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I. INTRODUCTION

The advent and improvement of autonomous
underwater vehicle technology open wide new
perspectives on sampling the ocean efficiently and
persistently at feasible costs [1, 2]. In particular, the
autonomous capability of robotic-sampling networks, able
to satisfy in real-time prescribed requirements, exhibits
high-quality ocean field estimation and forecast. At the
same time, this kind of networks poses new challenging
problems regarding the managing and the automatic
control of such networks [3, 4]. Recent advances in
distributed statistical signal-processing techniques related
to the control and the inference in dynamic sensor
networks provide a robust theoretical framework to tackle
several challenges [5–9]. Furthermore, this paradigm of
autonomous network of vehicles permits the ocean
sampling with a minimum amount of human supervision.

This work describes an approach for optimally
estimating slowly varying environmental spatial fields in a
distributed fashion by a fleet of autonomous underwater
vehicles (agents), integrated with a network of relay nodes
(RNs). The system architecture allows all the agents and
RNs to converge to the optimal estimated field. These
characteristics are suitable, in particular, for the control of
a network of underwater vehicles, where each agent of the
network can communicate sporadically with one or more
RNs (see Fig. 1).

We focus on the case of an underwater network of
agents, such as gliders [1], that sporadically emerge to
perform satellite or radio communications.

Underwater communications are not used because the
glider agents considered in this work, mainly for
technological limits (vehicle size and energy budget), are
not equipped with an acoustic modem (transmit/receive).
The agents do not directly communicate each other,
neither underwater nor at surface. Communications are
only asynchronous at the surface between agents and a
network of RNs that is reachable by a vehicle with high
probability through satellite/radio links when it is at the
surface. Synchronous communications at surface among
agents are unfeasible because it is difficult to synchronize
the surfacing phase of the vehicles. The sensor network
envisioned in this work has a wide geographic extension
to cover large areas on the order of tens/hundreds of
kilometers. In order to exchange information frequently,
directly between agents, by using underwater
communications, the communication range should be
sufficiently big in order to avoid the vehicles having to
communicate only when they are in proximity of each
other. Considering the typical extension of the surveyed
area and the slow speed of the vehicles (nominally
0.6 m/s), short communication ranges will make the
information exchange very poor, degrading the overall
performance of the system. Again, for the moment, a
long-distance underwater communication capability goes
beyond the technological limits of the considered class of
vehicles. Nevertheless, the distributed estimation



Fig. 1. Sensor network structure.

algorithm and network control proposed in this work is
still valid, with minor changes, in case technology allows
for different communication architectures, such as an ad
hoc network of underwater nodes where gliders pass on
information to each other.

The RN acts as an information gateway to
asynchronously distribute the local information collected
by a sensor to all the other sensors. The global estimation
of the spatial field is, in this way, iteratively computed and
somehow shared by all the nodes of the network. The
estimated field can be retrieved by interrogating a node
when this is reachable by the user. The information
diffusion is based on the consensus protocol among
sensors and the RN(s) [7, 10–12].

The RNs supporting the agent network of underwater
gliders can include a single remote command-and-control
center communicating with gliders at surface through a
satellite link (like Iridium) [1], oceanographic fixed
surface buoys, surface vehicles (like wave gliders) [13,
14], and/or an oceanographic mother ship all connected by
satellite and/or radio links or a combination of the previous
options. Normally, these surface assets are deployed
during oceanographic campaigns so that the additional
cost of configuring them as a network of RNs is negligible.

The spatial field of interest is assumed to be constant
in time or slowly time varying. Moreover, we also
consider the case in which the field is spatially sparse, i.e.,
the field can be represented by a number of informative
components that is lower than the total number of
dictionary base functions used to represent it. The
estimation algorithm is based on a sparsity-aware Kalman
filter (SA-KF) [15, 16] to refine the solution by taking into
account the field sparsity constraints. The sensors are
equipped with a compressive sensing (CS) device [17]
to compress the collected information directly at the
sampling stage. In this way, the sensors can operate
at a lower sampling rate than the original sensor rate,
preserving information and simplifying the sampling
hardware on the side of the analog front end [17].

The network-sampling strategy is adaptive. In
particular, the path of an agent of the network is optimized
in such a way that the agents are forced to move into the
most informative regions, e.g., see [9]. In other words, the
measurements are collected in those areas where the
estimate is more inaccurate.

The proposed architecture can be applied to map
spatial fields for any measureable environmental parameter
such as seawater temperature and optical properties,
acoustic noise distribution, and pollutant concentration.
Moreover, with some suitable modifications, the system
can become a target grid tracker as proposed in [15, 16], a
distributed device for herding activity in intelligence, or
border security applications as suggested in [18].

The architecture can find use especially in the case of
large-scale networks of autonomous underwater vehicles
like gliders [1]. These vehicles typically perform
underwater missions covering large areas and for long
periods of time (even months). They can communicate to a
command-and-control center through a satellite link (or a
radio link in the proximity of the coast, mother ships,
and/or surface vehicles) only when at sea surface and
cannot communicate underwater with other vehicles or
gateways through an acoustic link at very long range due
to energy budget and communication equipment
constraints. They form a multipayload platform carrying
onboard several scientific sensors at the same time such as
conductivity, temperature and depth sensors, seawater
optical parameter sensors, and acoustic hydrophones, thus
implying a great accumulation of data in the vehicle
storage system.

This work follows the seminal papers [18, 19] on
spatial field-distributed estimation by dynamic sensor
networks in a centralized as well as decentralized way
for the static and dynamic cases. The protocols proposed
in these works suppose that neighboring agents can
communicate each other continuously. These papers
do not take into account networks with intermittent
communication links and the sparsity of the spatial field.
Moreover, sensors work at the Nyquist rate and are not
equipped with a CS device. The SA-KF was introduced
in [15, 16], where the authors propose a grid-tracking
system taking advantage of the inherent sparsity of the
surveillance scene (that is usually characterized by a
number of targets that is much lower than the total number
of grid cells). The work deals with static sensors, and the
authors do not suggest any application to dynamic sensor
networks.

The novel contribution of this paper consists in
the design and the application of an adaptive dynamic
network for three-dimensional (3D) ocean field estimation
in a distributed way by a fleet of underwater autonomous
gliders. In particular, the originality of this work is in the
combination of advanced well-known techniques in sensor
networks, distributed inference, dynamic network control,
and sparse sampling, and in their use in an oceanographic
application that is challenging. The design solves the
sporadic and asynchronous communication-limiting
factors, promotes a parsimonious and compact field
representation by introducing spatial sparsity constraints,
and directly compresses the acquired information at the
sampling stage by using CS devices.

