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Abstract - an unsupervised track classification approach 

based on appropriate discriminative and aggregative 

features derived from beamformed and normalized 

matched-filtered data is applied to sonar multistatic 

tracking and extended to include discretised track velocity 

and heading rate. A clustering algorithm based on the 

Latent Dirichlet Allocation model is proposed. It is 

demonstrated how low-level, highly variable and non-

stationary data components can be combined through an 

increased abstraction level with higher level kinematic 

tracking features. Improved discrimination of tracks 

associated with both stationary and moving scatterers is 

demonstrated. 

Keywords: multistatic tracking, data aggregation and 

clustering, track classification, Latent Dirichlet Allocation 

1 Introduction 

In the context of anti-submarine warfare (ASW) one of the 

central goals of autonomous underwater vehicles (AUVs) is 

detection and tracking of underwater targets. For multistatic 

sonar networks a decision regarding the presence or absence 

of a target (DPAT) can be carried out at increasing 

information processing levels until confidence sufficient for 

making the DPAT is reached. 

At the lowest level, DPAT is carried out using a single 

detection or contact and is based on some form of signal-to-

noise ratio (SNR) test. Usually at this level, to prevent 

incorrect rejection of detections related to a target, a number 

of false detections not related to the target are accepted and 

passed to the tracking level where contacts are used to form 

tracks. At the tracking level “track before detect” approaches 
may be used for DPAT. The DPAT may then be passed to 

higher levels within a data fusion framework if at the tracking 

level the number of false tracks remains too high. 

One of the questions that has not obtained much attention 

in DPAT is as follows: “Have we maximized the amount of

useful information that are available from low (sensor) level 

processing that should be passed to the higher DPAT levels?” 
In other words, are we discarding information at low levels 

that can be important during high-level decision making 

processes? 

One of the obstacles preventing a direct real-world 

validated answer to this question is the uncertainty of the 

ground truth information (e.g. uncertainty of target acoustic 

response due to active interrogation) conveyed through the 

uncertainty of contact and/or track labeling. For example, 

track labeling is straightforward in cases of high SNR 

contacts that are associated to a track aligned with a known 

target trajectory, for instance by lying at a close distance from 

the known trajectory. However, track labeling is less obvious 

in cases where several tracks associated with low SNR 

contacts coexist in a proximity of the target. In this case, 

labelling the track or the contact nearest to the target as being 

target related is not necessarily the correct choice. 

The problem of track labelling uncertainty can be 

addressed by unsupervised track grouping into patterns such 

that the different patterns correspond to the different types of 

false tracks of target-like-objects (TLOs) and to the tracks 

related to target (T). Visualization of such patterns provides 

a way of outlining not only the track patterns corresponding 

to T using uncertain ground truth information but also the 

tentative TLO patterns which lack ground truth information. 

The TLO patterns can be then be revisited for closer 

inspection and analysis. Building a statistical model enabling 

the real-time modeling of T-TLO feature patterns by 

maximizing the relative distance between their respective 

patterns via improvement of feature extraction from all levels 

of information is a direction taken in this work. 

Typically the information that is passed from the lowest 

processing level to the tracking level is limited to the 

kinematic features such as spatial coordinates of contacts, 

and if possible also closing velocity estimates. The non-

kinematic features already used directly for contact detection 

(e.g. SNR) have a limited additional DPAT value. 

In this work we are interested in DPAT improvement 

including decisions about stationary targets through a 

combination of the low level non-kinematic and the track 

level kinematic features (that according to [11] correspond 

respectively to Levels 0 and 1) that can be used both in fully 

automated or in human-in-the-loop decision making. Our 

work differs from other work in this area by its emphasis on 

the increased abstraction of low level multistatic sonar 

features that a) allow us to model the joint distributions of 

non-kinematic and kinematic features in a computationally 

efficient manner suitable for real-time underwater 

autonomous vehicles (AUVs), and b) provides a structured 
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approach for further DPAT improvement through the 

abstraction of other acoustic and non-acoustic sensor low-

level features. In other words, we attempt to combine aspects 

of research from two practically independent communities, 

the first one having concentrated for more than last two 

decades on clutter related DPAT improvement using only 

contact level information (for a recent publication see e.g. 

