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Abstract—Driven by real-world issues in maritime surveillance,
we consider the problem of estimating the target state from a
sequence of observations that can be imprecisely time-stamped.
That is, the time between two consecutive observations can be
affected by an unknown error or delay.

We propose an adaptive filtering strategy able to sequentially
detect the time delays and correctly estimate the target state. Two
decision statistics for the presence of delay are derived, the first
is non-parametric while the second is based on the Generalized
Likelihood Ratio Test (GLRT). When a delayed measurement is
detected, the Maximum Likelihood (ML) estimate of the delay
can be used to correct the timestamps of the target observation
used in the filter.

The validation of the proposed method is carried out using
Monte Carlo computer simulations and analyzing real-world data
collected by a global network of Automatic Identification System
(AIS) receivers.

Keywords—Unknown timestamp delay, filtering algorithms,
Kalman filters, maximum likelihood estimation, real-world data

I. INTRODUCTION

The oceans connect nations globally through an interde-

pendent network of economic, financial, social and political

relationships. The statistics are compelling: 70% of the Earth

is covered in water; 80% of the world’s population lives within

100 miles of the coast; 90% of the world’s commerce is

seaborne and 75% of that trade passes through a few vulnera-

ble canals and international straits. The maritime environment

includes trade routes, choke points, ports, and other infrastruc-

ture such as pipelines, oil and natural gas platforms and trans-

oceanic telecommunications cables [1]. The maritime security

environment is a priority for many nations and international

organizations, and ship traffic monitoring represents one of

the biggest challenges to law enforcement, search and rescue,

environmental protection and resource management.

Cooperative vessel self-reporting systems, including Au-

tomatic Identification System (AIS), provide near real time

information [2], [3]. The International Maritime Organization’s

(IMO) International Convention for the Safety of Life at Sea

(SOLAS) [2] requires AIS to be fitted aboard international

voyaging ships with gross tonnage (GT) of 300 or more, and

all passenger ships regardless of size. Each AIS transmitting

vessel will report its position depending on factors such as

the speed and maneuvering status. In order to make the

most efficient use of the bandwidth available, vessels that are

anchored or moving slowly transmit less frequently than those

that are moving faster or are maneuvering. The update interval

ranges from 3 minutes for anchored or moored vessels, to

2 seconds for fast moving or maneuvering vessels, the latter

being similar to that of conventional marine radar.

While AIS was originally conceived for collision avoidance,

and the main use of the system is for local and real time

applications, there are increasing possibilities for the use of

AIS beyond this scope. Coastal states are also able to receive,

plot and log the data by means of receiving stations along

the coast, in the air, or in space. The amount of information

reported by AIS providers is impressive, and for reference we

report in Fig. 1 the worldwide density of traffic computed

using AIS data collected during six months at the NATO

Science and Technology Organization Centre for Maritime

Research and Experimentation (STO-CMRE).

The NATO STO-CMRE uses AIS data from a variety

of sources, including government-to-government near real

time collection networks based on coastal receivers, exter-

nal providers, and single coastal receiving stations. These,

together with other experimental data, are used for scientific

purposes and the development of algorithms. Among the

possible applications, a developmental tool, namely Traffic

Route Extraction for Anomaly Detection (TREAD), has been

recently developed [4]–[6], aimed to process historical data in

order to automatically obtain knowledge about maritime traffic

and Pattern of Life (PoL) of ships at sea. AIS information is

also typically used as ground truth in order to estimate the

performance of coastal radars, see e.g. [7]–[14].

While in theory AIS information provides high-fidelity

target kinematic estimates, in practice several kinds of errors

are often observed. Usually, a filtering mechanism, such as

the Kalman filter, is used to fit the observation sequence to

a given dynamic model [15]. In this case, one assumption

that is frequently made is that the measurement propagates

from the sensing device to the filter occurs without delay.

However, in practice time delays can occur between when an

observation is taken by the sensor on board the vessel and

when it becomes available to the filtering algorithm leading

to time delayed measurements. Moreover, if receiver clocks

are not synchronized, the unknown time delay may also be

negative –without violating causality.

