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Abstract-Long-term target state estimation of non-
maneuvering targets, such as vessels under way in open sea, is 
crucial for maritime security. 

The dynamics of non-maneuvering targets is traditionally 
modeled with a white noise random process on the velocity, 
which is assumed to be nearly-constant. We show that this model 
might be an implausible hypothesis for a significant portion of 
maritime ship traffic, as vessels under way tend to adjust their 
speed continuously around a desired value. Additionally, vessels 
will naturally seek to optimize fuel consumption. 

We developed a method to predict long-term target states 
based on mean-reverting stochastic processes. Specifically, we use 
the Ornstein-Uhlenbeck (OU) process, leading to a revised target 
state equation and to a completely different time scaling law 
for the related uncertainty, which in the long term is shown 
to be orders of magnitude lower than nearly-constant velocity 
assumption. 

The proper modeling provides some improvement in accuracy; 
but the real benefit is improved track-stitching when there are 
lengthy gaps in observability. In support of the proposed model, 
we propose a large-scale analysis of a significant portion of the 
real-world maritime traffic in the Mediterranean Sea. 

I. INTRODUCTION 

Ship traffic monitoring is a foundation for many maritime 
security domains, and modern monitoring system specifica-
tions and requirements reflect the need for an extended and 
continuous ability to track vessels beyond territorial waters 
and over several sensor coverage areas. However, vessels in 
open seas are seldom continuously observed by monitoring 
sensors and even the data coming from self-reporting systems 
is often highly intermittent. 

The problem of long-term vessel state estimate and predic-
tion is therefore crucial for safety at sea. Unfortunately, this 
issue has been overlooked in the target tracking literature, and 
only few works partially address the problem, e.g. [1]-[3], 
while most of the literature is focused on maneuvering target 
models, e.g. [4]-[6] . 

On the other hand, real-world self-reported data (i .e., largely 
Automatic Identification System (AlS) [7], [8]) shows that a 
significant portion of the vessels in open seas maneuver very 
seldom. In the literature, non-maneuvering target dynamics 
are modeled with a velocity that is perturbed by a white 
noise process. This model is often referred as Nearly Constant 
Velocity (NCV) [5] , [9] and has been successfully used in 
several target tracking applications, such as radar [10] and 
sonar [11], where the prediction step always refers to the very 
near future, generally one sensor time-scan ahead. The NCV 
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model is adopted also in [1] for anomaly detection and motion 
prediction. 

We propose [12]-[14] a method for the long-term prediction 
of target states based on the Ornstein-Uhlenbeck (aU) stochas-
tic process, which leads to a revised target state equation 
and to a completely different time scaling law for the related 
uncertainty. This formulation reduces by an order of magnitude 
the uncertainty region of the predicted position with respect 
to the models available in the literature. 

This aspect is crucial for several applications. To mention 
one, in Search and Rescue (SaR) operations, a smaller un-
certainty region implies a smaller search region, which can 
significantly improve the probability of success for search 
cases. For instance, let us consider a vessel having an accident 
in a region with intermittent AIS coverage (e.g. open sea); the 
position of the accident is consequently unknown. Not having 
any information other than its last observed position and the 
time of accident (e.g. time of SOS message), the only possi-
bility is to hypothesize that the ship had been moving from the 
last observation to the position of the accident in a straight line. 
It is important to notice that this assumption has to be made 
whether the traditional or the proposed approach is taken. The 
important difference is that using the proposed method, the 
search area (the uncertainty region) would increase linearly 
(instead of quadratically) in proportion to the time from last 
report, for a given level of confidence. 

The au model can be seen as a modified Wiener process 
with a tendency for the walk to return to a central location, 
with a greater attraction when the process is further away from 
the center. It is popular in various and heterogeneous scientific 
fields , spanning from physics to finance and biology, but it is 
much less popular within the tracking community [15]. 