[1]), and the second one having concentrated on the track-

before-detect level approaches using basically kinematic 

features of contacts and tracks (including the ASW network 

based approaches that optimize also AUV path planning, see 

e.g. [2]). It should be stressed that in an ASW context a target 

is confirmed only after a visual target sighting or other non-

ambiguous measurement, which in many cases is 

unachievable. 

The results of this work, centered on track classification by 

integrating low-level and the high-level kinematic features, 

are built on our previous work [3] showing improved track 

classification using unsupervised clustering of aggregative 

discriminative low-level contact feature associated with 

tracks. 

In the following section we first provide more details 

motivating the construction of extended features, followed by 

the description of features’ construction. The feature 
construction section will be followed by a short description 

of Latent Dirichlet Allocation model used in this work for 

track clustering. Finally we will present the results followed 

by summary. 

2 Point target detection 

Typical detection of point targets by mid-frequency (MF) 

active sonars is “based on a relationship or ratio that exists 
between the desired and undesired portions of the received 

energy when some function of the sonar equipment such as 

detection or classification is performed” [4]. In practice, the

undesired part of the received energy of time series of 

beamformed and matched filtered data (which we call noise) 

is estimated from the background of the portion of the time 

series in which the echo is embedded. Usually the 

background portion is extracted from the close vicinity (e.g. 

before and after) of the portion of time series that has been 

identified as the potential target echo. 

Detectors can be divided into either binary detectors (BD) 

or multiclass detectors (MD) depending on whether 

classification of echoes is required or not. BDs are 

unambiguous only when targets of interest are the only 

objects giving rise to echoes.  

To distinguish the detection errors that arise from incorrect 

noise-echo discrimination from those errors that arise from 

incorrect echo classification, we call erroneous detections 

either false alarms or ambiguous detections. Collectively all 

detections that pass an echo to background level test are 

called contacts. Each contact has a number of features 

associated to it: for instance a feature characterizing energy 

spread in vicinity of peak amplitude, or that contact’s
association to a track. In addition to the individual contact 

features, a tracker can be used to associate contact and 

kinematic track features. 

A typical active narrowband (NB) sonar contact detector 

does not carry out any echo classification but rather addresses 

the T-TLO discrimination problem through closing velocity 

measurements under the assumption that Ts move while 

TLOs are stationary. In the case of stationary or slowly 

moving Ts this approach either cannot be used or has limited 

value. 

In previous work [3] we showed that T-TLO ambiguity can 

be reduced via track classification where a tracking algorithm 

acts as a contact associator forming sets of contacts. This 

track classification is based on an implicit assumption that in 

ASW T-TLO discrimination can be based on respective 

differences in recorded signal spread in the beam-number –
bistatic-travel-time domain. Arguing that direct modeling of 

the causes underlying the spread of the signal amplitude 

envelope is problematic under constraints of real-time 

processing we introduced a discriminative aggregative 

feature, the Difference Entropy of Similarity Test (DEST), 

and model the DEST distribution in a framework of a 

generative model based on Dirichlet processes. 

In the next sections we detail the motivation behind the 

DEST feature and show that it can be readily combined with 

higher level features, joint statistical modeling of which can 

lead to a further reduction of DPAT ambiguity. 

3 Feature construction 

3.1 Motivation for construction of high 

abstraction level features 

Information about clutter and target can be obtained on 

bearings next to the bearing of a contact. At a low level i.e. 

at the level of received amplitudes, the respective 

information can change depending on the target – receiver

distance (Fig. 1). While clutter may contribute significantly 

to signal energy on neighboring beams, so does imperfect 

spatial filtering of a recorded signal or any deviation from the 

array shape assumed during beam-forming. Resolving such 

causes via direct modeling may be problematic under the 

constraints of real-time processing. 

