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I. INTRODUCTION

Target tracking is a challenging problem that involves
the joint detection and estimation of a time-varying and
unknown number of targets based on the data of several
sensors [2]. Measurements are usually subjected to noise,
missed detections, and false alarms. Such nonidealities of
the collected returns are described in a statistical fashion,
and the majority of target-tracking algorithms assume
some of the parameters that describe this statistical
behaviour to be known.

However, in real applications, these parameters may
rapidly vary in time, largely due to propagation effects,
medium nonstationarity, target aspect, and similar issues,
as discussed shortly. To some extent, these are predictable
from bathymetry, estimated target type, and heading, etc.,
but such is unlikely to be perfect.

A typical scenario is that of maneuvering targets
in which the behaviour of a target cannot be characterized
at all times by a single dynamic model, and a mechanism
should estimate on-line the proper dynamics assumed
by the target at the current time. This usual solution is
often referred as an interacting multiple model (IMM)
and assumes that a finite number of models can
adequately describe the target behaviour in different
regimes, see, e.g., [22, 29, 46]. This approach has
led to a considerable increase in performance with
respect to a tolerable increase in computational
cost [29].

In practical applications, a similar phenomenon can be
observed for the performance of the sensors instead of the
dynamics of the targets. Typically, in filtering problems,
the task of detecting—and sequestering—faulty sensors
has been the one studied, see, e.g., [3]; however, in
target-tracking problems, even if the sensor is working
correctly, its capability of observing a target can be
affected by several factors, often difficult to characterize
and model properly. Consider the case in which the target
aspect is not favorable in terms of geometry with respect
to the sensor or the signal-to-noise ratio (SNR) is
completely unknown [13], degrading in both cases the
detection probability of the sensor. Another case is the
interference in backscattered power due to the Bragg
effect in high-frequency surface wave (HFSW) radars
[28]. In underwater sonar systems, target detections are
influenced by several environmental effects, e.g., sound
propagation, that have a strong dependence on unknown
parameters (e.g., temperature, salinity, etc.) [11] that may
change rapidly in time [4].

While a broad part of the target-tracking literature
considers the sensor performance as given, e.g., see [5, 6,
8–10, 14, 15, 23, 25, 32, 44], and consequently the
algorithm parameters perfectly matched, only few recent
papers focus on the problem of a mismatch of the tracker
parameters. In [35], a method is presented for determining
the measurement noise covariance of a sensor, assumed to
be constant, by using multiple IMM estimators while
tracking targets of opportunity.



In [20], a Bayesian estimation method is proposed to
sequentially update the probability of detection for
tracking, in which a beta distribution is used for the prior.
Then the probabilistic data association (PDA) filter is used
with the estimated detection probability but without
considering track management. In [4], the authors study
track management (confirmation and termination) routines
for a multisensor sonar network where target detections are
based on an underlying hidden Markov model with high
and low detection probability states. In [18], an augmented
track state is proposed with an amplitude offset to predict
the probability of detection for a target moving through a
multistatic field. However, the results reported that the
method was not effective in a multistatic field and was not
able to predict probability of detection. In [13], the SNR is
assumed to be unknown, and instead of trying to estimate
the SNR of the target, an alternative approach is adopted,
where the SNR is marginalized over a range of possible
values, which results in an analytic solution for Rayleigh
target likelihoods However, this approach is based on the
assumption that the amplitudes of the measurements from
true targets are stronger than those from clutter, which is a
limitation in the most challenging cases of low-observable
targets. In [27, 45], the authors develop versions of the
probability hypothesis density (PHD), cardinalized PHD
(CPHD), and multi-Bernoulli filters that can adaptively
learn both the clutter rate and detection profile while
filtering, provided that such quantities do not change too
rapidly compared to the measurement-update rate. In the
proposed work, we instead focus on the abrupt
(time-varying) changes in the detection probability profile.
Furthermore, the aforementioned procedures [27, 45] may
require a high detection probability (as in the case of the
high SNR assumption in [13]); indeed, in the simulation
examples reported in [27, 45], the detection probability is
always higher than 0.9, which is an unrealistic assumption
in several radar/sonar applications where the targets can be
low observable. In [39], an extension of the standard PHD
and CPHD filters is proposed that adaptively estimates the
target birth intensity at each scan using the received
measurements. In [19, 36], the authors propose a Bayesian
inference approach to exploit target detections from
multiple automatic identification system (AIS) sensors for
the estimation of sensor performance and the number of
targets. However, the AIS case is simplified by the absence
of clutter measurements. In [21], a test statistic, which
does not require prior knowledge of the detection
probability, is proposed to support automatic track
confirmation and termination decisions in a multiple
hypotheses tracker.

The key aspect of the proposed work that is different
from the aforementioned literature, e.g., [27, 45], is that
the sensor detection probability of a target is not only
unknown and spatially dependent, but that it may change
in time. Here, the problem is tackled in the case of a
sensor network, with different performance for each
sensor—typically, the single-sensor assumption is
made.

A. Main Results

A new target-tracking procedure, referred as the
adaptive tracker, is developed that is able to adapt to the
changes of the sensor detection probability. In particular, a
full Bayesian framework is derived to model the behaviour
of a network of sensors in which each sensor has its own
time-varying detection probability. The dynamic target
state is then augmented with the detection probabilities of
each sensor in the network (see also the discussion in [27,
45]). The dynamics of the detection probability are
modeled as a time-varying Markov process. Two adaptive
tracker approaches are developed in which 1) the detection
probability support is continuous and 2) the support is
discrete. While, in theory, the discrete-level case is
expected to exhibit lower performance than the
continuous-level case, in several examples, they perform
equivalently. The only problem related to the discrete-level
approach is a possible mismatch of the selected discrete
values with respect to the true ones. However, the most
appealing advantage is that it requires low computational
effort. The proposed method is validated using extensive
computer experiments in which the comparison is done
against the nonadaptive Bayesian filter and the clairvoyant
filter that knows exactly the time-varying profile of the
detection probability of the sensors.

The performance is evaluated in terms of mean
optimal subpattern assignment (MOSPA) [41, 42], which
is a metric for target-tracking algorithms widely used and
accepted in the literature. The proposed method exhibits
performance often close to that of the clairvoyant system
and exhibits a significant improvement with respect to the
nonadaptive filter.

The validation of the approach is achieved using two
real-world experiments conducted by the NATO Science
and Technology Organization (STO) Centre for Maritime
Research and Experimentation (CMRE). The approach is
studied using a dataset collected during the CMRE high
frequency (HF) radar experiment, which took place
between May and December 2009 on the Ligurian coast of
the Mediterranean Sea (see more details in [28]). Also
studied is a dataset collected during Proud Manta 2012
(ExPOMA12) using the CMRE underwater-tracking
system composed of an underwater wireless sensor
network of autonomous underwater vehicles (AUVs) for
antisubmarine warfare (ASW) application (see also [11]).