To the best of the authors ' knowledge, only few works 
consider the au model for the target dynamics, and none of 
them use it for long-term target state prediction. In the tracking 
literature, the au model has been discussed mostly notably 
by Coraluppi and Carthel in [16]-[19], where the stability of 
the au, and the so-called Mixed Ornstein-Uhlenbeck (MOU) 
processes are studied. 

However all of these works, including [15], deal with zero-
mean-reverting processes, i.e. the typical velocities are null, 
the aim not being the long-term target state prediction, but 
rather the short-term characterization of the target dynamics. 
Indeed, in [16] the authors are more interested in the bounded-
ness of the target components, and for this reason the MOU is 
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Fig. 1. Normalized samples of the x (left) and y component of the target velocity versus time. Scatter plots in the top row are generated from real-world 
speed samples of ships under way in the Mediterranean Sea, while those in the second row show synthetic OU samples. The real-world and synthetic data 
sets have the same cardinality. 

a zero-mean-reverting process for both position and velocity. 
In contrast to [15]-[19], in this paper we focus on the long-

term prediction of non-maneuvering vessels, such as those 
under way in the open sea. We show that that the NCV is 
implausible for a significant portion of maritime ship traffic, 
as vessels under way tend to continuously adjust their speeds 
around a desired operating point. This is intuitively illustrated 
by Fig. 1, where the scatter plots in the first row come from 
-conveniently scaled- real-world ship speed samples, while 
those in the second row are generated from a synthetic data 
set of OU samples, for the x (left) and y (right) components 
of the target velocity. 

Supported by real-world vessel traffic data, we show 
that mean-reverting processes can be used to model non-
maneuvering vessel movement. Specifically, we provide ev-
idence that the vessel velocity is well-described by an OU 
stochastic process, and consequently the vessel position by 
an Integrated Ornstein-Uhlenbeck (IOU) process. As a con-
sequence, after an initial transient, the vessel position is 
mathematically equivalent to Brownian particle motion. It is 
also shown that the popular NCV model that is commonly 
adopted in the target tracking literature is not well-suited 
for the characterization of the uncertainty of the long-term 

target state prediction. While it is sufficiently accurate for 
short-term predictions (typically the case for traditional target 
tracking applications) the NCV model can overestimate the 
actual uncertainty of long-term predictions, even to orders of 
magnitude. 

Our results are supported by an extensive analysis of a 
data set of real-world vessel trajectories. For each of them, 
the OU and NCV process parameters are estimated using a 
Maximum Likelihood (ML) procedure. The OU and NCV 
models are then compared in terms of capability to represent 
statistically the prediction error variance against the predic-
tion horizon time. Specifically, the experimental normalized 
prediction variance curve, averaged among all the available 
trajectories, is compared against the theoretical normalized 
variance curve of the OU and NCV models. Based on this 
validation criterion, we show that the OU process better 
models the behavior of a significant portion of real-world 
vessels than the NCV. The proposed estimator, based on the 
OU process, is then demonstrated to be suitable for long-term 
prediction in practical applications. Moreover, the prediction 
uncertainty equation has a closed-form expression, provided 
by the OU process characterization, which is very useful in 
real-world use cases. 
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The paper is organized as follows. In Section II we formal-
ize the problem in terms of a stochastic differential equation 
(SDE) for the target motion and introduce the au and NCV 
models. Section III is devoted to the model parameter estima-
tion procedure, while in Section IV we formalize the model 
validation criterion. Finally, experimental results are reported 
in Section V. This paper is a focused version of [14]. 

II. VESSEL DYNAMIC MODELS 

Let us indicate the target state at the time t E IRt with 

s(t) d:;j [x (t) , y(t), x(t) , y(t) ]T , (1) 

where the two coordinates x(t) and y(t), and the correspond-
ing velocities x(t) and y(t), in a two-dimensional Cartesian 
(x, y) reference system are also denoted by 

x(t) d:;j [x (t) , y(t) ]T 

x(t) d:;j [x(t) , y(t) ]T . 