An essential constraint preventing reliable T-TLO echo 

discrimination using solely lower level abstraction features 

obtained from active NB sonar operating in a variable 

environment with a constantly changing measurement 

geometry (i.e. under moving target and receiver assumptions) 

lies in the limited amount of stationary data that can be 

collected in a limited time-space window. 

Another constraint typical to NB contact distributions 

closely related to the limit stated above is uncertainty of 

contact labelling visa-vis noise and T or TLO contacts. This 

uncertainty increases with decreasing signal-to-noise (SNR) 

ratio, and must be estimated from a limited amount of 

available independent data. 

Using tracking algorithm that associate contacts with 

tracks uniquely and blindly (i.e. without explicit labelling) 

either as T or TLO, one can form respective sets of contacts. 

CMRE Reprint Series CMRE-PR-2019-106

2



It is desirable that the joint probability distribution of all 

features of associated contacts would be invariant to 

environmental changes, and that the parameters governing T-

TLO probability distributions could be grouped into a 

relatively limited number of clusters so that parameters 

governing their respective partitions could reliably be learned 

from the available data. 

Discriminative feature aggregation can be thought as a 

process of increasing feature abstraction level such that on 

the higher abstraction levels individual features can be 

modeled jointly with other features obtained by processing 

data from different sensors and/or by constructing 

independent features in addition to existing ones using the 

same sensors. For discrete features such a joint probability 

may be interpreted as a co-occurrence of different events or 

as a co-occurrence of a features meaningfulness of 

interpretation of which the meaningfulness of constructed 

features depends. 

Combinations of features meaningful to operators (e.g. 

distribution of track velocity and heading rate) with the 

features the meaning of which is less apparent (such as 

DEST) is a way to increase operator confidence in DPAT. 

Such a combination also provides a way to fuse contextual 

information (i.e. in a sense of pattern recognition [12]) with 

the features extracted at high abstraction levels from the low 

level data streams of heterogeneous sensors, such as the 

Maximum Mean Discrepancy (MMD) entropy difference of 

passive acoustical sensors [6] [7], and provides a way to 

formalize information required for interactive decision 

making. For example a decision can be based on the 

following statement: “detection of the stationary object is 
based on a noise-like track velocity distribution, and by 

features characterizing the T signal spread, which exclude 

TLOs characterized by the signal spread associated with the 

side-lobes of direct blast”.

3.2 Low level features 

Low level features are constructed from preprocessed 

towed array sonar data. In this work we will consider two low 

level features: 1) the discretized values of MMD test [6] 

(Table I, features {d1,…,d7), and 2) the DEST or the

difference of entropies of MMD distributions estimated 

along and across contact bearing (Table I, 

featuresሼ h෨ͳǡ ǥ ǡ h෨ሽ). Details about these two features are

given in [3] and in the Appendix. 

Fig. 1: Distribution of beams and TLO as seen from the 

array centre (left), and in beam-number – bistatic travel

time space (right) (drawn after [5]). 

 

TABLE I 

K L K L K L 

1 ෨݄1 13 d6 25 v11 

2 ෨݄2 14 d7 26 a1 

3 ෨݄3 15 v1 27 a2 

4 ෨݄4 16 v2 28 a3 

5 ෨݄5 17 v3 29 a4 

6 ෨݄6 18 v4 30 a5 

7 ෨݄7 19 v5 31 a6 

8 d1 20 v6 32 a7 

9 d2 21 v7 

10 d3 22 v8 

11 d4 23 v9 

12 d5 24 v10 

K – Feature number, L - feature label consisting from tag (e.g. h෨ ) and 

relative number of feature tag (e.g.2); Tag labels: h෨  – entropy difference of d 

distributions; d – discretized value of Maximum Mean Discrepancy test; v – 

target velocity (m/s) {0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5.0}; A – azimuth change

rate (Deg/s) {0,0.17,0.33,0.50,0.67,0.83,1.0} 

Vocabulary of features - ܹ = {h෨1,ڮ , h෨7, d1,ǥ , d7, v1,ǥ , v11, a1,ǥ , a7}

Fig. 2: low level feature estimation. A – MMD test.

