
m1

n1
1

]
(5)

The effect of this approximation in the image registration process

as studied in Johannsson et al. (2010). Commonly, this error is in the

rder of centimeters. Other possible sources of errors are the changes

n roll but they can be considered negligible. On the other hand,

hanges in pitch are normally related to the tilt angle. As mentioned

bove, for small tilt angles the approximation is valid. The change of

he tilt angle only changes the reflected intensities and the border of

he insonified area. Thus, respecting the assumptions referred above,

ne can use an affine transformation to relate two sonar images.

As mentioned above, the motion estimate cannot be used in a

LAM framework in featureless environments. Hence, the motion es-

imate can be used directly as the initial guess of the point where

he mosaic and the current image should be stitched together, i.e.

he point given by the affine transformation. Then, the same corre-

ation method as in Ferreira et al. (2012) can be applied in a neigh-

ourhood of that initial guess. The method uses the normalized cor-

elation coefficient computed in a neighbourhood of 20 × 20 pixels.

n some cases, e.g., small featureless areas such as the ones present in

omeMine Countermeasures missions, the need for this refining step

rops. In these missions, the robot moves slowly when compared to

he frame rate obtained and thus the DGPS/ROV navigation estima-

ion can suffice. Moreover, normally, one of the few features present

n such missions is the target to be detected and this is not enough

o use correlation for the whole mosaic. In this kind of missions with

ery few features, the mosaics produced are relatively small. Thus,

hey do not suffer considerably from drift and using filtered good nav-

gation data can be an option.

In featureless environments, the correlation method can have

oor performance. For instance, in sandy bottom areas with no ar-

ificial or natural objects of interest, using correlation to refine the

ocation of the best point to stitch together mosaic and current frame

s not always beneficial. If one applies a feature-based method such

s correlation, the algorithm estimates that the robot is practically

topped as the actual image is very similar to the mosaic leading to



Fig. 6. On the top, a partial of the mosaic built only with DGPS estimates. On the bot-

tom, a partial of the mosaic of the same area using also the correlation method.
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Fig. 7. On the top, a mosaic built only with DGPS estimates. On the bottom, the same

mosaic using the correlation method. The number of frames used is around 700.
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maximum correlation coefficient for a zero pixel translation. Fig. 6

hows an example of this situation with the same area represented in

mosaic that only uses DGPS estimates and one that uses the corre-

ation method. As it can be easily seen on Fig. 6b, several frames map

o the same location if the correlation technique is applied. There is

lso an error in the direction perpendicular to the movement of the

obot due to the noise sensitivity of the correlation method to very

imilar images. For the BlueView sonar tested, two sonar heads are

oined together and a thin darker line departing from the origin rep-

esents the border of each sonar head. These lines should not consid-

rably affect the correlation method as they fade towards the top of

he frame and the correlation is computed in area far enough from the

onar head. The lack of continuity of these lines means that the algo-

ithm is drifting as the robot is actually onlymoving forward and thus

he mosaic should show a straight line. In Fig. 6a where only DGPS
stimates are available, these lines are continuous. In these situations,

sing only DGPS gives a better result than the correlation method.

owever, filtering of the DGPS estimates is needed to avoid possible

umps on the GPS position. Both maximum speed and acceleration of

he vehicle are taken into account in this filter. Current work tries to

dentify environments that are featureless, and switch between us-

ng correlation or only DGPS (or other on-board navigation sensors

or underwater vehicles).

In environments with a sufficient number of features, the corre-

ation method improves the quality of the mosaic and corrects for

he navigation drift. Fig. 7 is a good example of the effectiveness of



Fig. 8. On the top, a mosaic built only with DGPS estimates. On the bottom, the same

mosaic using the correlation method. The number of frames used is around 1070.
Fig. 9. On the top, a mosaic built only with DGPS estimates. On the bottom, the same

mosaic using the correlation method. The number of frames used is around 1700.
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the correlation method in the correction of the navigation drift. This

figure shows an example of a mosaic built using around 700 frames

both without the correlation method and with it. It is very clear that

Fig. 7a has several frames mapping to the same place (top left) due to

issues with the navigation. Instead, in Fig. 7b, the correlation method

corrects the navigational errors by registering correctly the images.

To understand better the improvement, a bigger mosaic with 1070

frames is shown in Fig. 8. This mosaic includes the one from the pre-

vious figure so it can be seen the effect of previous navigational errors

in the part of the mosaic that is created afterwards. In Fig. 8a, besides

the same problem of Fig. 7a, the drift is clear and has the effect of

diminishing the length of the transect. With respect to Fig. 8b, which

includes registration by the correlation method, the erroneous mo-

saic is around 22 m short in a 200 m transect, thus over 10% of error.