The paper aims at evaluating the performance of the
system for specific scenarios. The scenarios reported here



are based on simulated 3D static and dynamic spatially
sparse fields and on a real nonsparse oceanographic
forecast model of the seawater temperature, i.e., the Navy
Coastal Ocean Model (NCOM) [20]. The achieved mean
steady-state relative error between the estimated and the
true field is within 10%.

This paper is organized as follows. Section II provides
the overview of the system. In particular, the field
decomposition is first introduced; the field estimation
algorithm based on a centralized KF architecture is
described, and the CS sensor device model that is used to
modify the original KF measurement equation is specified;
and the subsections on SA-KF, agent control law, and
kinematic model of underwater autonomous glider close
Section II. In Section III, the centralized architecture is
distributed and the consensus protocol is detailed. Section
IV provides simulation results while Section V ends the
paper drawing conclusions and highlighting future work.

II. CENTRALIZED ESTIMATION

This section provides an overview of the centralized
field estimation algorithm. Methods to promote the
sparsity in the estimation at the local nodes will also be
introduced. The consensus protocol will be detailed later
in Section III. The estimation procedure relies on the
expansion of the spatial field on a basis of known spatial
functions, weighted by unknown coefficients that are in
general time variant. The spatial field to be estimated can
be written as [18]:

g(r; t) =
L∑

j=1

cj (t)ψj (r) = �(r)c(t) (1)

where r is the spatial position vector in the region of
interest (for instance 2D or 3D, in a Cartesian reference
system), c = [c1, . . . , cL]T , cj is the jth coefficient,
ψj (r) is the jth base function, and L is the total number
of base functions. For the sake of clarity, from now on,
the time variable t is dropped from the coefficient
expressions. Given the base of spatial functions,
�(r) = [ψ1(r), . . . , ψL(r)], the problem of estimating the
scalar field from the sensor measurements is equivalent to
estimate the coefficient vector c.

We assume here that the coefficient vector c is sparse,
i.e., the coefficient vector has K � L nonzero
components whose amplitude and support are unknown.
In this case, the vector c can be conveniently estimated
using algorithms that take into account its sparsity. Here,
we use a SA-KF, as suggested in [15, 16]. Moreover, the
network agents considered in this work are equipped with
a sparse sensing acquisition device such as the random
demodulator (RD) [17]. The coefficient vector can be
estimated sequentially at a sampling rate lower than the
Nyquist limit by including in the KF measurement
equation the sparse device model.

The following subsections will detail the estimation
algorithm in various forms. In particular, the centralized
model is first introduced, together with the coordinated

network control. The CS version of the algorithm is
described, introducing first the RD measurement equation
and then the SA-KF. A description of the agent used in
simulation tests is also provided, including the kinematic
and the operational and communication constraints.

A. Centralized Estimation

Centralized coefficient estimation is based on a
network of agents that communicate to a fusion center
(FC) their local field estimates at each time step k. The FC
processes the local estimates by averaging them to obtain
the global field estimate. The centralized algorithm
detailed here is not feasible for a glider network because it
would require local estimates available at the FC at each
time step. This is not possible because the vehicles cannot
communicate acoustically underwater with the FC, but
only when at surface, typically every 1 to 3 h, by a
satellite/radio link. The centralized system is then an ideal
system that is used to compare the consensus-based
distributed solution detailed in Section III.

The estimation-level fusion (similar to track-to-track
fusion as in [21, 22]), rather than the KF centralized
solution that fuses the sensor measurements [18], has
been chosen for several reasons. The fusion algorithm
used here is optimum in the minimum mean square error
and maximum likelihood sense considering the sensors
estimates as independent [21–23]. Because this hypothesis
is not always true, the FC processor is in general
suboptimal, but with the advantage of reducing
complexity. The FC (as well as the RNs in the consensus
algorithm as detailed in Section III) does not explicitly
promote sparsity. Instead, the sparsity is promoted at the
agent local level (see sub-Sections IIB and IIC), and the
sensor estimates are fused in the FC (or in the RNs)
similarly to [24] in which a pool of sparse solutions are
averaged in order to improve the final estimate. The fused
estimate is then fed back to the sensors to reinitialize the
local estimates. The sensors indirectly share information
among them, and, because the agents share the same field
model, the local estimates converge in terms of support
and amplitude to the true global state vector after a
transitory phase. Moreover, being the distributed
consensus algorithm based on the fusion of local agent
estimates as detailed in Section III, the comparison
with the centralized solution is more consistent
and straightforward. The comparison with a
measurement-level centralized solution is also possible,
and it can be a further topic for future work.

Compared to a solution in which the agents exchange
their measurements with the FC (or the RNs) and the
control of the agent network is centralized as in [18], the
approach here followed, based on estimation-level fusion
and local agent control, has a higher communication
overhead. However, it makes the integration of new agents
in the network more flexible because a measurement
model is not required at the FC and the FC has not to
know the local agent measurement model and the network



spatial configuration at a given time step (the sensor
positions are not needed at the FC). Moreover, the local
control—based on the agent position, the measurement
model, and the estimation covariance (as detailed in
sub-Section IID)—is more robust to communication
failures [25] because an agent can apply control using
local estimates instead of fused estimates at the FC that
are not available due to a missed communication [14].

The local agent sequential estimation is performed by
a KF in which the coefficient dynamic is modeled by a
linear state space equation shared by all the agents:

ci,k = Fkci,k−1 + Gkuk + nk, (2)

where Fk is the state transition matrix, uk is a
P -dimensional column vector of exogenous forcing factor,
weighted by the known L × P matrix Gk , and nk are
Gaussian-distributed independent noise vectors with
known covariance matrix Qk = diag([σ 2

1,k, . . . , σ
2
L,k]T ),

where σ 2
j,k is the variance of the jth coefficient,

withj = 1, . . . , L.
Assuming a network composed of N sensors, the ith

sensor, for i = 1, . . . , N , acquires at each time step a
noisy measurement yi,k of the field. The ith sensor
measurement equation can be expressed as follows:

yi,k = hi,kci,k + ei,k, (3)

where hi,k = [ψ1(ri,k), . . . , ψL(ri,k)] is the measurement
vector and ri,k is the position of the ith sensor at time step
k. The scalar ei,k is a Gaussian uncorrelated random noise,
independent from nk , with variance [R]i,k = ρ2

i,k . Each
sensor runs the KF prediction and update steps to provide
the sequential estimate of the coefficient vector ĉi,kand its
covariance matrix Ĉi,k to the FC. The FC fuses the local
information matrix, D̂i,k = Ĉ−1

i,k , and the local information

vector ĝi,k = D̂i,k ĉi,k by a weighted sum:

ĝk =
N∑

i=1

wi ĝi,k, (4)

D̂k =
N∑

i=1

wiD̂i,k, (5)

and then retrieves the global coefficient vector as
ĉk = D̂−1

k ĝk and its covariance matrix as Ĉk = D̂−1
k . The

FC broadcasts the global estimates to the sensors to update
the local estimates with the global ones.