The two sets of time-series snippets are shown by the 

green and red boxes respectively. Yellow filled 

circles denote positions of estimated d values. B- 

DEST estimation. Blue solid lines connect d values 

used for DEST estimation shown by central filled 

circle. 
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The hierarchical aggregative nature of the DEST feature is 

illustrated in Fig.3. At the lower level (x), the blue filled 

circles correspond to the the time snippets of normalized data 

vectors. The next level (d) shown by the yellow filled circles 

corresponds to the discretized MMD values estimated along 

the beam (e.g. beam j=4, time indices ݅ ൌ ሼʹǡ ǥ ǡሽ in Fig.

2A; Table 1, features 8-14). The DEST is based on the two 

histograms of MMD discretized output estimated along and 

across the beams of a contact (Fig. 2B). These histograms are 

used for entropy estimation along (݄ఛ) and across (݄) beams.

The DEST feature is defined as entropy difference ෩݄ ൌ ݄ఛ െ݄. In this way the DEST construction performs a triple

aggregation of the relative changes around of each contact. 

By moving the TB window to the four cardinal directions 

around the central contact (Figure 2B) the DEST estimation 

is repeated four times (four filled yellow circles around the 

contact in the centre). The five resulting DEST values are 

then sorted into a seven bin histogram (Table I, features 1-7). 

3.3 Track level features 

In addition to the low level MMD and DEST features 

associated with contacts, we estimate the velocity and 

azimuth rate using output of the tracker (which may or not 

have an associated contact at any given time) at the ping rate 

time interval. The discretized velocity and azimuth rate 

values are sorted into eleven and the seven bin histograms 

(Table I, features15-25 and 26-32) respectively. 

4 Feature generative processes 

The generative processes for statistical modelling of a joint 

distribution of discrete aggregated features of multistatic 

sensors and kinematic tracking level features can be 

modelled in a framework of a Latent Dirichlet Allocation 

(Fig. 4). Originally LDA was mainly proposed for the 

probabilistic description of documents [8]. At present LDA 

provides a core algorithm for numerous text and image 

processing approaches. 

We identify the multinomial features given in Table I as 

words drawn from a vocabulary of thirty two words (ܸ ൌ͵ʹ). “Documents” are tracks each consisting of ܰl estimated

multinomial features ݓଵǣே. Finally “topics” are virtual 
reflecting objects (VROs). We adopt the original LDA [8][9] 

for track feature generation description and assume a constant 

(K) number of VROs labelled by tokens: ݖ ൌ ሼͳǡ ǥ ǡ ሽǤܭ
According to LDA (here redefined for the tracking 

framework), a track is a mixture of VROs, each VRO defining 

a distribution over features ݓ (Fig. 4). The proportions of the

mixture model ߶ ൌ ܲሺݓȁݖ ൌ ݆ሻ are drawn on a track-

specific basis from a Dirichlet distribution defined by a 

hyper-parameter ȕ and refer to the multinomial distributions 
over features for the VRO token j. The multinomial 

distribution over VROs for track l is given by ߠ ൌ ܲሺݖሻ.

Each feature ݓ  in a track is generated by first sampling a

VRO from the VRO distribution, followed by sampling a 

feature from the VRO-feature distribution. In this way each 

feature is an independent and identical draw from a mixture 

model conditioned on the mixing proportions and on the VRO 

token ݆.