In this paper, the problem is most clearly formulated in
terms of a single target. We feel, and we hope the reader
agrees, that the concerns introduced by a need to track
multiple targets are largely orthogonal to the challenges
that we address here: time-varying and unknown
probability of detection. The case of multiple
well-separated targets can be tackled by classic
multitarget-tracking approaches.1 The work presented in

1 We mention a generalization of this method to the case of several
sensors and several targets (not necessarily well-separated) that uses a
belief propagation (BP) approach [30].



this paper is an extension of previously reported progress
on the topic [37].

The remainder of this paper is organized as follows.
The problem is formalized in Section II; the measurements
model is described in Section III; the adaptive tracker is
described in Section IV; the effectiveness of the proposed
scheme, using synthetic data, is reported in Section V;
results using real-world data are reported in Section VI;
and conclusive remarks are provided in Section VII.

II. PROBLEM FORMALIZATION

Consider a system consisting of a network of N
sensors, whose aim is to monitor a surveillance region. In
particular, the goal is to detect a target’s presence or
absence and, in the case of presence, to track the target
state.

Without loss of generality, consider a two-dimensional
surveillance region with area V. Similar to the formulation
proposed for the integrated PDA (IPDA) [34], at time scan
k, one of the following hypotheses holds: 1) Q,

the target is absent, or 2) K, the target is present. Also
defined is Hk ∈ {Q,K} as the target present state at time
scan k. Under K, the target state is denoted by
xk = [x1

k , ẋ
1
k , x

2
k , ẋ

2
k ]T , where x1

k and x2
k are the positional

coordinates (in keeping with our maritime application, we
are motivated by two-dimensional position) and ẋ1

k and ẋ2
k

are the velocities in the two dimensions. The following set
is defined for ease of notation:

Xk =
{∅, if Hk = Q,

{xk} , if Hk = K,
(1)

which is a compact representation of the target
presence/absence and the target state. This formalization is
strictly related to the joint IPDA (JIPDA) [33, 34], and its
connection with the random finite set (RFS) formulation is
investigated in [12]. In the tracking literature, see, e.g.,
[40], Xk is often referred to as a Bernoulli RFS with a
probability density given by

φ(X) =
{

1 − p, ifX = ∅,

p f (x), ifX = {x} ,
(2)

where p is the probability of the target presence and f(x) is
the probability density function (pdf) of the target state.
The time evolution of Xk is ruled by the probability
density φX(Xk|Xk−1) defined as

φX (Xk|Xk−1) =⎧⎪⎪⎨
⎪⎪⎩

1 − pb, Xk = ∅, Xk−1 = ∅,

pb fb (xk) , Xk = {xk} , Xk−1 = ∅,

1 − ps, Xk = ∅, Xk−1 = {xk−1} ,

ps f (xk|xk−1) , Xk = {xk} , Xk−1 = {xk−1} ,

(3)

where pb and fb (x) are, respectively, the target birth
probability and the target birth pdf, while ps and
f (xk|xk−1) are, respectively, the target survival
probability and the target state transition pdf.

The target state transition distribution is often given by
the relation

xk = fk (xk−1, vk) , (4)

where fk is the state transition function (generally
nonlinear) and vk is the process noise, often assumed as a
sequence of independent and identically distributed (i.i.d.)
random variables. A common formulation for (4) is the
near constant velocity model (NCV)

xk = Fxk−1 + Avk, (5)

where

F =

⎡
⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

T 2/2 0
T 0
0 T 2/2

0 T

⎤
⎥⎥⎦ , (6)

T is the time between two consecutive scans, and vk is the
two-dimensional acceleration noise vector modeled as an
i.i.d. random process with Gaussian pdf
N(v; 0, σ 2

v I2), which implies f (xk|xk−1) =
N(xk; Fxk−1, σ

2
v AAT ).

III. MEASUREMENT MODEL

This section describes the measurement origin
uncertainty (MOU) model, widely used in the tracking
literature to describe an observations process that allows
for both missed detections and clutter [2]. At time scan k,
a sensor s = 1, 2, . . ., N can detect the target with a
probability of detection, denoted by ps

k . This probability is
modeled in the proposed approach as time dependent.
Furthermore, clutter measurements (not originated and
independent from the target) are also observed. The set of
the ms

k measurements from sensor s at time scan k is
denoted by

Zs
k = {

zs
k,i , i = 1, 2, . . . , ms

k

}
, (7)

where zs
k,i can be for instance a vector consisting of the

range and bearing. If the target is present at time scan k,
then the target originated measurement of the sensor s is
given by

θ s
k = hs

(
xk, w

s
k

)
, (8)

where hs is the measurement function and ws
k is an i.i.d.

measurement noise sequence. The target if detected
generates at most one measurement for a given sensor s. If
the target is detected, then θ s

k ∈ Zs
k.

Because the sensors are conditionally independent
given the target state, the likelihood of the measurements
is [5]

P (Zk|Xk, pk) =
N∏

s=1

P
(
Zs

k|Xk, p
s
k

)
, (9)

where Zk

def={Z1
k , . . . , Z

N
k } and pk

def= [p1
k , . . . , p

k
k ]T . The

likelihood for the sensor s, under Q (target absent), is



given only by clutter data

P
(
Zs

k|∅, ps
k

) = P
(
Zs

k|∅
) = φs

C

(
Zs

k

)
,

φs
C

(
Zs

k

) =
{

ms
k! μ

(
ms

k; ls
) ∏

z∈Zs
k

cs(z), ms
k > 0,

μ
(
0; ls

)
, ms

k = 0,

(10)

where μ(m; ls) and ls are, respectively, the distribution
and the average number of clutter measurements, while
cs(z) is the pdf of a clutter element. Often, μ(m; ls) is
assumed to be Poisson and cs(z) to be uniform [5, 11]. It is
worthwhile to mention that this approach does not model
nonrandom clutter, which can be persistent and
systematic, such as ground clutter in radar or shipwrecks
in active sonar. Persistent clutter needs to be taken into
account before the tracking stage.

Given K, if ms
k > 0, each of the following association

events are possible within Zs
k :

A0,s : θ s
k /∈ Zs

k,

Ai,s : zs
k,i = θ s

k ∈ Zs
k, i = 1, . . . , ms

k (11)

and the likelihood related to sensor s can be rewritten as

P
(
Zs

k

∣∣xk, p
s
k

) =
ms

k∑
i=0

P
(
Zs

k

∣∣xk, p
s
k, Ai,s

)
P
{

Ai,s

∣∣ps
k

}
,

(12)
where

P
(
Zs

k

∣∣xk, p
s
k, A0,s

) = ms
k! μ

(
ms

k; ls
) ∏

z∈Zs
k

cs(z),

P
(
Zs

k

∣∣xk, p
s
k, Ai,s

) = ms
k! μ

(
ms

k − 1; ls
)
f
(

zs
k,i

∣∣ xk

)
(13)

∏
z∈Zs

k\zs
k,i

cs(z), i = 1, . . . , ms
k (14)

P
{
A0,s

∣∣ps
k

} = 1 − ps
k (15)

P
{
Ai,s

∣∣ps
k

} = ps
k

ms
k

, i = 1, . . . , ms
k, (16)

leading to

P
(
Zs

k

∣∣xk, p
s
k

) = (
1 − ps

k

)
φs

C

(
Zs

k

)
+ps

k

∑
z∈Zs

k

f (z |xk ) φs
C

(
Zs

k\z
)
. (17)

In the case ms
k = 0, the likelihood becomes

P
(∅ |xk, ps

k

) = φs
C (∅)

(
1 − ps

k

) = μ
(
0; ls

) (
1 − ps

k

)
.