Finally, a mosaic from the same sequence built from 1700 frames

is presented in Fig. 9. Due to several accumulated drifts, e.g. the one

from Fig. 8a can be identified in the centre of Fig. 9a or the mapping

to the same place in the bottom right, Fig. 9a shows a poor result of a

mosaic built with navigation data only. Instead, Fig. 9b represents the

same area in a seamless mosaic that uses correlation to register the

frames.
Mosaic building and blending: A simple image registration that re-

nes the DGPS (or INS) estimates using correlation updates the mo-

aic. For the building of the mosaic instead, special care has to be

aken. Acoustic data is not as linear as optical data and the intrin-

ic subtleties derived from the image formation model seed the need

f a particular blending.

First of all, in a forward looking sonar, the raw image produced

y the sonar does not represent a full 2D image of the sea bottom as

it happens in a downward-looking optical camera. Indeed, due to the

positioning of the sonar, the rawdata captured by the acoustic camera

also includes reflections from the water column. Most of the pixels

close to the origin of the sonar head should be discarded. This is be-

cause they do not represent accurately the bottom. Instead, the clos-

est pixels to the sonar head include water column reflections. More-

over, the borders to the left and right are also cut as normally the

survey is performed in a way that the area of interest is in front of the

sonar head. Therefore, only a valid region of interest should be mo-

saiced. This should be defined taking into account the expected depth

of the area and the tilt of the sonar so that useful pixels (i.e. represent-

ing the bottom) are not cut off. Exceptionally, when the goal is to mo-

saic static setups or setups where a moving target is actually close to
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he sonar head as presented in Djapic et al. (2013), then an extended

rea, covering most of the sonar’s Field Of View (FOV) should be con-

idered. Another issue that can be problematic in certain application

cenarios such as Mine Countermeasures is the shadows provoked by

bjects with a certain height. The size of the shadow depends mainly

n the height of the object, its shape, range to the sonar and tilt angle.

his shadow also changes with the azimuth angle of incidence as well

s the shape of the object. For applications related to target detec-

ion and recognition, this can be a problem as the object and shadow

ook differently depending on the view point. What can be done in

hose cases is to build partial mosaics instead of a full mosaic of the

holemission. For instance, in a cross-patternmissionwhere a paral-

el and perpendicular transects (with respect to the object) are used,

eparate mosaics for parallel and perpendicular transects should be

uilt. In a circular mission where a robot circles around the object to

e recognised, this issue can be even more notorious if the shape of

he object changes considerably with the viewpoint (e.g. a cylinder).

hus, in such missions, the algorithm builds partial mosaics covering

nly portions of the full 360° where the object’s shape and shadow

o not change drastically.

The blending strategy cannot be the same as the one used for op-

ical cameras. In that case, only new pixels were added to regions that

ere empty. For FLS data that approach does not apply. First, in static

etups where there is a moving target, no update would occur and

he history of the mission would be lost. Second, in circular missions

round an object, that would mean adding only pixels in the bound-

ries and not filtering any noise in the overlapped areas. For lawn

owing patterns that strategy can be used. However, it is a subopti-

al strategy, as it does not improve areas that are seen in more than

ne frame whereas it is exactly for those cases that the mosaic can

e useful. Due to changes in insonification, an object can be clearly

een in one frame and then not anymore in the next one(s). If the

lending technique would add only new pixels in empty regions and

he object was not seen on the previous frame on the imaged region,

hen that object could not be seen at all in the mosaic. Hence, a dif-

erent approach is hereby used. Instead of a superimposing method,

he blending is based on an average of both images. The overlapping

rea between the mosaic and the current frame is computed. For this

rea, an average of the mosaic and the new frame is copied to the

osaic. This has a noise filtering effect and gives more importance

o the new frame than what it had in the optical camera mosaicing.

his simplified weighting technique works sufficiently well for many

pplications. Other more complex techniques exist. For instance, the

nes described in Yong (2011) or recently in Hurtos, Cufi, and Salvi

2013) include different weights for each image or for each image re-

ion. These techniques can be used in a nonreal-time context but, in

his case, the real-time constraint led to the choice of a simpler yet

ffective solution.