Since distributions of VROs are unknown, the respective 

variables (i.e. ߠǡ ߶ǡ should be treated as the latent (ݖ

parameters that are to be inferred from data. Under the 

exchangeability assumption, the order of features in a track 

can be ignored. 

The model specifying the distribution over features within 

a track is given by [9]: ܲሺݓሻ ൌ σ ܲሺݓȁݖ ൌ ݆ሻܲሺݖ ൌ ݆ሻୀଵ       (1)

As shown by [9], the VROs can be inferred using Gibbs 

sampling by considering each feature token in the track 

collection in turn, and estimating the probability of assigning 

the current feature token to each VRO, conditioned on the 

VRO assignments to all other feature tokens. The 

unnormalized probability of assigning a feature token to 

VRO ݆ is calculated by (normalisation constant can be

obtained summing the left side over all VROs): ܲሺݖ ൌ ݆ȁିࢠ ǡ ݓ ǡ ݈ ǡ Ǥ ሻ ן ೕೇ಼ାఉσ ೢೕೇ಼ାఉೇೢ సభ ೕಽ಼ାఈσ ೕವ಼ାఈసభ    (2)

where ܥand ܥare matrices with dimensions ܸ ൈ ܮand ܭ  ൈ of feature and VRO counts assigned to jth VRO and lth ܭ 

Fig. 4: Graphical model of VRO model in plate notation. The 

boxes represent replicates. The outer box on the right 

represent L tracks, the inner box represents the Nl samples of 

VROs and features within a track. The box on the right 

represents K VRO distributions. The shaded and unshaded 

variables indicate observed and unobserved variables 

respectively. 

Fig. 3: a hierarchical view of estimation of low level 

features d and ෩݄ ; x - normalized data snippets, d – values

of MMD test, ෨݄and ෨݄௧ – across and along beam entropies

of d distributions,  ෩݄ ൌ ෨݄ െ ෨݄௧
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track excluding respective current ith instances, ିࢠ refers to

the VRO assignments of all feature tokens excluding ith 

instance, ݖ ൌ ݆ stays for the VRO assignment of token ݅ to
VRO ݆, and ԢԢǤ ԢԢ refers to all other known information such as

other feature and track indices ି࢝ and ି , and hyper-

parameters ȕ and Į.
Having direct estimates of z for each feature, we want to 

estimate ߠ and ߶ from the feature-VRO and VRO-track

distributions respectively ߠௗ ൌ ೕವ಼ାఈσ ೖವା்ఈೖ಼సభ Ǣ   ߶ ൌ ೕೈ಼ାఉσ ೖೕೈାఉೈೖసభ (3) 

One can see that having a large collection of tracks, LDA 

can be used to discover track patterns cast as a posterior 

problem. We will see below that the hidden VRO and tracks 

structure can be visualized, and generalized to include new 

data into the structure in the future. 

4.1 Implementation of LDA inference 

To demonstrate practical aspects of DPAT ambiguity 

reduction, we used basic Matlab LDA implementation as 

described in the Topic Modeling Toolbox (TMT) [10]. 

To infer the LDA structure we used Gibbs sampler 

specified by the Matlab function [10]: [~,~,Z] = 

GibbsSamplerLDA(W, D, K, N, ALPHA, BETA, SEED, 

OUTPUT). Here W and D contain the feature and track 

indices for the kth token. K specifies the number of VROs, N 

defines the number of iterations to run the Gibb sampler, 

ALPHA and BETA are the hyper-parameters on the Dirichlet 

priors for the VRO distributions (ș) and the VRO feature 
distributions (߶) respectively, SEED is a variable used for

Matlab random number initialization, and OUTPUT 

determines the screen output by the sampler. The output Z 

contains the inferred VRO assignments or tokens. 