In principle, the dynamic equation as well as the
measurement equation can be nonlinear. In this case, a
nonlinear sequential filter like the unscented KF [26] can
be used. In this work, only the linear case is considered.
When the dynamic of the coefficients is unknown, (2) is
used with Fk = IL and Gk = OL×P (IL is the L × L

identity matrix and OL×P is the L × P matrix having all
zero entries), and with σ 2

j,k as free parameters that can be
tuned to adjust the velocity at which the system adapts its
estimate to the true dynamic of the coefficients [27]. The
trade-off to be considered is between the filtering response
of the system and the estimate residual error [27].

Fig. 2. RD scheme. Adapted from Tropp et al. [17].

B. Sensor Model and CS Measurement Equation

CS provides both the theoretical framework and the
practical tools to efficiently approach the sampling and the
reconstruction of sparse signals [28, 29]. The CS-sampling
process is modeled by a linear system as follows:

y = �x, (6)

where x = [x1, . . . , xW ]T is a sparse vector of W samples
acquired at the Nyquist rate, � is an M × W sampling
matrix, with M < W, and y = [y1, . . . , yM ]T is a vector of
M CS measurements. If the vector x has K unknown
components different from zero, with K � W, CS theory
states that x can be exactly recovered by minimizing its
L1-norm constrained by (6) from a number of CS
measurements M proportional to K ln(W).

CS theory provides a way to sample more efficiently
sparse signals where the sparsity is in a given linear
transformed domain. This is typically carried out by
developing cheap analog-sampling devices working at a
lower sampling rate. A large part of research efforts in CS
is devoted to the implementation of sampling schemes that
can be modeled by (6) with random-sampling matrices.
The RD device, proposed in [17] (see Fig. 2), consists
in first modulating the analog input signal x(t) with an
analog random sequence pc(t) of impulses at Nyquist
rate (the chip sequence) with amplitude that takes ±1
equiprobable values. The modulator is followed by an
integrator and a sample-and-hold device that works at a
lower sampling rate than Nyquist. If the observation time
is normalized to 1, the Nyquist rate is 1/W , the integration
is performed in the interval [t, t − 1/M) and the
sample-and-hold device works at a rate equal to 1/M . At
the end of the observation time, the device provides a
vector of M samples given by (6). The sampling matrix �

that models the RD in (6) can be decomposed as the
product of two matrices, � = H�, where

H =

⎡
⎢⎣

W/M

1 1 1 0 0 0 0 . . . 0 0 0

0 0 0 1 1 1 0 . . . 0 0 0

0 0 0 . . . . . . 0 1 1 1

⎤
⎥⎦

(7)
is a M × W matrix simulating the integration and
� = diag([p0, . . . , pW−1]T ), with pj = ±1, a sequence
of equiprobable binary symbols simulating the chip
sequence. Each row of H contains a sequence of 1s with a
length of B = W/M samples starting at the (mB + 1)th
column, with m = 0, . . . , M − 1.



Fig. 3. Centralized KF estimation from CS samples of scalar field.

In this work, each sensor is equipped with a CS device
like the RD. The local KF directly processes the CS
samples working at a lower than Nyquist-sampling rate
(see Fig. 3). In order to allow the KF to process such
samples, the measurement equation, i.e., (3), has to be
modified to properly model the RD-sampling process. If B
is the CS block of Nyquist samples that are weighted by
the chip sequence and then averaged, the CS sample at
time k = mB of the ith sensor is:

yi,mB = 1

B
pT

i,mBHi,mBcmB + 1

B
pT

i,mBei,mB, (8)

where

Hi,mB = [
hT

i,mB−B+1, . . . , hT
i,mB−1, hT

i,mB

]T
(9)

and

hi,mB−b = [ψ1(ri,mB−b), . . . , ψL(ri,mB−b)] (10)

With b = B − 1, . . . , 0. pi,mB = [pi,mB,1, . . . , pi,mB,B]T

is the chip random sequence of the ith sensor and
ei,mB = [ei,mB−B+1, . . . , ei,mB]T is the noise sequence in
(3), for k = mB − B + 1, . . . , mB. The local KF predicts
the measurement using (8) and updates the coefficient
estimate prediction ĉi,mB|(m−1)B = FmB ĉi,(m−1)B

+ GmBumB by using the innovation between the actual
measurement and the predicted one. The final
measurement equation is:

yi,mB = qi,mBci,mB + εi,mB (11)

where

qi,mB = 1

B
pT

i,mBHi,mB (12)

and εi,mB = pT
i,mBei,mB/B, is a Gaussian random noise

having the same variance of ei,k (this is due to the
particular choice of the chip sequence).

C. SA-KF

In order to take advantage of the sparse structure of the
coefficient vector, the local KF applies a further step after
the measurement update that refines the coefficient
estimation enforcing sparsity (see Fig. 4). The filter is
inspired by the so-called SA-KF as proposed in [15, 16].
This filter substitutes the classical Kalman update step
with a gradient descent iterative algorithm initialized by
the predicted state vector estimate in order to minimize a

Fig. 4. KF with sparse refining scheme.

three-term functional that include the L1-norm of the state
vector. The approach followed here is similar to [15, 16]
with the iterative minimization initialized by the state
vector estimate updated by the classical Kalman update
step. In particular, the refinement step consists in
minimizing a cost function composed of three additive
terms: 1) the square error between the coefficient ci,mB and
the Kalman estimate ĉi,mB , weighted by Ĉ−1

i,mB ; 2) the
square error between the measurement vector yi,mB and
the predicted measurement qi,mBci,mB ; and 3) the L1-norm
of the coefficient vector, i.e., the term that promotes
sparsity in the solution, weighted by a constant parameter
λSA that controls the sparsity bias trade-off [15, 16].