. Target recognition algorithm

The mosaicing algorithm output is connected to the target detec-

ion and recognition algorithm described in Galceran et al. (2012).

his algorithm was updated in Ferreira et al. (2014) with several im-

rovements. Originally, it is a real-time detection algorithm for FLS

aw data that makes use of integral image representation to achieve

he real-time capability. Targets are detected by comparing the echo

ap of a region of interest and the background map of the same area.

nly pixels that have an echo a certain amount higher than the back-

round (threshold configured) are considered as possible targets. The

esulting blobs after thresholding are morphologically analysed tak-

ng advantage of prior knowledge about the kind of objects that are

eing looked for. Then, a minimum echo threshold is used to filter

ut lower intensity blobs. The target expected location is given to the

arget detection algorithm by the results of a survey using SAS. In the

ase of a cylinder, its orientation can be estimated from the SAS data
nd provided as an input to the detection algorithm. Only location

nd orientation are provided by the SAS survey not the full map.

Having the orientation of the target, one can search for the cylin-

er only when its broadside is visible. This is especially important in

he case of circular missions around the target as its shape changes

ith the relative bearing to the sonar. The maximum deviation from

he ideal case where the cylinder is perfectly horizontal on the sonar

rame is parameter configurable and it ranged from 30° to 50° in the

xperiments. The final decision of choosing the target location from

he several detections produced was also improved. The detections

re grouped and the distance from the centroid of each group to the

xpected target location is used. In this way, the closer a cluster of

etections is to the target, the most probable is to be chosen. The Eu-

lidean distance between the shape of each detection and the ideal

hape is calculated and averaged. Then, the score obtained for each

luster is weighted with the inverse of the mean distance. In this way,

cluster that has less detections but whose detections are closer to

he real object increases its chances of being chosen.

Due to the modularity of the MOOS framework (Newman, 2009)

ramework, very few changes were needed to connect the output of

he mosaicing algorithmwith this algorithm. Both the mosaicing and

TR run on a MOOS-IvP (Interval Programming) (Benjamin, Schmidt,

ewman, & Leonard, 2010) environment that controls in real-time

he full mission of a multi-robot system. The target detection can be

nabled by the mosaicing algorithm when this produces and pub-

ishes a new mosaic. After performing a detection, the target detec-

ion algorithm will wait for a new mosaic to analyse. The detections

re all saved in a list and the final decision is taken after either a cer-

ain amount of time, number of mosaics analysed or by request. How

ften the mosaicing algorithm publishes a mosaic is configurable and

as to do with the type of mission.

. Results

The results presented here regard mainly the application of mo-

aicing to Mine Countermeasures. They are not exhaustive of all the

ossible applications for this algorithm. For more details on the mo-

aicing of large scale areas, please refer to Ferreira et al. (2015). In

erreira et al. (2015), a mosaic built from a 42 min mission covering

n area of 75,000 m2 and over 8000 frames is presented. The length

f each transect was in the order of 500 m. Here instead, smaller

osaics are presented as for the application of Mine Countermea-

ures Reacquisition, the typical missions are focused on smaller ar-

as. Nonetheless, one of the mosaics presented in this section was

uilt from 2511 frames in an area of about 3000 m2. All the results

ere obtained either by processing previously collected data or by

orking with live sonars during real missions. No simulated results

re presented.

The datawas collected by different vehicles equippedwith various

onars working in different conditions during several experimental

rials. Namely, a BlueView sonar model P900-130 working at 900 kHz

nd with 130° FOV mounted onboard an ASV, a BlueView P450-45

45° FOV) fixed to a pier and a Reson SeaBat 7128 working at 400 Hz,

28° FOV onboard a ROV. The algorithm can run at a frame rate be-

ween 1 Hz and 4 Hz depending mainly on the number of mosaics

aved for post-processing and data analysis. The neighbourhood for

orrelation computation is small and thus the algorithm can register

he image very fast. As it shall be seen, in some cases, a considerable

mount of data can be useful for post-processing and thus it is saved

uring the real-time operation which can decrease the frame rate.

owever, a minimum of 1 Hz was possible to maintain at all times. In

he next subsections, details about each trial, application and sonar

sed will be given. Section 5.1 gives examples of the improvement

osaicing brings to object contrast. Then, Section 5.2 presents a full

osaic of an ATR mission. The Automatic Target Recognition applica-

ion itself is detailed in Section 5.3. Section 5.4 discusses how themo-



Fig. 10. On the top, the raw data. On the bottom, the mosaic for the same area after

1412 frames.

Fig. 11. The ROV Latis from University of Limerick.

Fig. 12. The same target observed in a mosaic and in the raw data. The mosaic is built

from 73 frames.
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saics can be useful for detecting moving targets either in real-time or

post-processing. The fact that the mosaics are built in real-time does

not prevent their use in post-processing as it shall be seen in this sec-

tion. Finally, Section 5.5 shows the importance of the data size reduc-

tion provided by mosaicing in the context of Mine Countermeasures

missions.