(2) 

(3) 

The choice to define the target state in the Cartesian coordi-
nates is standard in the target tracking literature, e.g. see [9]. 
In this formulation of the problem (x, y) can be either the 
Universal Transverse Mercator (UTM) coordinate system, or 
the rotated coordinate along the target trajectory, as usually 
assumed in the knowledge-based tracking, e.g. see [20]-[22] . 

Let the target dynamics be a set of linear SDE [5]: 

ds(t) = As(t) dt + Gu(t) dt + B dw(t), (4) 

where A, Band G are constant matrices, u(t) is a determin-
istic function, and w(t) is a standard bi-dimensional Wiener 
process. The SDE can be solved by the use ofIto calculus [23]. 

Given the state of a target s(to) observed at the time to , we 
aim to predict its state at the time t. This prediction can be 
carried out with an optimal Bayesian estimator: 

s(t lto) d::J [x (t lto), y(t lto), x (t lto) , y(t lto) ]T 
E [s(t) Is(to) ], (5) 

where E [.] indicates the expectation operator. As opposed to 
conventional tracking applications, we are interested in explor-
ing the properties of s(t lto) when t - to is not comparable to 
the refresh rate of the sensor that issues the measurements, 
being instead orders of magnitude above it. The estimator (5) 
is highly dependent on the underlying motion model described 
by the SDE (4). We will focus only on the case of non-
maneuvering target, as for a vessel while under way. 

Differently from the tracking literature, where the target 
state observation is typically affected by noise, we shall 
assume to observe directly the target positional state. This 
assumption is not binding, provided that a negligible mea-
surement noise is even plausible with respect to the real-world 
data set presented in Section V and therein exploited for the 
prediction error variance analysis, because the vessel positions 
broadcast by AIS transmitters have the same accuracy as the 
Global Positioning System (GPS), and the measurement noise 

would be therefore negligible, especially if compared to the 
size of commercial ships. 

One of the most popular target motion models, commonly 
adopted in the scientific target tracking literature, is the NCV 
model [5], where (4) has the form 

ds(t) = As(t) dt + B dw(t) , (6) 

with 
(7) 

being I the bi-dimensional identity matrix, 0 the bi-
dimensional null matrix and C a generic bi-dimensional ma-
trix. In practice, the equation for the target dynamics relies on 
the fact that, for non-maneuvering vessels x(t) ~ [0, of , i.e. 
there is a "small" effect on x(t) that accounts for unpredictable 
modeling errors [5]. 

For the au model the SDE has a slightly different form, 
with an additional term that accounts for the mean-reverting 
tendency of the velocity: 

ds(t) = A s(t) dt + G v dt + B dw(t), (8) 

where v = [vx, V y ]T, and w(t) is a standard bi-dimensional 
Wiener process. The matrices A, Band G are defined as: 

A = [~ _18]' B = [~] , G = [~] , (9) 

being 8 and C generic bi-dimensional matrices. Equation (8) 
has the form of a Langevin dynamic [24] and can be solved in 
closed form by using Ito calculus [23], [25]. The x(t) process 
is said to be of the Ornstein-Uhlenbeck (aU) type [26], 
[27] and correspondingly, we say that x(t) is an Integrated 
Ornstein-Uhlenbeck (IOU) process [27]. The parameters V x 

and Vy in v play a key role in the proposed model because 
they represent the typical velocities along x and y, respectively, 
of the vessel on the trajectory under consideration. Roughly 
speaking, the velocity of the process tends to drift over time 
towards its long-term mean; and the mean-reversion tendency 
is stronger when the velocity is further away from that long-
term mean. 