(18)
It is worth noting that, for both cases ms

k > 0 and ms
k = 0,

when P s
k = 0 (target not observable if present), the

likelihoods (10) and (17) coincide and it is not possible to
distinguish between hypotheses Q and K; see also the
discussion in [33, 34]. In this work, the case of target not

present and target not observable are both incorporated
within the hypothesis Q. Therefore, ps

k is constrained such
that it cannot have values below a given threshold
ps

min > 0 under K to handle this ambiguity.

IV. ADAPTIVE TRACKER

In real-world applications, the performance of a sensor
is usually time varying because it depends on several
factors, such as environmental conditions, interferences,
etc. While in principle there could be the possibility of
deterministically predicting a degradation or increase of
the sensor performance, often it is unclear if the accuracy
of these predictions would be enough to guarantee that the
target-tracking algorithm can work optimally. The
performance of a sensor is defined here as its ability to
detect the target, quantified by the target detection
probability introduced in the previous section. This
quantity plays a fundamental role in a tracking procedure.
For instance, consider having a single sensor and using the
popular M/N logic where M detections (misses) out of N
time scans are required to confirm (delete) a track (see the
details in [2, 28]). Let us select M = 2, N = 3 to confirm
the track, and M = 3, N = 3 to delete the track. Assume
that the target is present, and the true level of the initial
detection probability is 90%. In this case, it would be very
likely to correctly confirm a target track, in other words, to
correctly detect the target presence. Now, if this
probability were to decrease to a lower level, say 30%,
then the track would be likely deleted prematurely. If it
was known that the detection probability had decreased,
then one would choose different values of M and N.

In [4], assuming two possible levels for the detection
probability, an adaptive track management logic is
proposed that outperforms the nonadaptive procedure. In
fact, it is shown that the track management performance
achieved by ignoring the time variation of the detection
probability—or even by accounting for it but ignoring its
own inherent trackability— is orders of magnitude worse
than could be achieved by accounting for it accurately.
There is much room for improvement in such practical
modeling, perhaps more than in any other aspect of target
tracking.

In this work, it is noted that the likelihoods, defined in
(10)–(17), strongly depend on the sensor detection
probabilities. For this reason, a sequential Bayesian
procedure is proposed in which the detection probabilities
are included in the dynamic system state. A similar
approach can be adopted also in passive sonar
applications, where the received signal power can be
included in the system state. The state at time k is then
redefined as Xk = {(xk, pk)} when the target is present,
while it remains Xk = ∅, when the target it absent. The
posterior distribution given all the measurements up to
time scan k is given by

P (Xk|Z1:k) = L (Zk|Xk) P (Xk|Z1:k−1)

P (Zk|Z1:k−1)
, (19)



where Z1:k
def={Z1, . . . , Zk} and L(Zk|Xk) is given by (9),

(10), and (17), namely,

L (Zk|∅) =
N∏

s=1

P
(
Zs

k|∅
)
, (20)

L (Zk| {(xk, pk)}) =
N∏

s=1

P
(
Zs

k|xk, pk

)
. (21)

The prediction term can be written as

P (Xk|Z1:k−1) = EX [φX (Xk|X) |Z1:k−1] , (22)

where EX[a|b] is the conditional mean value of a given b,
and the RFS transition density for the augmented state is
indicated with φX(Xk|Xk−1). Note that this density has the
same structure as (3). There are two functions to be
defined: the birth distribution fb(xk, pk), and the state
transition distribution fx,p(xk, pk|xk−1, pk−1).

Let us specify (22) for the two hypotheses. The
prediction term for Q is

P (Xk = ∅|Z1:k−1) = (1 − pb) P (Xk−1 = ∅|Z1:k−1)

+ (1 − ps) [1 − P (Xk−1 = ∅|Z1:k−1)] . (23)

The prediction term for K is given by two contributions

P (Xk = {(xk, pk)} |Z1:k−1) = gb (xk, pk) + gp (xk, pk) ,

(24)
where

gb (xk, pk) = pb P (Xk−1 = ∅|Z1:k−1) fb (xk, pk) (25)

gp (xk, pk) = ps [1 − P (Xk−1 = ∅|Z1:k−1)]

× E(x, p)
[
fx,p (xk, pk|x, p) |Z1:k−1

]
. (26)

Given that the target motion is independent of the
detection probabilities, the state transition distribution
fx,p(xk, pk|xk−1, pk−1) can be factored as

fx,p (xk, pk|xk−1, pk−1) = f (xk|xk−1) fp ( pk| pk−1, xk) ,

(27)
where fp( pk| pk−1, xk) is the detection probability
transition distribution, formally dependent on the target
state (e.g., the target-sensor geometry). Assuming that the
sensors are conditionally independent, the detection
probability transition distribution is given by

fp( pk| pk−1, xk) =
N∏

s=1

f s
p (pk

s |pk
s
−1, xk), (28)

where each f s
p (ps

k|ps
k−1

, xk) is the transition distribution
of the corresponding ps

k of the sensor s. It is worthwhile to
remark that the dependency on the target state in (27) and
(28) can model several physical behaviours. For instance,
considering the Bragg effect in the HFSW radars (see
details in [28]), when the target sails with a radial velocity
within the Bragg region, the radiation backscattered from
the sea dominates the target return leading to a possible
significant degradation of the performance. Another

example is that of the dependency on target-sensor
geometry, in which, for instance, when the target is
broadside with respect to the sensor, there is a significant
improvement of the performance. Different models of the
transition distribution for the detection probability are
considered in the following subsections.

A. Continuous-Valued Detection Probability

In this subsection, we describe the detection
probability transition distribution. This distribution is
assumed to have a continuous support in the range
�s = [ps

min, 1] and to be independent of the target state.
A first simple but effective approach to formalize the

variation in time of the detection probability is that of
using a linear model, but forcing the probability to remain
in the range �s. This model is popular in several contexts,
for instance, in the modeling of target dynamics. In the
aforementioned NCV, the variation in time of the velocity
is modeled by a random acceleration. The value of ps

k is a
clamped version of the sum of its previous value plus a
random quantity ns

k:

ps
k =

⎧⎪⎨
⎪⎩

ps
min, ps

k−1 + ns
k < ps

min,

1, ps
k−1 + ns

k > 1,

ps
k−1 + ns

k, otherwise.