The refined estimate of the coefficient vector is
obtained by minimizing the following cost function:

c̃i,mB = arg min
cmB

[JSA(ci,mB)]

= arg min
cmB

[∥∥ci,mB − ĉi,mB

∥∥2
Ĉ−1

i,mB

+ ∥∥yi,mB − qi,mBci,mB

∥∥2
R−1

i,mB

+ λSA

∥∥ci,mB

∥∥
1

]
.

(13)

Equation (13) is solved iteratively by a stochastic
gradient descent algorithm. Given the coefficient state
transition equation, i.e., (2), with Fk = IL and Gk = OL×P

and the measurement matrix (12), the gradient of the cost
function in (13) can be written as:

∇JSA(ci,mB) = 2[−Ĉ−1
i,mB(ci,mB − ĉi,mB)

− qT
i,mBR−1

i,mB(yi,mB − qi,mBci,mB)+λSA1L]

(14)

that is valid for positive coefficients for which the L1-norm
is differentiable.

The refined solution is found by iterating the following
equation:

c̃i,mB(l + 1) = c̃i,mB(l) − γSA∇J [c̃i,mB(l)], (15)

where γSA is an update step size parameter, until the error
between c̃mB(l + 1) and c̃mB(l) is below a given threshold
or after a maximum number of iterations. The iteration
starts with the coefficient estimate at the output of the
regular KF stage, i.e., c̃i,mB(0) = ĉi,mB . The estimate can
also be constrained; in case of nonnegativity constraints,
for instance, the estimate (15) can be projected onto the
nonnegative orthant as proposed in [15, 16].

In this work, a modification to the algorithm (13) is
proposed in which the L1-norm term is substituted by a
smoothed approximation of the L0-norm of the coefficient



vector [30]:

FζSA
(ci,mB) = L −

L∑
j=1

exp(−c2
i,j,mB/2ζ 2

SA),

= L −
L∑

j=1

fζSA
(ci,j,mB) (16)

referred to as smoothed L0-norm (SL0-norm). The limit of
(16) as ζSA approaches zero is the L0-norm of the
coefficient vector, i.e.,

lim
ζSA→0

FζSA
(ci,mB) = ∥∥ci,mB

∥∥
0. (17)

The SL0-norm is a better approximation of the
L0-norm, and it is differentiable everywhere. Equation
(16) can be included in the objective function (13) with a
small ζSA, instead of the L1-norm, and the resulting
objective function can be minimized by using the gradient
algorithm (15), with the gradient vector that is equal to:

∇FζSA
(ci,mB) = 1

ζ 2
SA

[ci,1,mBfζSA
(ci,1,mB),

· · · , ci,L,mBfζSA
(ci,L,mB)]T . (18)

The final estimate is then updated with the refined
solution, i.e., ĉi,mB = c̃i,mB , accepting the approximation
of considering the covariance of the final estimate equal to
the covariance at the output of the regular KF.

Several approaches to enforce sparsity in the KF have
been proposed in the literature other than [15, 16], such
as the one based on pseudomeasurement-norms and
quasinorms as described in [31]. Section IV reports a
comparison among the refining procedure proposed
here, the classical SA-KF in [15, 16], and the
pseudomeasurement approach in [31], showing that the
first approach outperforms the others using the same
number of iterations.

D. Network Control

Following [18], the local sensor control is given by
updating the agent position in order to minimize the
average covariance of the scalar field estimate at the time
step k + 1 with respect to the agent position. The field
covariance is given by:

J =
∫
A

�(r)Ĉi,k+1�
T (r)dA, (19)

where the integration is over the whole area of interest,
with A ∈ R

2 or A ∈ R
3, in which the network of agents is

constrained to operate. As in [18], the dynamical model of
the ith agent is

ri,k+1 = ri,k + fi,k, (20)

where the control input fi,k is implemented by a gradient
control law as follows:

fi,k = −S
∂J

∂ri

|ri=ri,k
, (21)

where

∂J

∂ri

=
∫
A

�(r)
∂Ĉi,k+1

∂ri

�T (r)dA, (22)

and S is a constant gain.
According to [18], the nth component of the control

input vector, with n = 1, 2, 3 in the 3D case, is given by
an expression involving the state covariance matrix, the
measurement matrix (10), and its gradient with respect to
the agent position:

fi,n = 2SR−1
i

∫
A

�(r)Ĉi

∂hT
i

∂ri,n

(ri)hi(ri)Ĉi�
T (r)dA,

(23)
where hi(ri) is the agent measurement matrix (10) in the
noncompressed domain, ri = [ri,1, ri,2, ri,3] and Ri = ρ2

i .
The time step index has been dropped for the sake of
clarity. As shown in (23), the control law depends on the
agent position through the measurement matrix. The
derivatives of the measurement matrix with respect to ri,n:

∂hi

∂ri,n

=
[
∂ψ1(ri)

∂ri,n

, . . . ,
∂ψL(ri)

∂ri,n

]
, (24)

in case ψj (ri) (with j = 1, . . ., L) is a Gaussian radial basis
function (RBF) with given mean vector r̄j=[rj,1, rj,2, rj,3]
and spreading parameter βj , are given by:

∂ψj (ri)

∂ri,n

= −2
ri,n − r̄j,n

β2
ψj (ri), (25)

with ψj (ri) = exp(−||ri − r̄j ||2/β2).
In the ideal centralized system, the control law can be

applied by the ith agent at each time step k. The trajectory
followed by the agent is the one that would allow it to
optimally collect noncompressed measurements along the
way. An approximation can be used by applying the
control law at each k = mB so that the first position within
the next CS sampling window, at k = mB + 1, is the
optimal one. This is the method used in the simulations to
compare the centralized and the distributed consensus
solutions as reported in Section IV. In both cases, the
Kalman prediction of the covariance matrix, Ĉi,k+1|k , is
actually used in (23) to calculate the control vector. In the
case of a glider agent, in the consensus-based distributed
system, the control is applied when the vehicle is at
surface. The dynamic of the agents (20) is adapted, as
specified in the subsection below, to model the behavior of
an underwater glider vehicle having a constant speed (in
the absence of sea current), a constrained vertical plane
dynamic, and a waypoint guidance system. The control
law in this case is used to optimally steer the direction of
the vehicle on the horizontal plane toward the new
waypoint.