5.1. Object contrast improvement

This section concentrates on the improvement in object contrast

that mosaics bring when compared to raw data. This improvement

is the main motivation to the use of mosaics for the purposes of ATR

and thus is here introduced. The data presented in this section was

obtained with a BlueView P900-130 sonar mounted onboard the ASV

Gemellina (modified 4 m Sea Robotics USV). The range of the sonar

was typically maintained between 30 m and 50 m for all the exper-

iments with the BlueView sonars in this section and the following

ones. The range resolution is around 5 cm. The data was collected

in Marciana Marina, a marina in the Island of Elba, Italy during the

ANT11 trial conducted by the NATO STO CMRE, formerly known as

NATO Undersea Research Centre (NURC). Rather than the full mosaic,

detailed views of portions of the area covered can introduce better

the improvement and usefulness given by mosaicing. Fig. 10 shows

partial views of both raw data and the mosaic built until that point.

The shown range is around 30 m for the raw data and slightly more

for the mosaic. As it can be easily observed, the mosaic provides a

better contrast between an object and the background. Not only that,

it defines better the object’s shadow. Finally, it allows the user to see
etails hardly seen on the raw data such as the mooring ropes. In the

aw data, it is hard to picture the full mooring ropes present in the

cene. At the same time, the SNR increases with a much clearer mo-

aic and less noisy than the raw data.

Fig. 12 shows another example of the improvement that the mo-

aic can bring with respect to the raw data. In this case, the dataset
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Fig. 13. Mosaics built with data from Reson SeaBat 5128 mounted onboard the ROV

Latis.
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as collected by a Reson Seabat 7128 mounted onto the ROV Latis

rom University of Limerick during the ANT’12 trial near La Spezia,

taly (see Fig. 11). This sonar has a much better resolution than Blue-

iew (2.5 cm), lower levels of noise and a higher range (typically in

ur experiments up to 100 m). Even if the raw data is better than the

ne provided by BlueView sonars, in some cases objects are not very

ell defined (close to the centre of Fig. 12a) Instead, in the mosaic

hown in Fig. 12b it is clearly identifiable on the left. This figure is

lso a good example of the improvement in SNR as the mosaic di-

inishes visibly the noise level of the raw data. This is the kind of

mprovement that allows a better target recognition in Mine Coun-

ermeasures missions.

Comparing to the previous data set, the raw image quality is su-

erior to the one obtained of BlueView data, which is reflected also

n the mosaics obtained. Fig. 13 shows two mosaics obtained by pro-

essing Reson data. These mosaics represent the same area after 36

nd 132 frames. Two conclusions can be drawn from this example.

irst, comparing to any of the mosaics obtained with BlueView, the

osaic’s quality is higher due to the lower noise present in the raw

ata. However, even in the presence of lower noise levels, the mosaic

till improves the definition of objects and shadows present in the

cene as it can be easily seen looking at the right side of each mosaic.

he difference between Fig. 13a and b is not considerable but some

bjects are brighter and shadows are better defined in the mosaic

uilt with a higher number of frames (Fig. 13b). It is worth it to note

hat, although this sonar produces higher resolution images of bigger

imensions, the algorithm still works in real-time up to 4 Hz. To show

hat feature, a video is attached to this document (MosaicSonar.avi).

.2. Mosaicing

A full mosaic obtained in a typical ATRmission is presented in this

ection to exemplify the kind of result obtained. Fig. 14 shows a mo-

aic of an area covered during an ATR mission during the ANT’12 trial

lso organized by CMRE. This mosaic was built from 2511 frames col-

ected with the Reson Seabat 7128 while the ROV was navigating in

cross-pattern mission. The range of the sonar was set to 100 m and

he area is around 3000 m2. Differences in insonification are noticed

n the mosaic but less than in the example of Fig. 1 due to the higher

uality of the sonar. The simple blending technique is not able to pro-

uce a fully smooth mosaic. Regarding the purpose of the mission

ATR), in the centre of the mosaic, one can observe a cylindrical shape

arget. Note that the shadow is much better defined than in BlueView

ata of Fig. 10. This reflects on the ATR provided that a shadow de-

ector is applied. Even without the shadow detector, ATR has better

esults on mosaiced data than in raw data. The next section presents

uantitative results supporting this fact.

.3. Automatic target recognition

As mentioned before, one of the best test benches to try the mo-

aicing output is the Automatic Target Recognition (ATR) in the con-

ext of Mine Countermeasures. For the full details on the ATR system

pplied to FLS data, please refer to the original algorithm (Galceran

t al., 2012) and the updated version running on mosaics (Ferreira

t al., 2014) which details the improvements of the ATR. Few changes

ere needed to run the ATR with mosaics instead of raw data. The

iggest difference is that instead of processing every single frame, the

TR module nowwaits for a partial mosaic. Depending on the kind of

ission, different criteria are used to decide when to produce partial

osaics. These partial mosaics are then published and can be used in

he ATR module.