(29)

Assuming ns
k ∼ N(n; 0, σ 2

s ), fp(ps
k|ps

k−1) is a distribution
of mixed type with two masses in ps

min and 1 equal to

1 − Q(
ps

min−ps
k−1

σs
) and Q(

1−ps
k−1

σs
), respectively, where

Q(a)
def= ∫ +∞

a
N (x; 0, 1)dx is the standard normal

exceedance probability. In the range ps
min < ps

k < 1,

fp(ps
k|ps

k−1) is the normal distribution N(ps
k; ps

k−1, σ
2
s ).

A different model employs the beta distribution [45]:
fp(ps

k|ps
k−1) has a mass in ps

min equal to
Fβ(ps

min; ak−1, bk−1) and in the range ps
min < ps

k ≤ 1 is the
beta distribution β(ps

k; ak−1, bk−1), where we have defined
Fβ(x; a, b) = ∫ x

0 β(t ; a, b)dt as the cumulative
distribution function of the beta random variable. As in
[45], the parameters of the beta distribution are selected as
ak−1 = (ps

k−1(1 − ps
k−1)/σ 2

s − 1)ps
k and bk−1 =

(ps
k−1(1 − ps

k−1)/σ 2
s − 1)(1 − ps

k), so that, for ps
min ≈ 0,

E[ps
k|ps

k−1] ≈ ps
k−1 and VAR[ps

k|ps
k−1] ≈ σ 2

s .

This approach will be referred to as the
continuous-support adaptive tracker (C-adaptive tracker).

B. Discrete-Valued Detection Probability

In the previous subsection, it was assumed that ps
k

takes values in the continuous range [ps
min, 1],

s = 1, . . . , N . Next, it is instead considered that ps
k can

only have values from the discrete set

�s = {
ωs

1, . . . , ω
s
Ls

}
, (30)

where ωs
i ∈ [ps

min, 1], ∀i = 1, . . . , Ls. The state ps
k then

evolves according to a Markov chain with a given
transition matrix P s ∈ [0, 1]Ls×Ls , which satisfies the



conditions
Ls∑

j=1

{
P s
}

i,j
= 1, ∀i = 1, . . . , Ls, (31)

where {P s}i,j indicates the element i, j of P s and
represents the transition probability{

P s
}

i,j
= fp

(
ps

k = ωs
j |ps

k−1 = ωs
i

)
. (32)

The elements in Ps are selected in order to tune the
adaptivity of the tracker to the sensor performance
changes. For instance, in the case of a more conservative
setup, the elements on the diagonal will be prevalent on
off-diagonal elements, while in the case of a more reactive
setup, the probability is larger on off-diagonal elements.
This approach will be referred to as the discrete-support
adaptive tracker (D-adaptive tracker).

C. Nonadaptive Tracker

The standard target-tracking procedure assumes a
given fixed probability of detection for all time scans, i.e.,
ps

k = ps, ∀k, s. In this case, the posterior distribution can
be computed particularizing the expression of the
D-adaptive tracker with Ls = 1 and ωs

1 = ps, ∀s. This
approach will be referred to as the nonadaptive tracker.

D. Inference Procedure

In this subsection, we describe the estimation
procedure for obtaining X̂k from the posterior distribution
P(Xk|Z1:k). As discussed in the literature, see, e.g., [9, 26,
33, 34], in this work, we opt for a two-stage procedure in
which first we decide if the target is present or absent and
then estimate its state. Given our Bayesian detection
framework, the optimal decision rule is formulated as
follows [38]{

P (Xk 	= ∅|Z1:k) ≥ pγ , declare Ĥk = K,

P (Xk = ∅|Z1:k) > 1 − pγ , declare Ĥk = Q,
(33)

where pγ is named the target probability threshold. The
estimator is then given by

X̂k =
{{(

x̂k, p̂k

)}
, if Ĥk = K,

∅, if Ĥk = Q,
(34)

where x̂k and p̂k are the estimator of the target state and
the detection probabilities. A convenient choice for the
target state, optimal in terms of mean square error, is the
posterior mean x̂k = E[xk|Z1:k]. Another suitable
estimator is the posterior mode x̂k = arg maxxk

P(xk|Z1:k).
Analogously, we can proceed for the profile of the
detection probabilities p̂k . Note that this estimation
procedure is equivalent to the GMAP-I estimator proposed
in [17] when pγ = 0.5.

E. Particle Filter Implementation

Because the exact form of (19) is difficult (or even
impossible) to derive, a numerical implementation of the
tracker, based on sequential Monte Carlo methods [1, 43]

is used. The posterior distribution at time scan k in (19) is
represented by [43]

P̂ (Xk|Z1:k) =
⎧⎨
⎩

w∅
k , Xk = ∅,

Np∑
i=1

wi
kδxi

k , pi
k

(x, p) , Xk = {(x, p)} ,

(35)
where w∅

k is the weight approximating P(Xk = ∅|Z1:k),
while wi

k is the weight of the ith sample of the augmented
system state Xi

k = {(xi
k, pi

k)}, approximating P(Xi
k|Z1:k),

and Np is the number of particles. The initial samples xi
0

are uniformly drawn in the surveillance area for the
positional coordinates and in [−vmax, vmax] for the speed
coordinates, while the initial samples pi

0 are uniformly
drawn in �1 × . . . × �N, and the corresponding weights
wi

0 are all initialized to (2Np)−1, while w∅
0 = 0.5. In the

importance sampling step of the tracker, the augmented
system state transition distribution is used to propagate the
new samples (xi

k, pi
k), ∀i = 1, . . . , Np, from the Np

samples at the previous step. New particles are generated
as follows: ∀i = Np + 1, . . . , Np + Nu particles are
uniformly sampled on the augmented state space (as in the
initialization)
∀i = Np + Nu + 1, . . . , Np + Nu + Nn NZk

, where
NZk

= ∑N
s=1 |Zs

k|, the measurements collected by all the
sensors Zk at step k are used to generate other particles. In
particular, for each measurement z ∈ Zs

k, ∀s = 1, . . . , N,

Nn particles (xi
k, pi

k) are sampled, where xi
k is drawn from

U(x; z), which is for the speed coordinates a uniform
distribution in [−vmax, vmax] and for the positional
coordinates a uniform distribution, centered in z, with a
square support of area ν. The detection probability sample
pi

k is drawn from U( p), which is the uniform distribution
in �1 × . . . × �N.

Accordingly to the RFS particle filter implementation
[43], the weight of Xi

k = {(xi
k, pi

k)} is updated as follows

wi
k = L

(
Zk|Xi

k

) φX

(
Xi

k|Xi
k−1

)
q
(
Xi

k|Xi
k−1, Zk

) wi
k−1, (36)

where φX(Xk|Xk−1) is the augmented state transition
density and q(Xk|Xk−1, Zk) is the importance sampling
density. In (36), the ratio of these latter densities is given
by

φX

(
Xi

k|Xi
k−1

)
q
(
Xi

k|Xi
k−1, Zk

)

=
⎧⎨
⎩

ps i = 1, . . . , Np,

pb,k i = Np + 1, . . . , Np + Nu,

pb,k
ν
V

i = Np + Nu + 1, . . . , Np + Nu + Nn NZk
,

(37)

where it was assumed to have a uniform birth density, and

pb,k
def= pbw

∅
k−1

Nu+Nn NZk

. In view of (23), for Xk = ∅, the weight is
updated as follows:

w∅
k = L (Zk|∅)

[
(1 − pb) w∅

k−1 + (1 − ps)
(
1 − w∅

k−1

)]
.