To demonstrate how W and D are formed in the context of 

this work, we first give a simplified example using only four 

features (i.e. a cardinality of vocabulary equals to four), the 

first one being ෨݄  with two possible discrete values ( ෨݄1, ෨݄2) 

and the second velocity (v) with a three possible values (v1, 

v2, v3). By observing two tracks with the first track including 

two ෨݄1 observations and one v3 observation, and the second 

track including one ෨݄1, two ෨݄2, one v1, and two v2 

observations, we will have the following input vectors: 

W=[1,1,5,1,2,3,4,4], and D=[1,1,1,2,2,2,2]; 

5 Results 

5.1 Data collection and processing 

We use data of a field experiment during which multistatic 

acoustic data was collected in a geographical box of 

approximately 31 by 31 km by two AUVs operated either 

concurrently or sequentially for 5-8 hour a day for six days. 

The target that had to be detected by AUVs was an echo-

repeater (ER). It was towed behind a vessel. Each day the ER 

was towed along approximately the same spatial pattern. The 

source was a stationary source pinging on a regular time 

interval. 

We first pre-processed all data collected by towed arrays 

of hydrophones, followed by estimation of the features 

described in Sections 3.2 and 3.3. The positions of the 

contacts for each source ping were estimated from the bistatic 

equations. The respective information was passed to the 

tracking algorithm. The parameters governing the tracking 

algorithm were kept constant through all experiments. As a 

result we obtained tracks, the contacts associated with the 

tracks, and the features on the contact and tracking levels. 

After rejecting tracks with duration shorter than five pings, 

the number of tracks and the number of feature tokens 

associated with tracks were equal to 331 tracks and 69614 

token instances respectively (Table I). 

As it was shown in the previous section, each track had 

associated with it a histogram of counts of the feature 

observations. To form a one dimensional feature vector WS 

required for the input of LDA algorithm, the respective 

histograms were “flattened” as shown in the 4.1 example.

After some experimentation we defined a number of VROs 

to be equal to four. This number is approximately consistent 

with the number of effective states of HMM used for 

classification of tracks in our previous work, and is useful for 

track visualisation. The input parameters were defined as 

follows: K=4, N=3000, ALPHA=0.3, BETA=0.001, 

SEED=30, OUTPUT=1. 

Fig. 5A: feature histograms for the Virtual Reflecting 

Objects 1 and 2 
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5.2 Analysis of VRO histograms 

Feature histograms for each VRO are shown in Fig. 5A, 

5B. Visual inspection of feature distributions shows: 

o The features 8-14 corresponding to the MMD output

show no changes for VRO#3 (i.e. only token 11 is

observed). For other VROs the respective tokens are

either {9, 10} or {10, 11}. It should be noted that

although the range of MMD tokens may be increased by

fine tuning the RBF scaling factor, it was not done in this

work.

o The velocity distribution (features 15-25) is dominated

by the low (relative to the BIN scale) velocities for

VRO1 and 2, and by the medium to high velocities for

VRO4.

o VRO1 and VRO4 exhibit comparable azimuth rate

(features 26-32) distributions.

o Comparison of all VROs shows that DEST distribution

(features 1-7) is the main factor contributing to the

VROs’ non-kinematic feature variability.

5.3  Visualization of track patterns 

Having obtained VRO assignments for each of the feature 

tokens input into the LDA algorithm, we counted how many 

times each VRO had been assigned to feature tokens in each 

track. By normalizing the respective histograms for each 

track we obtained the feature probability mass function 

(p.m.f.) estimates. The track p.m.f.’s were then used for 
clustering and visualization of tracks using two approaches. 

In the first approach we estimated the symmetric Kullback 

Leibler distances between tracks, followed by the classical 

multidimensional scaling (MDS) estimation. The coordinates 

of the MDS output corresponding to the first two highest 

eigenvalues were then used to visualize patterns of track 

distribution (Fig. 6). 