Several tests were conducted on the integration of the mosaic-

ng algorithm with the ATR module both on collected data and

n live sonar. The results shown here are from Multinational Au-

oNomous Experiment (MANEX’13) as these ones were obtainedwith
ive sonars. MANEX’13 was conducted in late October 2013 off the

oast of Elba Island, Italy. The sonar is the same as for the Mar-

iana Marina data set. However, a new ASV is used – Gulliver (mod-

fied 5.7 m Sea Robotics USV), a catamaran also from CMRE which

s slightly bigger than Gemellina. Fig. 15 shows the ASV Gulliver at

ea. In Mine Countermeasures (MCM), typical missions executed for

arget reacquisition are: circling around the bottom target, keeping

distance to that target or cross-pattern missions as seen in Fig. 14.

nitial information regarding the position of the target is given by an

UV with an onboard SAS system as described in Section 2.2. Fig. 16

resents a correct target detection in a mosaic even if the raw data

s noisy with an interference coming from the echosounder. This in-

erference is translated in several blobs to the left and right of the



Fig. 14. Mosaic of a cross-pattern mission in an area of 50 × 60 m2 approximately.

Fig. 15. The ASV Gulliver from NATO STO CMRE at sea.

Fig. 16. An example of a correct detection in a mosaic with the presence of noise. (For

interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

Table 1

Correct and false detections [%], their ratio and total correct detections.

Correct [%] False [%] Ratio Total correct

Raw data 40.2% 23.4% 1.71 255

Mosaic data 38.4% 15.3% 2.5 15

Table 2

Correct and false detections [%], their ratio and total correct detections for

different publishing rates.

Correct [%] False [%] Ratio Total correct

Raw data 40.2% 23.4% 1.71 255

Mosaic data (20) 38.4% 15.3% 2.5 15

Mosaic data (10) 29.5% 11.2% 2.63 21

Mosaic data (5) 39.7% 14.6% 2.71 60
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arget. The target (circled in red) is correctly identified and none of

he echosounder blobs becomes a false positive. The echosounder in-

erferences are smoothed by the mosaicing process increasing the

NR and allowing a correct recognition. As described in Section 2.1,

he echosounder is one of the noise sources that degrades the perfor-

ance of an ATR system. Thus, the example shown in Fig. 16 is a good

xample of the worst case scenario in what respects disturbances in

he raw data. For the same scenario with such acoustic noise, apply-

ng ATR on each raw data frame would result in nearly all false pos-

tive detections any time one of the six echosounder signatures ap-

ears near the target area.

Fig. 16 can give a qualitative idea of real data used during the trial.

owever, in order to assess the impact of mosaicing the raw data on

he target detection and recognition algorithm, there is the need of

stablishing quantitative results such as false positive (false detec-

ion) and true positive (correct detection) rates. Table 1 shows the

esults for a data set obtained during a circular mission. Percentages

f correct and false detections are computed based on the total num-

er of frames analysed. As discussed in Section 2.2, for circular mis-

ions where the target and shadow shape change, a mosaic of the full

60° is not useful due to the artifacts. Instead, partial mosaics limited

ither by a maximum heading span or number of frames give better

esults. In thismission, themosaicing algorithmwas publishing a par-

ial mosaic as input to the detection algorithm each 20 frames. This

mplies that the number of frames analysed by the ATR is 20 times

ess than if raw data is used. There is a trade-off between the num-

er of frames (and thus the covered area) and the rate of detections.

o increase the number of detections, smaller mosaics built from a

maller number of frames should be used with the limit case of one

rame for the raw data.

The results of Table 1 show that running ATR on mosaiced data

ives a higher ratio of correct detections over false positives. The per-

entage of correct detections is slightly smaller for the mosaic data

han for the raw data but very close to the raw data’s rate. Instead,

he false positive ratio decreases considerably due to the elimination

f noise coming from echosounder harmonics mainly. This allows the

osaic data to have a much better performance in terms of ratio be-

ween correct detections and false positives. Nonetheless, the num-

er of detections is small because mosaics are published only each 20

rames. Therefore, the trade-off between number of frames (covered

rea) and number of detections was further analysed. To a smaller

umber of frames corresponds a smaller covered area for a givenmo-

aic. The goal of this analysis is to understand the influence of the

osaic publishing rate parameter. Table 2 shows the true (correct)

detection and false positive rates and the ratio between them for dif-

ferent publishing rates, namely publishing a mosaic each 5, 10 and 20

frames. These numbers are in parenthesis in each row of the table.