(38)
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IMPORTANCE SAMPLING

Propagation
Draw xi

k ∼ f (xk |xi
k−1), ∀i = 1, . . . , Np;

Draw pi
k ∼ fp( pk | pi

k−1), ∀i = 1, . . . , Np;
New particles
Draw Nu new samples xi

k from U(x) and pi
k from U( p);

for s = 1 to N do
Draw Nn new samples xi

k from U(x; zs
k,i )

and pi
k from U( p), ∀i = 1, . . . , |Zs

k |;
end for
UPDATE
for i = 1 to Np + Nu + Nn NZk

Xi
k = {(xi

k, pi
k)}, wi

k = L(Zk |Xi
k)

φX (Xi
k
|Xi

k−1)

q(Xi
k
|Xi

k−1,Zk )
wi

k−1;

end for
w∅

k = L(Zk |Xk = ∅)[(1 − pb)w∅
k−1 + (1 − ps )(1 − w∅

k−1)];
Drop the particles with the lowest Nu + Nn NZk

weights;
NORMALIZATION

wt = w∅
k +

Np∑
j=1

wi
k ; {Total weight}

wi
k = wi

k
wt

, ∀i = 1, . . . , Np;

w∅
k = w∅

k
wt

;
RESAMPLING

Neff = (
Np∑
j=1

wi
k

2
)−1; {Effective sample size}

if Neff < Np Td then
resampling;
end if

The Nu + NnNZk
particles with the lowest weight are

dropped, and then the other Np particles are normalized.
The resampling step is standard and given in [1, 43].

The implementation, described above, is detailed in
Algorithm 1. Finally, applying the inference procedure
reported in the previous subsection, the state estimator at
time scan k is

X̂k =
{{(

x̂k, p̂k

)}
, if 1 − w∅

k ≥ pγ ,

∅, if w∅
k > 1 − pγ ,

(39)

where the target state is estimated as

x̂k =
∑Np

i=1 xi
kw

i
k

1 − w∅
k

(40)

and the detection probabilities are estimated as the mode
of the approximated posterior distribution.

V. COMPUTER EXPERIMENTAL RESULTS

This section compares the effectiveness of the adaptive
and nonadaptive trackers by using computer-simulated
data. The sensors return position measurements in polar
coordinates in all of the considered scenarios, namely,
range and bearing angle. The clutter measurements from
all sensors are assumed to be uniformly distributed in the
surveillance area, namely, cs(z)=1/V (here z is expressed
in Cartesian coordinates), while μ(m; ls) is assumed to be
Poisson with average value ls . The cases of both

monostatic sensors (source and receiver are colocated) and
bistatic sensors (source and receiver are in two different
positions) are considered. If sensor s is monostatic, then
(8) becomes

zs
k =

⎡
⎣
∥∥dk − ds,k

∥∥
arctan

(
x2

k −d2
s,k

x1
k −d1

s,k

)
− hs,k

⎤
⎦+ ws

k, (41)

where dk = [x1
k , x

2
k ]T is the target position,

ds,k = [d1
s,k, d

2
s,k]T is the sensor position, and hs,k is the

sensor heading. If sensor s is bistatic, then (8) becomes

zs
k =

⎡
⎣
∥∥dk − ps,k

∥∥+ ∥∥dk − ts,k

∥∥
arctan

(
x2

k −d2
s,k

x1
k −d1

s,k

)
− hs,k

⎤
⎦+ ws

k, (42)

where ts,k = [t1
s,k, t

2
s,k]T is the source position. In both (41)

and (42), ws
k is the two-dimensional i.i.d. measurement

noise process distributed according to

N

(
0,

[
σ s

r
2 0

0 σ s
b

2

])
. Note that the measurements are

converted in Cartesian coordinates, and the related pdf is
computed using the random variable transformation
theorem, as explained in [11].

A. Synthetic Scenario

Consider the scenario reported in Fig. 1, in which a
target is sailing North-West. Synthetic data are generated
by simulating two sensors for 90 time scans according to
the MOU model, described in Section III. A bistatic
geometry for the first sensor and a monostatic geometry
for the second one is used. The overall contact history
(blue dots for the first sensor and black dots for the second
one) is reported in Fig. 1a, along with the sensor and
source positions and the true and estimated target
trajectories.

The simulation can be divided into three intervals. In
the first two intervals, the target is present while in the last
one the target disappears. In the first interval, the detection
probability is relatively large, 0.9 for both sensors, while
in the second part, it abruptly decreases to 0.3 for both
sensors (see Fig. 1b). The nonadaptive tracker is matched
to the highest value of detection probability (first interval)
for both sensors. The C-adaptive tracker is set up with
ps

min = 0.2 and σs = 0.05 for both sensors. The target
presence threshold pγ , defined in (33), is set to 0.8 for
both the C-adaptive and nonadaptive trackers. The other
common parameters are reported in Table I. Fig. 1c
compares the simulated target path (ground-truth) to the
tracks, generated by the nonadaptive and C-adaptive
trackers, when the target is declared as present.

Fig. 1d shows the target presence (1 for target present
and 0 for target absent) and the posterior target presence
probability, namely, 1 − P(Xk = ∅|Z1:k), for the
considered trackers. It is evident that the C-adaptive
tracker is able to track the target for a longer time with
respect to the nonadaptive one. In particular, the
nonadaptive tracker detects the target until k = 36, while



Fig. 1. Comparison between C-adaptive and nonadaptive tracker using simulated data. (a) Simulated surveillance area with target trajectories,
sensor, and source positions and simulated contacts. (b) Value of detection probability, constant and fixed to 0.9 for nonadaptive tracker, while for

C-adaptive tracker, we report mode of posterior distribution of detection probability for two sensors, s = 1, 2. Abrupt change in true detection
probability is simulated at time scan k = 30. (c) Trajectories when target is declared as present are reported. Note that track from C-adaptive tracker is
obscured by that of nonadaptive one, but that it emerges after latter’s track is lost. (d) Target presence (ground-truth) and posterior target probability.

Target disappears at time scan k = 60. (e) and (f) Error between estimated track and simulated data in position and speed, respectively.

TABLE I
Parameter Values Used in the Algorithm for Simulated Data

Parameter Value Specification

T 40 s Time scan
σ v 5 10–3 m/s2 Process noise
σ r 75 m Range standard deviation
σ b 1◦ Bearing standard deviation
l/V 1.2 10–8 m–2 Clutter density
Np 5 104 Number of particles
pb 10–2 Birth probability
ps 1−103 = 0.999 Survival probability
N 2 Number of sensors
Nu 2500 Uniform particles per scan
Nn 250 Particles per measurement
Td 0.5 Degeneracy threshold
ν 104 Area of birth particles

the C-adaptive is able to detect the target until its
disappearance at k = 60 and correctly deletes the track
after just four time scans. These different behaviours are
apparently given by the role of the detection probability:
after k = 30, the nonadaptive tracker continues to use the
high value (0.9) of detection probability while the true
value is 0.3; consequently, it expects the target to be

detected more often than it actually is and thus its posterior
target probability decreases, misinterpreting the data and
declaring the target absence. Conversely, the C-adaptive
tracker is able to recognize the change of the detection
probability (cf. Fig. 1b) where the mode of the posterior
distribution of the detection probability is reported for both
the sensors and is able to track the target until the end.