E. Agent Kinematic Model: The Underwater Glider

In this work, underwater autonomous gliders [1] are
considered to test the network architecture on simulated
scenarios. Normally, in a typical mission setup, a glider



Fig. 5. Glider mission plan: (a) way points and lane lines in horizontal
plane and (b) yo-yo trajectory in vertical plane.

moves through a 3D space following a saw tooth shape
trajectory in the vertical plane and a waypoint list in the
horizontal plane as in Fig. 5 to acquire measurements
along the water column. The vehicle can be programmed
to surface at each waypoint (typically every 1 to 3 h). The
trajectory is composed of a certain number of dive/climb
cycles in the interval between two waypoints. The data,
collected along the water column, are stored and finally
transmitted when at surface to a control room to be used
later, e.g., in assimilation algorithms for ocean forecasting.

The glider dynamic model considered in this work
assumes a constant velocity without water current
disturbances (effects of water current will the subject of
future investigations), constrained to follow a yo-yo
trajectory in the vertical plane with given climbing and
diving target depths [32]. The glider, in the absence of
currents, navigates in the vertical plane along a yo-yo
segment with a constant pitch angle φ. The control vector
(21) is normalized and multiplied by the total glider speed
V to take into account the constant speed constraint:

f̃i,mB = V fi,mB/
∥∥fi,mB

∥∥ (26)

Because the vehicle pitch is maintained constant
during a dive/climb phase, the 2D horizontal plane
components of (26) are used in the control law, at each
glider surfacing when a waypoint is reached, to
suboptimally steer the vehicle direction toward a new
waypoint [14] to be reached after a given mean time,
typically from 1 to 3 h.

III. DISTRIBUTED CONSENSUS ALGORITHM

In this section, the centralized model of Section II is
modified to overcome the physical operational constraints
of a typical underwater glider vehicle and to allow the
deployment and the automatic control of a network of
such vehicles in a decentralized way. The resulting
network architecture has a switching topology [33] and is
based on the consensus paradigm [34, 35] in which the
information is diffused among the agents through the RNs,
which act as an information gateway. Fig. 6 shows the
basic structure of a single agent and a RN and the
information flow between them.

A. Consensus Protocol

The following assumptions are made for the proposed
network model. Agents can communicate with a RN at

Fig. 6. Agent and RN structure.

Fig. 7. Star network topology with time-varying link weights; example
with two RNs.

random instants. Agents cannot communicate among each
other. Each agent sequentially estimates the coefficient
vector by means of a SA-KF from local field
measurements acquired by a CS device such as the RD
(see the details in Section II).

Each agent updates its position by applying the control
law and using the local prediction of the coefficient
estimate covariance matrix. Agents communicating with
the RNs transmit their local coefficient vector estimate and
covariance; no field measurements are provided to the
RNs. RNs distribute their estimate (coefficient vector
estimate and covariance) to the connected agents and RN
update their coefficient vector estimate and covariance by
combining the local agent’s estimates, when available,
through the average consensus algorithm [10, 11] or
propagates the previous estimate if no agents are
connected. Agents connected to RNs update their local
estimates (coefficient vector and covariance) by using RN
estimates through average consensus.

The protocol allows the global information to
intermittently flow into the network through RNs with a
collaborative behavior among the agents who emerge
above the sea surface to start the communication. Realistic
numerical simulations show that all local agent estimates
and RN estimates statistically converge close to the true
global coefficient vector (i.e., the network reaches a
consensus).

The network of agents and RNs can be modeled
as an undirected graph with a topology sketched in
Fig. 7. The whole network has a set of N + Nr nodes,
N ≡ {1, 2, . . . , N + Nr}, with {N, . . . , N + Nr} the



indices of the RNs, and an adjacency matrix given by:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N︷ ︸︸ ︷
1

1
. . .

Nr︷ ︸︸ ︷
1 1
1 1
...

...

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

N

1 1 1
1 1 1

· · ·
· · ·

1 1
1 1

}
Nr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (27)

which defines the set of all possible graph edges
ε ≡ {(i, l)|Ai,l = 1, i, l ∈ N}, with Ai,l the ith row and
lth column element of A. Actually, the structure of the
network is dynamic, i.e., at each time step k, there is a
subset εk ⊆ ε of edges that are active, where an edge
(i, l) ∈ εk , with i, l ∈ N, is active if node i can
communicate with node l. At each k = mB, the consensus
algorithm is applied to the local estimates of the
information matrices D̂i,mB = Ĉ−1

i,mB and the information

vectors ĝi,mB = D̂i,mB ĉi,mB at each node, including the
RN(s):

ĝi,mB =
∑

l∈Ni,mB

wi,l,mB ĝl,mB, (28)

D̂i,mB =
∑

l∈Ni,mB

wi,l,mBD̂l,mB, (29)

where Ni,mB is the set of node neighbors of the ith node
(the node i is included in the set) at time step k = mB
and wi,l,mB are weighting parameters. Once the consensus
has been applied, the updated coefficient estimate
and the associated covariance for the ith node are
ĉi,mB = D̂−1

i,mB ĝi,mB and Ĉi,mB = D̂−1
i,mB , respectively. The

choice of the weights in the consensus update is crucial
for guaranteeing certain properties and asymptotic
convergence. In particular, in this work, the Metropolis
weights are considered:

wi,l,mB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/[1 + max(di,mB, dl,mB)] (i, l) ∈ εmB

1 − ∑
l∈Ni,mB\i

wi,l,mB i = l

0 otherwise
(30)

with di,mB = |Ni,mB | the cardinality of Ni,mB . This choice
is average preserving, and for certain problems of
distributed consensus, it provides asymptotic convergence
to a global solution under mild conditions on the sequence
of sets of active edges εk .

In the case of a network of underwater gliders, the ith
field sensor applies consensus if it is connected to a RN,
when at surface, after having reached a waypoint. Define
the time step at which the ith sensor reaches the wth
waypoint at surface as ki,w = mi,wB. The sensor and the
connected RN exchange their current estimates to each
other (coefficient vector and associated covariance)
and locally apply the consensus algorithm. The
communication is through a radio or a satellite link. The

glider calculates the correction to the navigation heading
to point to the next waypoint according to the control law
in sub-Section IID and then starts a new cycle of
dive/climb phases. The next solution update is applied
when the glider reaches the next waypoint at
ki,w+1 = mi,wB + �i with �i a random variable with
given statistical distribution. In this work, �i is a uniform
random variable with a given mean value, i.e., a
preprogrammed glider mission parameter usually between
1 and 3 h, within a given interval, typically 15 to 30 min
wide, in order to model the uncertainty due to
environmental factors affecting the vehicle navigation
(such as unknown water currents).