The same table includes the results obtained with the raw data for

the same data set.
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Fig. 17. In the top of the picture, an UUV is depicted in the shadow area of the bottom

target.
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It is easy to conclude that the ratio between correct detections

nd false positives increases with the mosaic publishing rate. If a mo-

aic is produced and published each five frames, the number of cor-

ect detections increases to 60. Comparing with the raw data (255

etections), this number of correct detections is higher in propor-

ional terms. The best case for the percentage of correct detections

s when a mosaic is published each five frames. It does not corre-

pond to the minimum false positives but it has a lower false positive

ate than the raw data (14.6% against 23.4%) achieving the highest ra-

io between correct detections and false positives. The lowest false

ositive is achieved for the case where a mosaic is published each 10

rames. However, in this case, the percentage of correct detections is

lso lower than for other publishing rates giving a low total number

f correct detections. Regardless of this reduction in correct detec-

ions as well as in false positives for this particular case, the ratio be-

ween correct and false detections increases with a higher publishing

ate and it is substantial higher than for the raw data. For any pub-

ishing rate, the ratio between true positives and false positives is al-

ays higher than for the raw data. These results show that mosaicing

LS data can improve the ATR of man-manned targets by decreasing

he noise level and eliminating several false positives without com-

romising the True Positive (detection) rate. Although the total num-

er of detections is proportionally smaller than what can be obtained

ith the raw data, it is still enough for the successive steps of clus-

ering and detections refining. Moreover, it is better to have less de-

ections but a higher number of correct ones than many detections

t an expense of a higher number of false positives. By decreasing the

umber of false positives, mosaic data diminishes their weight on the

lustering phase as the ratio between True positives and false posi-

ives increases substantially. Consequently, the final result is better

s less outliers contribute to the cluster.

.4. Moving target

Another application of thesemosaics, also related to ATR andMine

ountermeasures, is the detection of a moving target. In this case, the

osaics were not used in real-time but they were produced in real-

ime during the mission. Their integration in the MCM mission is in

he planned future work. The data presented in this section was col-

ected using a BlueView P450-45 FLS (45° FOV, 450 kHz operating

requency) during Breaking the Surface (BtS) 2013, the 5th Interna-

ional Interdisciplinary Field Training of Marine Robotics and Appli-

ations in the island of Murter, Croatia.1 The sonar was mounted on

pole fixed to the pier. However, the same results can be extrap-

lated to the case where the sonar is mounted in a ASV as it was

escribed in Section 2.2. Recalling the application scenario, in this

articular setup, besides a target on the sea bottom, there is a small

nmanned Underwater Vehicle (UUV) moving towards that target.

his scenario is the successive phase in a MCM scenario after the

arget detection of the previous section. Mosaicing this quasi-static

cene can give themission history in a very simple and intuitiveman-

er. The name quasi-static comes from the fact that only the UUV is

oving versus the target while the ASV (or here the pier) does not

ove. The mission history can be easily analysed by looking to par-

ial mosaics without the need of replaying the whole sonar file frame

y frame.

As proven in Section 5.1, details that cannot be seen, or are hardly

een, in the raw data, are easily detected looking at the produced

osaics. In particular for this application, the UUV missing the tar-

et and going forward over the bottom target shadow can be readily

dentified. In the raw data, this is a very difficult situation to detect

n real-time as the shadow prevails. In the mosaic, the UUV position

an be observed during the whole mission in an easy manner. Fig. 17
1 http://bts.fer.hr.

a

a

w

epresents a mosaic built from data collected during BtS 2013 with

he sonar mounted on a pier. It is an example of the aforementioned

ituation. In this mission, the UUV missed the target and ended up

n the shadow region of the bottom target. This was immediately de-

ected by looking at this mosaic at the end of the mission. A further

xtension to this data analysis is the use of background subtraction. If

ackground subtraction based on the mosaic is performed, this situa-

ion could be prevented. This is because the bottom target position is

onstant and the only moving object is the UUV as most of the noise

ets filtered in the mosaicing process. In this case, the real-time ca-

ability becomes important again as the detection of this faulty sit-

ation in real-time would allow the correction of the UUV trajectory

nd the success of themission. Future work on this is described in the

ollowing section.