Generally speaking, any sensor network poses the issue

of clock synchronization among receivers, but AIS networks

are particularly subject to this kind of problem, because a

complete timestamp of the transmission time is not present

in the positional message broadcast by AIS devices on-board
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Fig. 1. Density of Automatic Identification System (AIS) messages collected from multiple AIS networks from April to September 2012. Each pixel covers
a 4 nmi (one-fifteenth-degree) square on the ground and its color is (logarithmically) proportional to the number of ships whose reported position fall within
its footprint.

vessels. When measurements with different time delays are

interleaved with one another, this is known as the Out-of-

Sequence Measurement (OOSM) problem [16], [17]. If time

delays are known, the filter can be extended to account for the

delays, and in the recent years a number of works have dealt

with this problem. In [16] the exact solution for the OOSM

is provided, while in [18] 1-step-lag algorithms are efficiently

generalized to handle an arbitrary lag while preserving their

main feature of solving the update problem without iterating.

The extension to the particle filtering toolbox that enables

nonlinear/non-Gaussian filtering with arbitrary lag is proposed

in [19]. In [20] the author studied the optimal estimation

procedure when the sensor measurements are subject to delay

or might even be completely lost.

All of the aforementioned methods assume that, although

the measurements are delayed, the –potentially random–

amount of delay is known. However, as discussed in [21],

situations can arise where the time delay is not known per-

fectly. To the best of authors’ knowledge there are only few

works dealing with such a problem. In [21] the problem is

addressed using the Covariance Union (CU) technique [22].

In [23] the least squares filtering problem is investigated

when observations are affected by stochastic delays, where

the delay is random and can amount to at most one sampling

time. In [24] authors analyze several existing methods to

incorporate possible (often uncertain) measurement delays,

typically applied for a variety of chemical processes systems.

While in [21], [23], [24] the time delay is modeled as a discrete

value multiple of the sensor sampling time, in the case of

AIS, the ships’ reporting activity is asynchronous by design,

because the data originate from a variety of transponders.

In this work we propose a different method to deal with

unknown delayed measurements based on the adaptive filtering

that is able to sequentially detect the time delays and correctly

estimate the target state. Two decision statistics for the pres-

ence of time error are derived, the first being non-parametric

and the second based on the Generalized Likelihood Ratio

Test (GLRT). When a time error is detected the Maximum

Likelihood (ML) estimate of the error can be used to correct

the timestamps of target observations used in the filter.

The paper is organized as follows. In Sec. II the problem is

formulated, in Sec. III an adaptive filter solution is proposed

and detailed, in Sec. IV results using synthetic and real-world

data are reported. Finally, in Sec. V the final remarks are

presented.

II. PROBLEM FORMULATION

Let us consider the following state transition and observa-

tional model

xk = f (tk,xk−1,vk) , (1)

yk = h (xk,nk) , (2)

τk = tk + δk, (3)

where f and h are respectively the state transition and

measurement function, tk is the time between two consecutive

target states, vk and nk are respectively the process noise and

the measurement noise, both often assumed as a sequence of

independent and identically distributed (i.i.d.) random vari-

ables.
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In this work we consider the possibility that the acquisition

time of a measurement yk at step k, indicated with τk, is

affected by an error. We model this error by using an unknown

time delay, denoted by δk. Consequently, at step k we observe

the measurement yk and its acquisition time τk.

The target state is denoted by xk =
[

x
(1)
k , ẋ

(1)
k , x

(2)
k , ẋ

(2)
k

]T

,

where x
(1)
k and x

(2)
k are the positional coordinates and ẋ

(1)
k

and ẋ
(2)
k are the velocities in the two dimensions. A common

formulation for (1) is the near constant velocity (NCV) model

xk = F (tk)xk−1 +A(tk)vk, (4)

where

F (t) =









1 t 0 0
0 1 0 0
0 0 1 t
0 0 0 1









, (5)

A(t) =









t2/2 0
t 0

0 t2/2
0 t









, (6)

where vk is the two-dimensional acceleration noise vector

modeled as an i.i.d. random process with Gaussian distribution

N
(

v;0, σ2
vI2

)

.