The consensus update phase in this context is
completely asynchronous. With the given network
topology, the direct communication between glider agents
is not possible. However, sensors indirectly combine their
estimates among each other through the RNs. The RNs
allow the diffusion of the information through the network
and the convergence of any local agent estimates to the
global statistic.

IV. RESULTS

In this section, the system is tested by simulating a
network of underwater glider vehicles carrying onboard a
sensor for measuring environmental parameters, like the
seawater temperature. In all tests, the network has one RN.
Two simulated scenarios are considered. The first one is
static and it includes a sparse field simulated as a sum of
Gaussian RBFs with constant coefficients. The second is
dynamic and it simulates a field by using the same RBFs
as the previous scenario with slowly varying sinusoidal
coefficients. Both scenarios are in 3D. Statistics of the
network performance are estimated through Mont Carlo
simulations. Finally, a realistic nonsparse test case is
considered in which the true 3D field is provided by a
seawater temperature forecast model. The test case
duration is 7 days, and it can be considered as a realistic
simulation of a glider network operation.

The three scenarios here considered allow testing the
system under different conditions related to the
characteristics of the spatial field, including dynamic and
sparsity of the state vector c. The results are indicative of
the general performance of the system in case of:

1) static sparse fields,
2) dynamic sparse fields, and
3) dynamic compressible fields.

A. Case Study 1: Constant Coefficients

In the first test case, the true spatial field is modelled in
3D as the weighted sum of K = 4 Gaussian RBFs with
different mean position vector and the same covariance
matrix, V = 0.05I3 (I3 being the 3 × 3 identity matrix).
The RBF spread parameter is given in normalized
coordinates (between 0 and 1). The true nonzero
coefficients are constant in time and equal to
ctrue = [3, 6, 9, 14]T .
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Fig. 8. True sparse field 3D view simulated as weighted sum of RBFs.
Number of nonzero coefficients is K = 4 on total of L = 64 coefficients
associated to 64 Gaussian RBFs distributed on regular grid. Intensity is

in natural logarithmic scale. Blue line represents trajectory of agent
projected on horizontal plane at z = 1.

The field is reconstructed on a 27 × 27 × 27 3D
regular grid representing a spatial domain of 30 × 30 km
along the x and y directions and 100 m along the vertical
direction. Fig. 8 shows a 3D view of the true field and an
example of the trajectory of an agent projected onto the
horizontal plane (the 3D coordinates are normalized
between 0 and 1 for convenience).

The sparse modeling of the field is obtained using a
dictionary of 64 Gaussian RBFs with mean position
vectors distributed on a regular 4 × 4 × 4 3D subgrid of
the reconstruction grid and with the same known
covariance matrix V. The mean positions of the true field
RBFs are distributed on four points of this subgrid (values
are not included for brevity). Off-grid effects and different
RBFs scale parameters are not considered in this work
because they will be the subject for future investigations.
The true field coefficient vector c is then a 64D sparse
vector (whose entrances correspond to the lexicographical
ordering of the RBFs mean position subgrid), with four
components different from zero (the values being equal
to the components of ctrue above) and with support
depending on the position of the mean of each true field
RBF.

According to (2), the state equation for a single-agent
KF is:

ck = I64ck−1 + nk, (31)

with the process noise covariance matrix set to
Qk = 0.003I64 and where I64 is the 64 × 64 identity
matrix. No exogenous inputs are considered. In this first
test and in the next ones (see sub-Sections IVB and IVC),
the true state model is considered unknown to the
network. The process noise in (31) represents the
uncertainty due to a not well-defined state equation the
introduction of which allows tracking of slow time
variations of the state vector in case of a model mismatch.
The measurement equation of each agent is (11) with
measurement noise equal to Rk = 0.001. The task of the
distributed system is to estimate the state vector c (i.e.,
coefficient amplitudes and vector support) given the noisy
measurements of the true field.

Fig. 9. Steady-state field RMSE. SA-KF algorithm comparison using
16 iterations. Performance averaged over 100 Monte Carlo simulations.

The network includes N = 15 glider agents with the
same kinematic characteristics (the kinematic is
constrained as in the glider case in Section III) and
measurement sensors. The agent speed is 0.6 m/s, the
pitch angle is φ = 26◦, the sampling rate is T = 6 s, and
the CS block length is B = 5 (i.e., one CS measurement
every 30 sec and about 11 CS measurements along the
water column in a single climb or dive phase). The chip
sequence of the CS device is chosen at random according
to subsection IIB. The SA-KF parameters are λSA = 10−3,
ζSA = 10−3, and γSA = 10−5, while the number of
iterations is 16. The time delay between adjacent
surfacing/transmission phases of an agent is modelled
as a uniform random variable � ∈ [η − δs, η + δs] to
take into account random fluctuations due to unknown
environmental conditions (sea current) affecting the agent
navigation. The average delay η is typically between 1 to
3 h while in all the simulations δs is set to 15 min. The
duration is TD = 72 h.

Initially, the agents are placed uniformly at random in
the considered domain, and the initial value of the
coefficient estimates is supposed to be a Gaussian random
variable with zero mean and 0.5 standard deviation.
Performance statistics have been evaluated by carrying out
100 Monte Carlo runs. The performances are evaluated in
terms of the steady-state field root mean square error
(RMSE) as a function of the ratio γ = TD/η (the total
number of connections in the observation period). The
RMSE curve is compared against the ideal case of
γ → +∞ and δs → 0, i.e., the centralized solution as in
sub-Section IIA. The network has been simulated for
different values of the mean transmission delay parameter
η ∈ {0.8h, 1.2h, 1.6h, 2h, 2.4h, 3h}. The values of η are
compatible with the kinematic and the track geometry of
glider vehicles allowing at least one dive-climb cycle.

Fig. 9 shows the comparison in terms of steady-state
field RMSE as a function of γ = TD/η among different
SA-KFs as described in sub-Section IIC. In particular, the
SAKF1 is the algorithm proposed in this work as a slight
variant of the original SA-KF proposed in [15, 16], here
referred to as SAKF2. A third implementation, here called
SAKF3, is based on pseudomeasurement norms as
proposed in [31]. The versions using both L1 and SL0

norms are also compared. The algorithms run using the



Fig. 10. Steady-state field RMSE at RN as function of γ = TD/η

compared with centralized consensus solution. Constant coefficient case.