 Since we did not have any ground truth information about 

TLO tracks, after some tests followed by visual inspection we 

identified three classes of the TLO tracks shown by the boxes 

A to D and labelled the respective tracks as T, TLO, DirBl, 

Fig. 5B: feature histograms for the Virtual Reflecting 

Objects 3 and 4. 

Fig. 6: distribution of tracks at the 2D output of 

multidimensional scaling track distance matrix. The 

tracks contained in boxes A-C correspond to four track 

classes as indicated by the legend. 

Fig. 7: distribution of tracks corresponding to the A-C 

boxes in Fig. 6. The median of track locations are shown 

for “DirBlast” and “TLO” classes. The markers with the 
highest spatial density are shown respectively by C and 

B ellipses. The “T”and “ZigZag”tracks are shown by 
solid thick lines. The ER trajectory is shown by thin 

black lines. 
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and ZigZag (Fig. 6). The location and boundary values of 

these boxes are approximate and can be redefined when an 

increased amount of data and/or or ground truth information 

becomes available. In this work the remaining part of tracks 

shown by the blue filled circles have been excluded from 

further analysis. 

The Box C in the center of the left side of Fig. 6 

corresponds to the dense area of tracks having contacts 

affected by sidelobes of direct blast (see also Fig. 7, here C 

indicates the area of increased density of the DirBl tracks). 

Many of these tracks were usually overlapping in a compact 

geographical area in the vicinity of the DEMUS source 

(denoted by the grey filled diamond, Fig. 7; note that contacts 

corresponding to the bistatic distances shorter than AUV –
source distance were removed during preprocessing). We 

observed another geographical area (Box B, Fig. 6) not 

related to the direct blast but which also had many 

overlapping tracks (TLO) located within a relatively small 

area (B, Fig. 7). To show all these tracks in one figure without 

significantly increasing clutter, only median locations of the 

respective tracks are shown in Fig. 7. The rest of the DirBl 

and of the TLO tracks scattered within the area of 

observations were obviously defined by noise and/or 

reverberation. 

Finally we observed the relatively long and straight tracks 

(the red lines of Fig. 7 corresponding to the A box of Fig. 6) 

aligned with the ER trajectory (the T tracks), and the tracks 

exhibiting zig-zag patterns (the ZigZag tracks). 

The second visualization approach was based on kernel 

PCA. A track distribution plot obtained using the first two 

principle components of kernel PCA (Fig. 8) applied directly 

to the normalized histograms revealed a well pronounced 

triangular track distribution: the “A” box tracks 
corresponding to the target are located in the vicinity of the 

lower-right corner of triangle, the ZigZag tracks are located 

at the top and the DirBlast and the TLO tracks in the left end 

of the triangle. 

Having identified the A-C boxes, it is possible to compare 

the feature histograms based on the tracks found within these 

boxes. The histograms shown in Fig. 9 explain the KPCA 

results by identifying the three major VRO variance 

contributors: the T (Box A) – VRO 4, the DirBl (Box B), the

TLO (Box C) – VRO 1, and the ZigZag (Box D) – VRO 2

track classes. Note that the main difference between VRO1 

and VRO4 lies in the frequency distribution of velocities: for 

the VRO #1 the contribution of respective tokens is relatively 

high for 0 < v < 1 m/s with no contribution for v > 1.5 m/s. 

At the same time, for VRO#4, the tokens corresponding to v 

> 1.5 are dominating with no or negligible contribution for v 

< 1.0 m/s. 

6 Summary 

We have shown that in a high false track rate scenario, 

which is typical to multistatic networks in coastal areas, the 

ambiguity of target detections can be significantly reduced 

through the learning of track clusters directly from data. 

Uncertainty of track and contact labelling dictates the 

requirement for formation of track clusters such that they can 

be labelled using uncertain ground truth information.  

A combination of the aggregated discriminative low-level 

features and the high level kinematic features proposed in this 

work makes track clustering possible within a framework of 

topic modelling. This result also makes possible supervised 

track classification in the future.  