We also consider a linear measurement function, so we have

yk = Hxk + nk, (7)

where H is the measurement matrix and nk is distributed as

N (n;0,R) with a covariance matrix R.

The aim of our work is to estimate xk based on the data

{yi, τi}
k
i=1. Note that the system of state transition (4) and

measurement equation (7) is no longer linear because of the

fact that tk is unknown.

Assuming that a delay event (δk 6= 0) can be present or

not present, we can model the problem as a hypothesis testing

problem (see the background on [25], [26])

τk =

{

tk, if Hk = D̄,

tk + δk, if Hk = D,
(8)

where the current hypothesis Hk ∈
{

D̄,D
}

, and D̄ denotes

the simple hypothesis with absence of delay while D denotes

the composite hypothesis with presence of delay where δk can

be modeled as an unknown parameter.

III. ADAPTIVE FILTER FOR UNKNOWN DELAYED

MEASUREMENTS

Based on a suitable decision statistic Tk at step k for the

hypothesis test (8), the delay δk can be

• detected,

• estimated, and

• used to correct the state estimate.

Let us assume that the estimate xk−1|k−1 at step k− 1 (the

common notation xm|n indicates the estimate of xm based

on observations up to time n) is Gaussian with a covariance

matrix Pk−1|k−1. Then, under the hypothesis that there is a

delay δk and by using the linear-Gaussian assumptions made

in the previous section, the prediction is Gaussian

xk|k−1 (δk) = F (τk − δk)xk−1|k−1, (9)

with a covariance given by

Pk|k−1 (δk) = F (τk − δk)Pk−1|k−1F (τk − δk)
T

+ σ2
vA (τk − δk)A

T (τk − δk) . (10)

Under the hypothesis that there is a delay δk, the innovation

νk (δk) = yk −Hxk|k−1 (δk) is a zero mean Gaussian with

covariance given by

Sk (δk) = HPk|k−1 (δk)H
T +R. (11)

As commonly applied in the context of adaptive filtering,

e.g. in the case of input estimation or target maneuver detec-

tion, see [27], a decision statistic is given by the innovation.

In our case, under D̄ (no delay), the innovation is zero mean

Gaussian with covariance Sk (0), consequently the normalized

innovation squared νk (0)
T
Sk (0)

−1
νk (0) is distributed as

chi-square with ny, dimension of the measurement, degree

of freedom. A delay manifests itself as a “large” innovation

(as for the case of a maneuvering target [27]), and a simple

detection procedure for such an occurrence can be based on

the normalized innovation squared

Tk = νk (0)
T
Sk (0)

−1
νk (0)

{

< γ decide D̄,

≥ γ decide D,
(12)

where γ is the threshold which determines the probability of

false alarm PFA(γ) = P
[

decide D
∣

∣D̄
]

and the probability of

detection PD(γ) = P [decide D |D ]. In the case of a decision

for D, the delay can be estimated by using a Maximum

Likelihood (ML) estimator of δk given that the distribution

of the innovation is a zero mean Gaussian with covariance

Sk (δk), see (11). The ML estimator is then given by

δML
k = argmax

δ∈∆
{N (νk (δk) ;0,Sk (δk))} (13)

= argmin
δ∈∆

{

log |Sk (δk)|+ νk (δk)
T
Sk (δk)

−1
νk (δk)

}

where ∆ is the interval of admissible delays and |·| is the

determinant operator. Another detection strategy is based on

the Generalized Likelihood Ratio Test (GLRT) [25], [26]

Tk =
N

(

νk

(

δML
k

)

;0,Sk

(

δML
k

))

N (νk (0) ;0,Sk (0))

{

< γ decide D̄,

≥ γ decide D,
(14)

where γ rules PFA(γ) and PD(γ).
In Fig. 2 there is a comparison between the nonparametric

test (12) based on the normalized innovation squared and the

GLRT (14). As expected, the GLRT exhibits a gain in terms of

performance with respect to the nonparametric test. However,

an advantage of the latter is that the threshold can be controlled

analytically from the fact that PFA(γ) is a tail of a chi square

cumulative distribution. Conversely, in the case of the GLRT,

the threshold can only be determined numerically using a

Monte Carlo simulation.
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Fig. 2. Receiver operating characteristic (ROC) curve generated using
a Monte Carlo simulation with 2 · 104 iterations. Parameters: R =

diag
(

50
2, 1, 502, 1

)

, σ2
v = 10

−2.