Fig. 11. Estimated field (natural logarithmic scale) at end of
observation period with optimal trajectory for sensor 15 projected on

horizontal plane.

same number of iterations, and the performance is
averaged over 100 Monte Carlo simulations. The RMSE
scale of SAKF1 and SAKF2 is reported on the left axis
while the scale of the SAKF3 is reported on the right axis.
The SAKF1 outperforms SAKF2 and SAKF3, with a
slight improvement of the SL0-norm version with respect
to the L1-norm one, for values of γ that are typical of a
real glider mission setup (e.g., γ = 45). The SAKF1 and
SAKF2 outperform the SAKF3 by two orders of
magnitude. The SAKF1 RMSE is almost constant in the
considered γ interval with a standard deviation that is
about six times lower than the SAKF2, showing better
solution stability ( ± 2σ confidence levels are not reported
in the graph for clarity). The SAKF1 has been chosen to
run the simulations reported in the sequel of this section
and in sub-Sections IVB and IVC.

Fig. 10 shows the steady-state field RMSE at the RN
averaged over 100 Monte Carlo runs as function of
γ = TD/η with 2σ bars (blue line) versus the RMSE of
the centralized solution (in red). As expected, in the static
case, the steady-state error does not depend significantly
on γ within the range of values considered in the
simulation. Its mean value is around 0.0167. The achieved
average relative error is on the order of 2%.

Fig. 11 depicts the estimation of the field at the end of
the observation period showing the good match with the
true field in Fig. 8.

Fig. 12 provides the field RMSE versus time for
γ = 45 (η = 1.6h), averaged over 100 Monte Carlo runs
for both the RN and the sensors. After a transitory phase

Fig. 12. Field RMSE (averaged over 100 Monte Carlo runs) versus
time of RN and sensors for γ = 45.

Fig. 13. Field RMSE (averaged over 100 Monte Carlo runs) versus
time of RN and sensors for γ = 45. Zoom in of steady-state phase.

Fig. 14. Example of nonzero coefficient estimate versus time. Sensors
and RN gradually reach consensus after about 48 h.

of about 48 h, the sensors (in blue) achieve a consensus,
and the RMSE converge to the same value on average. The
RMSE of the RN follows the same dynamic with 2σ

confidence levels converging as well to a steady-state
value.

Fig. 13 shows the steady-state phase of the graph in
Fig. 12 confirming the convergence of the sensors and the
RN RMSE. The RN average error slightly improves with
respect to the mean of RMSE of sensors. The 2σ

confidence intervals are close to each other, and therefore
only the RN is reported.

Fig. 14 finally depicts the estimate of a nonzero
coefficient versus time for the sensors and the RN
(γ = 45). The sensors estimates are initially very different,
producing oscillations in the RN estimate. The sensor and
the RN estimates gradually converge to the true coefficient
achieving consensus on average after about 48 h.



Fig. 15. Steady-state field RMSE at RN as function of γ = TD/η

compared with centralized consensus solution. Sinusoidal coefficient
case.

Fig. 16. Estimated field from sensors and FC at given position.

B. Case Study 2: Sinusoidal Coefficients

In the second scenario, the field is modeled as in the
previous case except for the coefficient amplitudes that are
sinusoidal with the mean value as in the constant case and
an amplitude that is 5% of the mean. The periods of the
four sinusoidal components are set to TP ∈{6h, 7h, 8h, 9h}.
The parameters of the simulation are the same as in the
constant case, including the Gaussian RBF dictionary,
agent model, Kalman state and measurement equations for
each agent, number of agents, and statistical properties of
the transmission delay. The average performance is
evaluated over 100 Monte Carlo runs versus γ with the
same time horizon TD and η as in the previous case.

Fig. 15 shows the steady-state RMSE of the field for
the RN (in blue) compared with the full centralized
solution (in red). In contrast to the previous case, in a
dynamic scenario, the RMSE is much more affected by
the value of η.

In particular, the error at γ = 24 (η = 3h) is roughly
twice the error at γ = 90 (η = 0.8h), asymptotically
decreasing as γ varies between these two limits toward the
ideal fully centralized solution. The average relative error
is in general of the same order of magnitude as in the
constant case.

Fig. 16 shows the field estimation of the RN (in red)
and the sensors (in blue) versus time compared with the
real field at a given position (x = 0.54, y = 0.31, and z =
0.46, in normalized coordinates). The network and the RN
achieve a consensus, on average, after a transitory phase of

Fig. 17. Decentralized, sinusoidal coefficients, glider case. Temporal
field RMSE.

Fig. 18. Decentralized, sinusoidal coefficients, glider case. Temporal
field RMSE. Steady-state phase.

about 24 h in which the local estimates are very different
from each other. After the transitory phase, the network
tries to track the true field variations with an error that
depends on γ (in the example of Fig. 16, γ = 60,
η = 1.2h).

Fig. 17 depicts the field RMSE versus time for the
same γ = 60 (η = 1.2h), averaged over 100 Monte Carlo
runs, for both the RN and the sensors. The sensors (in
blue), after the transitory phase of 24 h, achieve a
consensus with the RMSE converging to the same value
on average. The RMSE of the RN (in red) follows the
same dynamic with 2σ confidence levels converging as
well to a steady state.

From Fig. 18, we get that, differently from the static
case, the error in the steady phase presents a residual
bounded oscillation around a constant value. As confirmed
by Fig. 15, the mean and the amplitude of the residual
oscillation decreases as γ increases (see both the mean
value and the 2σ error bars), i.e., the network is improving
the capability of tracking the real underlying field
dynamic.

Finally, Fig. 19 shows the estimate of a nonzero
coefficient versus time for the sensors and the RN (for the
same case of γ = 60). As in the constant case, the sensors
and the RN estimates, initially with different dynamics,
gradually achieve a consensus (in roughly 24 h), and in the
steady phase they track the true coefficient.



Fig. 19. Example of nonzero coefficient for sinusoidal case. Sensors
and FC gradually reach consensus after 16 h and track coefficient

variations.

Fig. 20. Example of NCOM seawater temperature field variations at
end of 7 days observation period and optimal trajectories projected on
horizontal plane of two agents. Temperature variations are in degrees

Centigrade around global mean.