When the target disappears, the absence of the target is
equivalent to a null detection probability while the
minimum value of the detection probability in the
algorithm is 0.2. We observe that the estimated detection
probability is quite noisy. We think that the lower the
detection probability, the more difficult will be the
estimation of the detection probability: the case of no
target is perhaps an extreme case in which the estimation
is, well, quite poor. However, the most important task of
the filter in this case is to avoid false alarms and to be
ready in case the target appears again in the next scans.
This task is well accomplished by the proposed procedure.

Figs. 1e, 1f report the estimation error in position and
speed, respectively. Assuming that the target is always
declared as present in the first two intervals (equivalent to
the case where pγ = 0), it can be noted that until k = 36
the two trackers present about the same error, while



Fig. 2. Comparison between C-adaptive and nonadaptive tracker in
terms MOSPA using simulated data generated by synthetic scenario

described in sub-Section VA.

∀k = 37, . . . , 60 the error of the nonadaptive tracker is
considerably higher than the C-adaptive tracker for both
position and speed, which can be ascribed to the mismatch
of the probability of detection.

B. Monte Carlo Simulations

In this subsection, the performance of the adaptive and
nonadaptive trackers are evaluated in terms of MOSPA
[41, 42]. This metric takes into account the estimation
error when the target is correctly detected as well as the
missed detections, which are quantified by a parameter c.
In this setup, the optimal subpattern assignment (OSPA) at
time scan k is expressed as

OSPAk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
(
c,
∥∥ p̂k − pk

∥∥) , decideK underK,

c, decideQ underK,

c, decideK underQ,

0, decideQ underQ.

(43)
First, it provides a comparison in terms of MOSPA for

the scenario described in the previous subsection (see Fig.
2). As already observed, the adaptive tracker exhibits
better performance in the midinterval (change of the
detection probabilities from 0.9 to 0.3) because of its
ability to react to the change of sensor performance with
respect to the nonadaptive tracker, while there is not a
great drawback in the other intervals when the two
approaches seem equivalent. It is worthwhile remarking
that when the target disappears at k = 60 the adaptive
tracker has a spike in the error (observed also in the
previous subsection) because of the delay in detecting the
target disappearance. However, after a few scans, the error
becomes equivalent to that of the nonadaptive tracker,
which is better able to detect the target disappearance
because it uses higher detection probability values.

Two other scenarios are analyzed in which the true
detection probability is fixed at 0.8 (cf. Fig. 3a) and 0.3

(cf. Fig. 3b). In both cases, N varies in {1, 2, 5} and the
true detection probability is constant over all time scans.
Two nonadaptive trackers are considered: one clairvoyant
that is correctly matched with the true value and another
one that is mismatched (it uses 0.3 in Fig. 3a and 0.8 in
Fig. 3b). Also, two adaptive trackers are considered: one
continuous (C-adaptive tracker) and the other discrete
(D-adaptive tracker). It is important to remark that while
the D-adaptive requires lower computational effort with
respect to C-adaptive, the C-adaptive requires fewer
parameters, namely one: fixing the minimum level of the
estimated distribution of the detection probability.

When varying the decision threshold pγ compared
with the posterior target presence, one obtains a pair of
MOSPA values, under Q and K as in a receiver-operating
characteristic (ROC) curve [38]. The difference between
curves in Fig. 3 and a ROC is that by using the MOSPA
one achieves a compact evaluation of not only the tracker
decision error, but also of the position error.

The MOSPA is evaluated averaging over 103 Monte
Carlo runs and 20 time scans. All the sensors have a
monostatic geometry. The target trajectory is generated in
every Monte Carlo run with NCV (cf. Section II). The
D-adaptive tracker has two levels of detection probability,
0.3 and 0.8, matched with the true values of the examples,
and the transition matrix is

P s =
[

0.9 0.1

0.1 0.9

]
.

The C-adaptive tracker has a minimum level ps
min = 0.2

and σs = 0.05. The common parameters are specified in
Table I.

It is shown in this scenario that both adaptive trackers
have performance close to the clairvoyant system
exhibiting a gain in terms of MOSPA under K with respect
to the mismatched nonadaptive tracker. Table II quantifies
this gain for several values of MOSPA under Q in
different scenarios. In particular, cases A, B, and C refer to
Fig. 3a for N = 1, 2, and 5, respectively, while cases D, E
and F refer to Fig. 3b for N = 1, 2, and 5, respectively. In
case G, a setup with five sensors has been used and the
true detection probability is 0.8, the C-adaptive tracker
uses ps

min = 0.2, the D-adaptive tracker uses ω1 = 0.2 and
ω2 = 0.8, while the detection probability used in the
nonadaptive tracker is 0.1.

The gain, reported in Table II, spans from a minimum
of 4.8% to a maximum of 64%. The gain is substantial
when the true detection probability is low (cf. Fig. 3b)
while it becomes less significant in the other case
(cf. Fig. 3a).

C. Sensitivity of the D-Adaptive Tracker

This subsection presents an analysis of the sensitivity
of the D-adaptive tracker when changing the values of the
detection probabilities � = {ω1, ω2}. The case of a single
monostatic sensor is considered with the same parameters
as in the previous subsection. The target probability and



Fig. 3. MOSPA under K versus MOSPA under Q for true detection probability fixed to 0.8 (a) and 0.3 (b) using one (dash lines), two (solid lines),
and five sensors (dash-dot lines).

TABLE II
Relative Gain (percent) in MOSPA Under K of the Adaptive Trackers

with Respect to the Nonadaptive Tracker

MOSPA|Q 91 165 272 454 677 1038

A C-adaptive 21.7 19.7 15.4 12.9 13.4 14.3
D-adaptive 18.9 18.2 14.5 12 12 12.9
MOSPA|Q 99 190 288 425 648 1061

B C-adaptive 26.7 21.3 20.1 20.4 21.2 21.8
D-adaptive 23.9 18.1 16.9 16.9 17.5 18.2
MOSPA|Q 96 170 244 312 510 1011

C C-adaptive 5.1 5 4.9 4.8 4.8 4.8
D-adaptive 5 5 4.9 4.8 4.8 4.8
MOSPA|Q 92 171 253 420 634 1061

D C-adaptive 15.2 17.7 18.1 18.4 18.3 18.2
D-adaptive 16.7 19.4 20.1 20.5 20.4 20.3
MOSPA|Q 102 167 434 589 718 1063