A. Filtering based on the estimated delay

Given the decision at time k the estimated delay δ̂k is zero

if D̄ is declared true, otherwise is δML
k , equivalently we have

δ̂k = I{Tk≥γ}δ
ML
k , (15)

where IA is the indicator function of A.

If the estimated inter-measurement interval τk−δ̂k > 0, then

the update of the adaptive filter follows the Kalman Filter (KF)

update by using

xk|k

(

δ̂k

)

= xk|k−1

(

δ̂k

)

+Kk

(

δ̂k

)

νk

(

δ̂k

)

, (16)

Kk

(

δ̂k

)

= Pk|k−1

(

δ̂k

)

HTSk

(

δ̂k

)−1

, (17)

Pk|k

(

δ̂k

)

=
(

I −Kk

(

δ̂k

)

H
)

Pk|k−1, (18)

where xk|k−1

(

δ̂k

)

and Pk|k

(

δ̂k

)

are given in (9) and (10)

respectively. Alternatively, if the estimated time interval τk −
δ̂k < 0 then the measurement yk has to be considered as an

OOSM, i.e. yk occurred before than yk−1. In this case it is

possible to use any OOSM filtering procedure, e.g. see [16],

[17]. In the following we adopt the exact solution to the OOSM

problem.

IV. EXPERIMENTAL RESULTS

In this section we report experimental results using com-

puter simulated trajectories and real-world AIS data.

A. Computer experiment

The main purpose of this simulation is to evaluate the

accuracy gain of the GLRT described in Sec. III over a

conventional KF, as well as its feasibility for a realistic target

tracking scenario.

A Monte Carlo simulation of the position error has been

carried out. Three cases have been analyzed:

• ideal case (no delay)

k

10 20 30 40 50 60 70 80 90 100

P
os
it
io
n
er
ro
r
[m

]

10
2

10
3

No correction
Ideal
Adaptive

Fig. 3. Mean position errors using Monte Carlo simulation with 103

iterations. Comparison among the standard filter (no correction), the ideal
filter (perfect correction) and the proposed adaptive filter. Parameters: R =

diag
(

50
2, .25, 502, .25

)

, σ2
v = 10

−3.

• two unknown delays that are not compensated, and

• two unknown delays faced by the proposed adaptive using

the GLRT as detector.

The Monte Carlo simulation has been run with NMC =
103 iterations to ensure statistically significant results. At each

iteration, a synthetic trajectory of K = 102 data points with

a sampling time of Ts = 3 · 102 seconds is generated. The

same trajectory is then used to feed our adaptive filter and

two conventional KFs, the first one that knows precisely the

time of measurements, while the second observes delayed (by

an unknown amount) measurements.

Fig. 3 illustrates how the error varies with the time index

k. Two unknown delays have been introduced in the synthetic

measurements, one at k = 30 and another one at k = 70. The

delay –which is known only to the ideal filter– amounts to

103 seconds at k = 30 and −103 seconds at k = 70.

It has been shown that the accuracy of our adaptive filter is

always as good as or better than the one that would be obtained

by using a conventional filter. In particular, when a delayed

measurement arrives, the error of the adaptive filter is two

orders of magnitude lower than the conventional filter, showing

also a faster convergence rate to the steady state error of the

ideal case. Furthermore, the adaptive filter behaves exactly as

the ideal filter outside the region of delayed measurements,

leading to the same accuracy.

B. Real-world example

Global satellite and terrestrial AIS data from multiple

receiving stations have been used to validate the approach

presented in Sec. III. A dataset of received messages that may

be affected by timing errors from mixed terrestrial and satellite

sensors has been identified and extracted from the STO-CMRE

historical data archive, and this has been used to validate the

approach proposed in Sec. III. The dataset spans a period of

approximately 20 hours, during which time positions reported
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Fig. 4. Step plot of a trajectory of a container ship going from Tripoli to
South Italy. Each point is connected to the time-subsequent one by a step.
Steps underlying data points represent OOSMs.

by ships all over the world have been considered and, among

all the trajectories, two have been used to demonstrate the

effectiveness of our approach with real data. In this section we

present the results achieved with the proposed model against

two trajectories affected by timing problems, in the detection,

estimation and possible correction of the errors.