C. NCOM Water Temperature Forecasts.

In a third scenario, the network task is the estimation
of a nonsparse dynamic field. The true field is constructed
by sequencing a series of consecutive 3D forecasts of
seawater temperature (with 3 h sampling period) of the
NCOM [20], spanning an observation period of 7 days.
The model was provided by the Naval Research
Laboratory–Stannis Space Centre, during the STO-CMRE
2011 Recognized Environmental Picture cruise trial
(REP11) in the Mediterranean Sea. The data set used in
the simulation represents a subvolume of about 60 by
60 km in the horizontal plane by 100 m along depth. The
horizontal resolution is about 2 by 2 km. The initial depth
levels (not regularly spaced) have been linearly
interpolated between 0 and 100 m. The resulting regular
data grid has a size of 30 × 30 × 30 samples.

Fig. 20 shows an example of the true NCOM field at
the end of the observation period. Without loss of
generalities, the spatial/temporal mean of the field has
been subtracted from the original data set. The system
reconstructs the variations around that constant value.

The simulation setup is the same as in the previous
cases except for the basis function dictionary that is of
343 Gaussian RBFs (i.e., the state coefficient vector c has
343 entries) arranged on a 7 × 7 × 7 3D regular subgrid of
the original 30 × 30 × 30 NCOM model grid. The RBF
covariance matrix is V = 0.025I3 constant for all the
dictionary functions. The RBF spread parameter was

Fig. 21. Seawater temperature reconstructed field at end of observation
period for NCOM case. Temperature variations are in degrees Centigrade

around global mean.

Fig. 22. Sensors and RN estimated field at given position subsampled
every 3 h. (a) Transition phase duration of field estimates is about 18 h;

after that estimates track true NCOM field variations. (b) Transition
phase duration in this second case is about 72 h; after that estimates start

to track true NCOM field variations more closely.

chosen empirically by roughly estimating the spatial scale
of the main oceanographic features present in the data.
The results are provided for a single realization because
the scenario does not allow a series of Monte Carlo
simulations in a reasonable time as in the previous
simulated cases.

Fig. 21 presents the 3D view of the reconstruction of
the field at the end of the observation period showing a
good match with the true field in terms of the main
oceanographic features both in the horizontal plane and
along the vertical water column. The results are for a fleet
of N = 15 gliders with B = 5 and η = 1h (i.e., γ = 168).

Fig. 22a shows the sensors and the RN field estimates
versus time (subsampled every 3 h) for a given spatial
position (with x = 0.79, y = 0.66, z = 1.00) compared



Fig. 23. (a) NCOM water temperature field vertical profile along agent
1 track (normalized z coordinates). (b) Estimated temperature field

vertical profile along agent 1 track.

Fig. 24. Spatial field RMSE versus time for different values of N and η

(3 h subsampling).

with the true field (in green). In this case, the system starts
to track the field variations after a transition phase of about
18 h. In the case depicted in Fig. 22b (field versus time at
position x = 0.69, y = 0.07, z = 1.00), the transition phase
is longer, roughly 72 h, after that the sensors and the RN
start to track the field variations more closely.

Fig. 23a shows the vertical profiles of the true NCOM
field along the trajectory of agent 1 while Fig. 23b depicts
the estimated profile by the same agent. The main
oceanographic features are well resolved as well as the
thermocline separating water masses with different
characteristics.

Fig. 24 shows the spatial field RMSE versus time for
different values of the N and η parameters. The graph can
provide some indications on the best parameters to use in
a real scenario, having the same time and spatial scale, and
variability, in order to achieve the best possible
performance at an affordable cost (in terms of number of
sensors and number of transmissions in the observation
period). In particular, the number of sensors significantly
affects the error and the adaptation capability of the
system for N < 15. After that limit, the RMSE value and
the adaptation are almost stable (close to 0.5◦C), and the η

parameter does not significantly affect the performance.

The spatial percentage error of the field is close to 10%
after the transitory phase and forN ≥ 15.

V. CONCLUSIONS

In this paper, an autonomous dynamic sensor network
is proposed and tested on a scenario simulating the
adaptive control of a fleet of autonomous underwater
gliders. The task of the sensor network is to estimate
3D spatial scalar fields of ocean variables. The
communication constraints and the sporadic asynchronous
communications are the main operational limiting factors
of these kinds of underwater networks. In order to cope
with these issues, the proposed architecture manages in a
distributed fashion both the field estimation and the agent
control. Each agent performs the local estimation of the
field statistics by a KF that processes local field
measurements. The local estimates of an agent are
updated, through an asynchronous consensus algorithm,
exploiting the local estimates of the others. The
information exchange is possible due to a subnetwork of
RNs that communicate with the agents at the surface. The
RNs apply consensus (asynchronously) to the local
estimates of the agents and among them so as to provide
an updated global field estimate that is exchanged with the
agents themselves. In this way, all the nodes of the
network converge on average to the global field statistics.
This allows an agent to use global information to control
its position in order to acquire field measurements in the
most informative areas and adaptively track the field
variations. The processing scheme can also take into
account the spatial sparsity of the field by including at the
agent level a SA-KF that refines the solution imposing
L0-norm sparsity constraints. Moreover, the local
sampling scheme is based on a CS sampling device (such
as the RD) to reduce the sampling rate and retain the field
information. The CS samples are directly used in the local
KF, on-line, without the need of reconstructing the
measurement sequence at the original sampling rate.

The system has been tested on simulated scenarios
both sparse and nonsparse. In the tests, the field is
modeled by a dictionary of Gaussian RBFs. The first two
scenarios include a constant and a dynamic sparse field
while a third scenario simulates a glider fleet mission of
7 days using 3D time-varying seawater temperature data
provided by the NCOM forecast model for a
Mediterranean Sea area, in the framework of the REP11
experiment. For typical fleet operational parameters (i.e.,
15 agents and 1–3 h surfacing period) and surveyed area
size (30 × 30 or 60 × 60 km horizontally and 100 m
vertically) the average performance achieved in terms of
relative error at steady state is within 10%.

Future work can be directed in several ways. The
on-line estimation of base functions unknown parameters,
such as the mean and the covariance of Gaussian RBFs, is
of particular importance in real applications. The problem
is challenging because it involves nonlinearities that
complicate the estimation step and also the agent control



law. Further work includes the investigation of the effects
of the water current affecting agent navigation.
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