.5. Data reduction

Finally, a side effect of no small importance derived from mosaic-

ng FLS data is the reduction in data size compared with the raw data.

his is especially important whenmosaicing higher resolution acous-

ic cameras where there is a considerable improvement in terms of

omputational efficiency. For instance, for the Reson sonar, a raw

rame saved in a .png format occupies 1.2MB of space. This sonar was

ounted onboard a ROV. For this kind of vehicles, it is common to

ave high bandwidth fiber optics data link that could eventually en-

ure the transmission of all raw data in real-time to the mothership.

owever, if such a sensor is mounted on an AUV that has to transmit

he data to an operator via an acoustic link, the amount of raw data

reated by the sonar is unbearable especially if one takes into account

hat the maximum ping rate of the Reson sonar is 50 pings per sec-

nd. Although some optical solutions nowadays start to be interesting

ith Commercial-of-the-Shelf (COTS) optical modems reaching up to

0 Mbps for a range of 40 m according to Campagnaro, Favaro, Casari,

nd Zorzi (2014), those are neither very common nor support long

istances operations. One option is to compress the raw data, but for

high ping rate the issue still occurs. On the other hand, a mosaic is

collection of several frames but its size does not increase linearly

ith the number of frames. Although it covers a bigger area it does

http://bts.fer.hr


Table 3

Comparison between raw data size and mosaic data size.

Area [m2] # frames Mission time [min] Total raw data size [MB] Mosaic data size [KB] Ratio raw/mosaic

Small 3650 141 9 170 400 425

Large 75,000 8827 42 4400 3200 1375

Fig. 18. Mosaic of a scene with several objects present. f
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not have amuch bigger size allowing for efficiency gains. For instance,

one situation at which the mosaic is especially useful is if the robot is

almost stopped. In this case, sending all the frames would be sending

repeated data. Instead, the mosaic can better represent the situation

and has the dimension of about one frame. To maintain the real-time

capability, the mosaic is built at half resolution of the original data.

This does not constitute an issue and it is enough to represent the

scene as the raw data has a very high resolution.

To exemplify the data reduction allowed by mosaicing a given

scene, Fig. 18 shows a mosaic of an area of interest with several tar-

gets during ANT’12 with Reson sonar onboard ROV Latis. It was built

based on 141 pings and the area covered is around 3500 m2. Using

the .png format as for the raw data, the mosaic size is around 400KB.

Compressing it in a .jpeg format with a 85% compression factor, its

size decreases to 200 KB without compromising the mosaic quality.

Note that the compression factor is high, decreasing it can lead to

further size reduction. If all the 141 frames were sent, that would cor-

respond to around 170MB of raw data without compression. Instead,

to send a mosaic of 141 frames shown in Fig. 18, 200 KB are enough.

This is a much smaller and especially bearable quantity of data to be

sent through an acoustic link.

Sending this compressed mosaic through the acoustic link can be

very beneficial to several applications including but not limited to

Mine Countermeasures. If the mosaic is built and sent in real-time to

a control station, a panoramic view of the area can be assessed by a

human operator either for search and rescue operations or human-in-

the-loop ATR. For instance, in mine search or reacquisition missions,

the mission planned can be adjusted in real-time taking into account

the mosaic of the area covered up to that moment. When a mosaic

is produced, a very fast and crude ATR algorithm can give a count of

the objects present in the area. If this count is higher than a certain

threshold, then, the compressed mosaic is sent to the operator on a

surface vessel. The operator can evaluate the mosaic, search for the

objects of interest and request a more detailed mosaic of the scene

around a particular object or group of objects. Along with the mosaic,

the coordinates of the vehicle (either in a local or global coordinate

system) are available. Thus, the user can click and/or zoom the area

generating commands to the robot. If an object is of high interest,
then a GO BACK command targeting the object’s location can be sent

via the acoustic link interrupting the pre-programmed search pattern

and defining a new one. After the second look is performed, the robot

continues its planned mission.

The fact that mosaicing allows for better human-robot interaction

with underwater robots is a key point. By analysing relevant data, a

human can interact with the underwater robot by changing the mis-

sion and/or parameters such as tilt angle of the sonar, range, etc. This

can also diminish operation time and cost as the operator can avoid

repassing in areas of no interest and focus on the potential interesting

ones.

In order to summarise the computational efficiency gain provided

by mosaicing the sonar data, Table 3 shows quantitative data about

two of the data sets used. In the case of the Reson sonar, the dataset

from Fig. 18 is in analysis while for the BlueView sonar, the Marciana

Marina full dataset presented in Ferreira et al. (2014) is the chosen

one. Table 3 presents the area covered, the corresponding number of

rames, mission time, total raw data size, mosaic data size and ra-

io between these two for both data sets. The total amount of raw

ata for a big data set such as the Marciana Marina is in the order

f gigabytes while the whole mosaic is around 3MB. Taking into ac-

ount that partial mosaics can be sent instead of the full one, the or-

er of magnitude of the data to be sent through the acoustic channels

ecomes kilobytes which is very acceptable. Instead, the gigabytes

eeded to send all the raw data are completely out of what is possible

owadays.