Although for autonomous systems DPAT has to be fully 

automatic, human input is required for the final decision in 

most of present day operations. For this reason, 

interpretability of information used for human decision 

making is very important. The LDA framework can provide 

such an interpretation and depends to a large extent on the 

interpretability of features or words, and VROs or topics. 

Fig. 8: distribution of tracks as a function of the first two 

KPCA components. The respective colours can be used to 

cross-reference the tracks of this figure and the tracks of 

Fig. 6 

Fig.9: Histograms showing contribution of VROs (topics) 

to the T, TLO, DirBl and ZigZag classes of boxes A,B,C, 

and D in Fig.6 respectively. 
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7 Appendix: MMD Test 

The MMD test is performed on a pair of interleaved 

bearing-time cells in a time-bearing (TB) window (TBW) 

with a predefined non-dimensional range ܰ = ۂ(2ܿ)/ܴݏ݂ہ,
(where ݂ݏ is the normalized data sampling frequency, R is the

expected length of target, and c is sound speed) and number 

of beams (3 = ܯ) support (for more details see [3]). We apply

this test to quantify dissimilarity of the interleaving TB cells. 

An empirical biased estimate of MMD defined for the pair 

of TB cells ܺ and ෨ܺ (in Fig. 2 shown respectively by the red 

and green boxes) in the TBW can be written as [8] ݀ൣ ܺǡ ෨ܺ൧ ൌ ͳܯଶ ሾ ݇ሺݔො௦ǡ ොሻெ௦ǡݔ െ ʹ  ݇ሺݔො௦ ǡ ሻெ௦ǡݔ σ ݇ሺݔ௦ǡ ǁሻெ௦ǡݖ ሿ,  (5) 
where M correspond to the numbers of beams in the TB 

window, ݇ሺݔො௦ ǡ  areݔ ො௦ andݔ ,ሻ is a kernel functionݔ

renormalized (the first normalization is a part of data 

preprocessing) vectors of the TBW cells respectively at 

beams s and o, (ݔ ൌ ǢכݔȀԡሾכݔ ොݔ ሿԡ andכොݔ ൌ ǢכݔȀԡሾכොݔ ሿԡכොݔ
respectively, where ሾݔכǢ ሿ stays for concatenation ofכොݔ

normalized time snippets at the beam o). We used the 

Gaussian radial basis function (RBF) ݇ሺݔො௦ ǡ ሻݔ ൌexp ሺെԡݔො௦ െ ଶ is a scaling parameter thatߪ ଶሻ, whereߪԡଶȀݔ

after some testing was set to 0.01. We discretize the output of 

MMD test ݀ୀ ൌ min ห݀ െ ሺͳ െ ξ݀ሻห on -2 to 2 interval

with the grid step 0.1 

The discretized MMD values estimated along the beam of 

contact (e.g. beam j=4, time indices ݅ ൌ ሼʹǡ ǥ ǡሽ in Fig. 2A)

correspond to the features 8-14 in Table 1. The three bin 

MMD histograms ሺ݀ሻ ൌ ܹȀܯ, such that σ ఛሺ݀ሻ ൌெୀଵͳ, σ ሺ݀ሻ ൌ ͳெୀଵ where Wr is the number of dr values 

(counted either in {di-1,j, di,j, di+1,j} or in {di,j-1, di,j, di,+1j}) 

falling within the rth bin that are estimated using three MMD 

values taken along (݀ఛ ൌ ሼ݀ିଵǡ݀ǡ݀ାଵǡሽ), and three MMD

values taken across (݀ ൌ ሼ݀ǡିଵ݀ǡ݀ǡାଵሽ). The respective

entropies are estimated using   ݄ఛ ൌ െ σ ఛሺ݀ሻ log ఛሺ݀ሻெୀଵ , and  ݄ ൌ െ σ ሺ݀ሻ log ሺ݀ሻெୀଵ . 
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