E C-adaptive 34.6 35.6 36.6 36.8 34.7 32.5
D-adaptive 40 40.9 41.6 41.4 39.1 37.4
MOSPA|Q 100 182 256 445 682 1090

F C-adaptive 58.1 56.9 56.8 57.2 58.1 57.6
D-adaptive 64.2 62.2 62 62 62.3 61.2
MOSPA|Q 91 193 285 404 543 1086

G C-adaptive 37.8 34 32.4 31.3 30.5 30.3
D-adaptive 35.6 31.5 30 28.9 28.1 27.9

the MOSPA of the D-adaptive tracker are evaluated when
assigning different values of ω1 and ω2, with ω2 > ω1.
Both ω1 and ω2 are varied from 0.1 to 0.9 with a step equal
to 0.05. It is worth noting that in the cases where ω2 = ω1,
the D-adaptive tracker is equivalent to the nonadaptive
tracker. Four setups are used in the simulations:

1) Scenario 1 (20 time scans): the target is always
present and pk = 0.8, ∀k = 1, . . . , 20;

2) Scenario 2 (20 time scans): the target is always
present and pk = 0.3, ∀k = 1, . . . , 20;

3) Scenario 3 (20 time scans): the target is always
absent and the value of pk is not relevant;

Fig. 4. Mean posterior target probability and MOSPA, scenario 1.

Fig. 5. Mean posterior target probability and MOSPA, scenario 2.

4) Scenario 4 (40 time scans): the target is always
present and

pk =
{

0.8,∀k = 1, . . . , 20,

0.3,∀k = 21, . . . , 40.

The transition matrix of the D-adaptive tracker is the same
as in the previous subsection, while the target presence
threshold is set to 0.8 for scenarios 1, 2, and 4 and to 0.6
for scenario 3. The posterior target probability and the
MOSPA are averaged over the time scans and Monte
Carlo trials and the results for each scenario are shown in
Figs. 4–7.



Fig. 6. Mean posterior target probability and MOSPA, scenario 3.

Fig. 7. Mean posterior target probability and MOSPA, scenario 4.

TABLE III
Comparison Between the Case ω1 = ω2 = 0.5 and ω1 = 0.3, ω2 = 0.8

Scenario ω1 ω2 MOSPA

1 0.5 0.5 1414
0.3 0.8 1406

2 0.5 0.5 7140
0.3 0.8 7054

3 0.5 0.5 238
0.3 0.8 225

4 0.5 0.5 1110
0.3 0.8 906

By inspection of Figs. 4–7, it is noted that there is a
strong correlation between the MOSPA and the mean
posterior target probability. Note that the use of the term
good performance here means a high (low) posterior target
probability under K (under Q) and low MOSPA.
Furthermore, the MOSPA of a given scenario can be in
contrast with the others. Specifically, scenarios 1 and 3 are
in agreement in the sense that the optimal setting of �

would be to select ω1 and ω2 both large. However, this is
in contrast with scenarios 2 and 4. As one might expect by
intuition, scenarios 1 and 3 exhibit a large MOSPA when
ω1 and ω2 are both small, while scenarios 2 and 4 exhibit a
large MOSPA when ω1 and ω2 are both large. However,
scenario 4 is to some extent equivalent to scenarios 1 and
2 except for the transition at k = 20.

In Table III, we compare the adaptive tracker in which
ω1 = 0.3 and ω2 = .8 are, respectively, small and large
with the nonadaptive tracker in which an intermediate
value of the detection probability is used, namely, ω2 = ω1

= 0.5. The implication is that the adaptive tracker is
always better but especially so in the last scenario in
which there is a transition in the detection probability
from a high value to a low value.

A good compromise is reached when ω1 is small while
ω2 is large. This choice is in agreement with the
adaptive-tracking philosophy adopted in the previous
subsections.

VI. ANALYSIS USING REAL-WORLD DATA
COLLECTED DURING CMRE SEA TRIAL
EXPERIMENTATION

The results reported in this section are based on
CMRE experimental campaigns where real-world data are
collected. The first study is related to an HF-radar
experiment in which a network of HFSW radars was
employed (see details in [28]). In this case, we test only the
C-adaptive tracker against the nonadaptive one; however,
similar results could be achieved using the D-adaptive.

The second study is focused on the CMRE multistatic
network of AUVs in the context of ASW (see details in [7,
11, 16]). The dataset was collected during ExPOMA12. In
this case, we test the D-adaptive tracker against the
nonadaptive one.

A. Network of HFSW Radars

Fig. 8 presents the results of the C-adaptive and
nonadaptive trackers for a dataset collected during the
CMRE HF-radar experiment [28]. Two Wellen radar
(WERA) systems are considered. These systems are
ultralow power (around 50 W) HFSW radars developed
mainly for ocean remote-sensing applications, e.g.,
surface currents and sea state mapping, wind extraction,
wave spectra analysis, and, recently, tsunami early
warning detection.

WERA systems were deployed on the Italian coast of
the Ligurian Sea, one on Palmaria island near La Spezia
(44◦ 2′ 30′′ N, 9◦ 50′ 36′′ E) and the other at San Rossore
Park near Pisa (43◦ 40′ 53′′ N, 10◦ 16′ 52′′ E). The target
state is defined in Cartesian coordinates, with a fixed
origin located at the Palmaria radar site.

Consider the real track of the vessel shown in Fig. 9
sailing North-West, as reported by the data transmitted by
its AIS transponder. The AIS track positions, based on
GPS, are referred to here as the ground-truth (see also the
discussion in [28]). Fig. 8a reports the history of contacts
of both radars, the true target trajectory and the tracks
generated by the C-adaptive tracker and the nonadaptive
one. Fig. 8b is a zoom in of Fig. 8a showing only the
tracks.

The parameters of the algorithms are reported in the
second column of Table IV. Note that all of the parameters
for each of the algorithms are identical, including the
number of particles, even though state augmentation
should require, in theory, a larger number of particles.
Furthermore, the C-adaptive tracker uses ps

min = 0.1 and
σ s = 0.05 for both radars.

From the results reported in Fig. 8b, it is easy to verify
that the target trajectory is completely reconstructed by the
C-adaptive tracker while the nonadaptive tracker exhibits
some gaps in the estimated track. This phenomenon seems



Fig. 8. Comparison between C-adaptive and nonadaptive tracker using dataset of two HFSW radar systems (WERA). (a) Surveillance area with
target trajectories and contacts. (b) Trajectories when target is declared as present and ground-truth given by AIS messages. (c) Value of detection

probability, constant and fixed to 0.9 for nonadaptive tracker, while for C-adaptive tracker, mode of posterior distribution of detection probability for
two sensors, Palmaria and San Rossore, is shown. (d) and (e) Error between estimated track of ground-truth in position and speed, respectively.

(f) Posterior target probability.