The diagonal terms of 8 represent the mean reversion 
effect along the x and y components, respectively, while the 
off-diagonal elements measure the coupling effect between 
them. Assuming that 8 is diagonalizable and has positive 
eigenvalues, an affine transformation can be found that projects 
the matrix 8 onto another space, i.e. , 8 = R r R - \ where 
r is diagonal. This idea is expanded further in [14] , where 
we also provide the general solution to the coupled problem. 
However, for the sake of brevity, in this work we assume that 
e = r = diag b) is diagonal and 1 = bx , ')'y ]T 

A. Prediction procedure 
The solution of the SDE provides for the target state 

prediction s (t Ito) and the related variance, which we will 
take as a measure of the prediction uncertainty. In this section 
we will describe the prediction procedure in the two cases that 
the au and NCV models are assumed for the target velocity. 
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1) Nearly Constant Velocity (NCV) model: Assuming the 
NCV model for the velocity of the target, we have that the 
optimal prediction, given the initial target state s(to), is the 
following [9] 

s(t lto) = F(t - to)s(to), (10) 

where F(t) is often referred to as the state transition matrix 
and is given by 

F(t) = [~ tf]. (11) 

According to (10), the covariance matrix of the estimator is 
provided by Ito calculus and is given by 

[ 
(t - t O)3 (t-tO)2 ] 

Cov [s(t) Is(to) 1 = (t-3
2
t o)2 - 2- ® eeT , 

t - to 

where 
eeT = [a~ aX?]. 

a xy a y 

(12) 

2) Ornstein-Uhlenbeck (OU) model: Let us consider the 
case in which the velocity of the target follows the OU model. 
We have that the optimal prediction, given the initial target 
state, is provided by the first moment of the SDE solution [25], 
[27] and, for the velocity, we have 

[ 
-'Yx (t - t o) 0] 

x(t lto) = v + e 0 e -'Yy( t - t o) (x(to) - v). (l3) 

Proceeding similarly for the target position, which is an IOU 
process, the following expression can be derived 

x(t lto) = x(to) + (t - to) v 

[ 

l_e - 'Yx(t - t o ) 

+ 'Yx 
o l _e- 'Y~ (t - 'O) ] (x(to) - v). (14) 

'Yy 

The optimal prediction can be rearranged in the matrix form 

s(t lto) = .p(t - to , ,) s(to) + w(t - to,,) v, (15) 

where .p (t, ,) is the analog of the state transition matrix and 
W (t, ,) v is often called the control input function, defined as 

.p (t ) d;j At = [1 (1 - e-rt) r - 1] (16) 
" e 0 e-rt , 

and _ [tI - (1 - e- r t ) r - 1] w(t,,) - 1 - rt . -e (l7) 

We provide the full form of the estimator covariance matrix 
in [14] . For the sake of brevity, we report here only the 
variance terms: 

E [ (x (t 1 to) - x (t) ) 21 s (to) 1 
a2 -1 f (rx (t - to)) (18) 
r~ 

E [ (y (t 1 to) - Y (t) ) 21 s ( to) 1 
ay 

(19) :3 f (ry (t - to)) 
r~ 

E [ (i: (t 1 to) - i: (t) ) 21 s (to) 1 ax g(rx (t - to)) (20) 
r~ 

E [ (y (t 1 to) - Y (t) ) 21 s ( to) 1 
ay 

(21) -g (ry (t - to)) 
ry 

where f (t) and 9 (t) are the prediction position and velocity 
error normalized variance, defined as 

f (t) d;j ~ (2t + 4e- t - e-2t - 3) (22) 
2 

9 (t) d;j ~ (1 - e- 2t ) , (23) 

where a~ and a; are the diagonal elements of eeT . 