The improvement in terms of data size is easy to observe by look-

ng at the ratio between the total amount of raw data and the mosaic

ata. While for the Reson data set, this ratio is 425, for the BlueView

ase it raises to 1375. For bigger data sets the data size reduction is

ore accentuated. Taking into account that the first frame appears

ully in the mosaic, the accentuated data size reduction is expected.

he weight of the dimension of the initial frame in the mosaic is big-

er in a smaller data set as the one collectedwith the Reson sonar. Op-

imisation techniques can be applied regarding the size of the mosaic

o be sent as the acoustic channel has a limited bandwidth. Besides

ompressing the mosaic, it has to be decided when to send partial

osaics of a given size. The optimal size will be a function of the com-

unication link, total area to be covered, AUV speed, environment,

tc. On the operator side, the interface can also include the recon-

truction of the global mosaic based on the partial mosaics received

rom the underwater robot.

. Conclusion and future work

Several conclusions can be drawn from this work. As mentioned

n the abstract, mosaicing FLS can be very useful in the context of

Mine Countermeasures for several reasons. First, for the increase of

SNR that reflects on a decrease on the false positives rate and bet-

ter ATR performance. This is allowed because the algorithm works in

real-time. It is worthwhile to note that aspect and the fact that it can

be applied to different scenarios and applications as shown in other

works. A few algorithms are focused on mosaicing in real-time espe-

cially in the acoustic domain. Only very recently (after our work was

preliminary presented at conferences), Hurtos, Nagappa, Palomeras,

and Salvi (2014a) have shown one of the first algorithmsworking fully

in real-time. The first results were obtained for a small area (17 ×
8m2) and close to the bottom (altitude of 3 m) but look promising
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hen compared to the offline approach from the same authors. This

ork is not integrated in a mission that can use the results in real-

ime as in our case. Therefore, the contribution to the field is relevant

nd hopefully will stimulate other groups of research to work in the

ame direction. However, further developments and extensions can

nd should be performed.

For instance, in featureless environments, image registration does

ot work properly and GPS data was used to estimate the displace-

ent between frames. Although this can be enough for the purpose

f ATR and in small areas, dead reckoning has always some drift. Cor-

elation techniques are used to correct the drift, but correlation may

ail in completely featureless environments. Correlation in the fre-

uency domain might be more robust in such cases. Therefore, fur-

her work in this direction should focus on first trying to identify that

n environment is featureless and then apply different techniques de-

ending on the kind of environment.

Secondly, with respect to the ATR application, there are several

ossible improvements although more related with the detection it-

elf and not with the mosaicing. Namely, a shape analysis that takes

nto account the longer axis and smaller axis of a cylinder instead of

he horizontal and vertical dimensions in order to improve the de-

ection when the cylinder is rotated shall be investigated. Currently,

his technique is being developed but the smaller axis estimate is too

oisy in the data obtained with the BlueView sonar. Tests should fo-

us on data collected by the higher resolution Reson SeaBat and then

ry to transpose the results to the BlueView data.

Other future work has to do with the case of a moving robot in the

ontext of ATR mentioned in Section 5.4. In this case, the mosaic of

quasi-static scene can be used for background subtraction as men-

ioned before. Subtracting the background in a scene where only the

obot is moving, and forgetting the obvious noise, the only blob of the

xpected size and dimensions always appearing in the image will be

he moving robot which makes the work of the detector and tracker

uch easier. Moreover, as the bottom target is part of the background

nd thus subtracted, it is now possible to detect the exact moment

hen the moving robot goes over the target.

The previous paragraph implied that the scene is quasi-static and

hat the ASV is merely moving and keeping its position. This may not

e true but what was said above can be extended to the case where

he ASV is moving. This is because the position of the bottom target

s known in GPS coordinates and can be translated to the image co-

rdinate system at any time and then subtracted. This extension is

seful also in the case where an AUV is used instead of an ASV. The

UVs considered are generally non-holonomic and cannot maintain

heir position while the moving robot goes to the bottom target. The

ain point is that as long as the bottom target is on the sonar FOV,

he same background extraction principle can be applied.

Finally, the algorithm should be tested in other applications like

hip-hull inspection, chain inspection and search and rescue op-

rations. In all of these applications, time can be a crucial factor.

ith respect to inspections, saving time means saving money. How-

ver, when used in search and rescue operations, the benefit is even

ore important as it can be used for damage assessment and victim

ecovery.
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