In this example we considered the trajectory of a container

ship going from Tripoli to South Italy. The ship’s trajectory,

as shown in Fig. 4, is mostly rectilinear. With an average ob-

served time interval between subsequent positional messages

of about 250 seconds, the ship’s AIS reporting activity can be

considered regular.

Fig. 4 shows a step-plot of the trajectory: given two con-

secutive data points, a step is drawn that connects them. At

this zoom level, the step is only noticeable for subsequent

data points that are very far from each other: visible steps

represents two time-subsequent data points that are very far

in space from each other. Therefore, noticeable steps might

be symptomatic of errors in the time of measurements, in the

sense that they highlight coverage gaps or OOSMs.

A detail of the trajectory is shown in Fig. 5a, where the

measurements have been converted to Cartesian coordinates.

Observations in this figure are also labeled with an ordinal

number that represents the order of arrival, formally ti > tj ⇔
i > j, ∀i, j ∈ N0.

Even by eye it is not difficult to spot that the measurements

from t17 to t19 are OOSM with respect to preceding and fol-

lowing data samples. In fact, if the time of the measurements

from t17 to t19 were not wrong, it would have meant that a

166-by-28 meters, 15,000 GT container ship would have been

capable of dramatically changing its heading of 180◦ twice in

X [km]
10 15 20 25 30 35 40 45 50 55

Y
[k
m
]

20

30

40

50

60

70

80

90

100

110

10

14
15

16

17
18

19

20

25

30

35

40

Uncorrected

19.1 19.2 19.3 19.4 19.5

37.2

37.4

37.6

37.8

38

38.2

(a) Without correction

X [km]
10 15 20 25 30 35 40 45 50 55

Y
[k
m
]

20

30

40

50

60

70

80

90

100

110

10

14

15

16

25

30

35

40

Corrected

19.1 19.2 19.3 19.4 19.5

37.2

37.4

37.6

37.8

38

38.2

(b) With correction

Fig. 5. Detail of the ship’s trajectory. Data points are labeled with an ordinal
number that indicates the order of arrival, i.e. ti > tj ⇔ i > j.

a few minutes, recovering also all the velocity lost during the

maneuver.

Filtering the trajectory using the approach described in

Section III leaves us with the situation depicted in Fig. 5b,

where again the labels indicate the progressive number of

the observation. The proposed GLRT has been able to detect

time errors, to estimate them, and ultimately to adjust the

filter estimate. OOSMs were also detected and corrected. The

parameters used for the filter are: R = diag
(

502, 1, 502, 1
)

,

σ2
v = 10−3.

Fig. 6 provides information on the inner functioning of

the proposed approach. The chart at the middle of the figure

illustrates how the LLR varies with time. Shown in the boxes

at the top and at the bottom of the figure are, in order,

the plots of the estimated time error and target speed. The

improvement over the conventional filter (which ignores the

possibility of timing errors) accruing from the correction of the

filter estimate is especially clear from this last chart. Finally,
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Fig. 6. From the top to the bottom, in order: estimated time delay of
measurements, LLR and target speed, over time.

Fig. 7 shows the effect of the filter on the components of the

target positions over time.

V. CONCLUSION

This paper deals with the problem of estimating the target

state from a sequence of observations that can be imprecisely

time-stamped. This is a typical situation that arises in the

scenario when a vessel is observed from a network of AIS

sensor receivers.

An adaptive filtering strategy able to detect possible time

delays and to correctly estimate the target state is proposed.

Two decision statistics based on the KF innovation are derived,

the first is non-parametric while the second is based on

the GLRT. When a delayed measurement is detected, the

Maximum Likelihood (ML) estimate of the delay is used to

correct the timestamps of the target observation.

The proposed method is validated using Monte Carlo com-

puter simulations and real-world data collected by a global

network of AIS receivers.
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