Fig. 9. Picture of ship Höegh London tracked in HFSW radar
experiment.

to be caused by abrupt decreases of the detection
probability in one (or both) of the two radars with respect
to the nominal values, which were calibrated and fixed to
0.9 for the nonadaptive tracker. Calibrating the values for a
nonadaptive tracker is often an ad hoc process [28]. The
C-adaptive tracker has the ability to follow these apparent

TABLE IV
Parameter Values Used in the Algorithm for Real Data

Parameter HFSW Radar AUV Specification

T 33.28 s 48 s Time scan
σ v 5 10–3 m/s2 5 10–2 m/s2 Process noise
σ r 75 m 100 m Range standard deviation
σ b 1◦ 1.5◦ Bearing standard deviation
l/V 2 10–9 m–2 3.1 10–9 m–2 Clutter density
Np 5 104 5 104 Number of particles
pb 10–4 10–3 Birth probability
ps 1−10–4

= 0.9999
1−10–5

= 0.99999
Survival probability

N 2 2 Number of sensors
Nu 2500 2500 Uniform particles per scan
Nn 250 250 Particles per measurement
Td 0.5 0.5 Degeneracy threshold
ν 104 104 Area of birth particles

oscillations in detection probability (see Fig. 8c), resulting
in much better track hold.

Figs. 8d, 8e report the estimation error in position and
speed, respectively, assuming that the target is always
declared as present. It can be noticed that the C-adaptive
tracker outperforms the nonadaptive one in terms of error.
In particular, as observed in the previous simulation (cf.



Fig. 10. Comparison between D-adaptive and nonadaptive tracker using dataset of two AUV sonar array systems. (a) Setup of experiment with true
target track, trajectories of receivers Harpo and Groucho, and position of source DEMUS. (b) Surveillance area with target trajectories and contacts.

(c) Trajectories, when target is declared as present, and ground-truth. (d) Error between estimated target position and ground-truth. (e) Posterior target
probability. (f) Value of detection probability, constant and fixed to 0.8 for nonadaptive tracker, while for D-adaptive tracker, mode of posterior

distribution of detection probability for two sensors, Harpo and Groucho, is shown.

Fig. 1) when the nonadaptive tracker has a small posterior
target presence probability, it exhibits an error that can be
an order of magnitude larger than the C-adaptive tracker.

B. Network of Multistatic AUVs

The results reported in this section are based on the
CMRE experimental campaign using the real-world data
collected during ExPOMA12 in which the CMRE multi-
static network of AUVs is tested. In [7, 11, 16], the problem
of the port-starboard ambiguity is studied assuming that
the target is always present. In [5], the cognitive paradigm
is exploited in which the AUVs adaptively adjust their
path in order to optimize the target detection capabilities.

ExPOMA12 was held in the Mediterranean Sea
(Sicily, Italy) during February and March 2012. The target
is represented by an echo-repeater (ER) that is towed by
the NATO research vessel Alliance. The main tool of
research for the sea trials was CMRE’s Ocean Explorer
(OEX) AUV used in combination with the BENS towed
array. The OEX is an untethered AUV of length 4.5 m and
diameter of 0.53 m. It can operate to a depth of 300 m, and
it has a maximum speed through the water of 3 knots,
when towing the array. Battery constraints limit the
lifetime of any mission to about 7 h. The OEX is equipped
with two independent Woods Hole Oceanographic

Institution (WHOI) modems for communication of data
with the command centre and for passing of information
between vehicles.

The BENS array is an adaption of the slim towed array
for AUV applications [24] and as such is based on the
same underlying technology. The array has 83
hydrophones of which sets of 32 can be chosen for
beamforming and processing. Furthermore, the array is
equipped with three compasses and two depth sensors to
aid with the reconstruction of the dynamics of the array.

The deployable experimental multistatic undersea
surveillance (DEMUS) source is a programmable
bottom-tethered source capable of high source levels
based on free-flooded ring technology. It is equipped with
a WHOI modem that allows it to be turned on and off
remotely by means of another compliant acoustic modem.
The DEMUS source is equipped with a radio buoy so that
the acoustic signals to be transmitted can be controlled by
means of a radio connection.

In this scenario, we compare the D-adaptive and the
nonadaptive trackers (see Fig. 10). The setup of the
experiment is given in Fig. 10a, where we depict the
location of the DEMUS (diamond), the trajectories of the
AUVs (Harpo in blue and Groucho in black), and of the
ER (black thick line). The source is located at (12.3 km,



23.2 km). The target sails from the location (16.5 km, 16.9
km) to (17.2 km, 9.8 km) and then goes to (11.3 km, 15.8
km). The AUVs sail South-East of the source position and
the target trajectory. For both sensors, the D-adaptive
tracker has two levels of detection probability, 0.2 and 0.8,
and expected sojourn time in each state of 10 samples,
while the nonadaptive tracker uses the value 0.8. The
common parameter values for ExPOMA12 are reported in
the third column of Table IV.

Fig. 10b reports the history of contacts of both AUVs,
the true target trajectory, and the tracks generated by the
D-adaptive tracker and the nonadaptive one. Fig. 10c is a
zoom in of Fig. 10b showing only the tracks. As already
observed in the case of HFSW radar network, the adaptive
tracker has the capability of completely reconstructing the
target trajectory while the nonadaptive tracker fails to
maintain hold of the target track. Moreover, the
nonadaptive tracker exhibits some false alarms in the west
region with respect to the target trajectory. Interestingly,
the target track is lost by the nonadaptive tracker during
the sharp maneuver around the location (17.2 km, 9.8 km)
while it is held by the D-adaptive tracker.

Fig. 10d reports the estimation error in position,
assuming that the target is always declared as present. The
D-adaptive and nonadaptive trackers have similar
performance when the target is declared as present.
However, as already observed in the simulations (cf. Fig.
1) and in the case of the radar (cf. Fig. 8d), when the
nonadaptive tracker loses the target (20 < k < 40 and 60
< k < 80), it exhibits an error that can be an order of
magnitude larger than the D-adaptive tracker.

VII. CONCLUSIONS

This paper presented a target-tracking procedure,
developed for a network of sensors, that is able to adapt
and react to the time-varying changes of the sensors’
target detection probability. The proposed tracking
strategy is based on a Bayesian framework, and the
implementation of the tracker is based on the particle
filtering approach for a RFS. The dynamic target state is
augmented to include the sensors’ detection probabilities.

The method was validated using computer simulations
and real-world experiments, conducted by the NATO STO
CMRE. The improvements with respect to the
nonadaptive tracker are demonstrated in terms of the
MOSPA metric, reaching approximately the performance
of the clairvoyant system that knows the true sensor
network detection probabilities. A great improvement over
the nonadaptive-tracking approach is demonstrated using
real-world data from both a network of HFSW radars and
a multistatic network of AUVs.

Future investigations include the generalization of the
proposed method to the case of several sensors and several
targets, based on the BP approach. The BP approach leads
to an innovative solution of the general Bayesian
formulation of multitarget multisensor-tracking problems
[30, 31] in which it is possible to include the probabilistic

time-varying feature of the detection probability
formalized in the proposed work. Besides the adopted
multitarget strategy, a high track density may lead to poor
performance of the tracker because of the complexity of
the problem itself in which not only it is requested to track
a large and unknown number of targets but also their
associated detection probabilities.
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