III. PARAMETER ESTIMATION PROCEDURE 

In support of our thesis that the motion of a non-
maneuvering ship in open seas is better represented by an OU 
process on the target velocity rather than the NCV model, we 
analyzed a significant data set of real-world vessel trajectories 
in order to compare the SDE models described in the previous 
section. For this reason we need a procedure to establish the 
SDE parameters 0 = (Ox, Oy) of the processes; in the NCV 
case 

Ox = ax and Oy = ay (24) 

while, under the OU assumption on the target velocity, we 
have 

To avoid duplication, we will use Ox,y , ax,y , rx,y and Vx,y 
to denote quantities that can equally refer to the x or y 
coordinate. 

We shall now provide a description of the procedure adopted 
to estimate 0 for every given trajectory. Let us assume we have 
recorded a set of K trajectories of non-maneuvering vessels. In 
practice, the non-maneuverability assumption translates to the 
selection of piecewise linear vessel trajectories. Each trajectory 
is defined by a set of target states 

(26) 

for i = 1, ... , K at some time instants t i, j - 1 « ti,j), for 
j = 0, ... ,Ni . Assume we observe only the set of velocities 
denoted by 

for i = 1, ... ,K. Every trajectory i is characterized by 0i = 
(Ox,i, Oy ,i ), which is estimated from the measurement set Zi 
for both the NCV and OU models. Thanks to the Markovian 
and Gaussian properties of (6) and (8) [23], [28], the likelihood 
function of Zi is explicitly given by [28] 

Ni 

Li (Oi) = II ¢ (Xi(t i,j ) IXi(ti,j - d, Od , 
j = l 

(27) 

where ¢ (.) is a bivariate Gaussian distribution. The estimate 
is then provided by the ML estimator 

Oi = arg max Li (0) . 
(J 

However, in order to simplify the estimation procedure 
from a computational perspective, we can use the marginal 
likelihood along x and y coordinates. This marginalization 
procedure is quite standard, especially from the Bayesian 
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Fig. 2. Empirical and theoretical di stributions of the normalized prediction 
error on the target velocity at two different time instants for the x (left) and 
y (right) components. 

standpoint (assuming non-infonnative prior in our case) i.e. 
the other coordinate (y if we are estimating parameters along 
x and vice versa) is considered as a nuisance parameter. The 
marginal likelihoods are then given by: 

N i 

Lx,i (Ox,i) = II cPXi (X i(ti,j) IXi(ti,j-1 ), Ox,d, 
j=l 

N i 

Ly,i (Oy, i ) = II cPy; (Yi (ti,j) IYi (ti,j - d, Oy ,i ). 
j = l 

(28) 

(29) 

where cPXi (-) and cPYi (-) are Gaussian distributions with mean 
and variance respectively given by the solution of the SDE (see 
also the discussion in Section II). Specifically, for the NCV 
we have 

1x . (t - tu) = 1.00 ± 0.25 1, . (t - tu) = 1.00 ± 0.25 
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Fig. 3. Empirical and theoretical di stributions of the normalized prediction 
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E [Xi (ti,j) lxi (t i, j - d J 

E [Yi(ti,j) IYi(ti,j - d J 

V [Xi (t i, j) I Xi (t i, j - d J 

V [Yi(ti,j) 1 Yi(ti,j-d J 

while for the au we have 

Xi (ti,j _ d 
Yi( t i,j -d 

(30a) 

(30b) 

(30c) 

(30d) 

where V [.J indicates the variance operator and L1i,j d::l t i,j 
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t i,j - l. The ML estimators along x and y for the i th trajectory 
are given by 

Ox i = arg max Lx i ((}x) , , 8 x ' 

Oy ,i = arg~aXLy ,i ((}y). 
y 

(32) 

Further details about the implementation of the ML estima-
tors are given in [14]. 

IV. MODEL VALIDATION CRITERION 

Let us consider now the ith trajectory, which is made up 
of a sequence of target states Si, as in (26), observed at the 
time instants t i, j- l « t i, j). Aiming to understand which one 
of the two models better represents the target motion, we take 
each data point of the trajectory and, using it as the initial 
target state, we perform the target state prediction at the time 
instants of the following observations. That is, given the initial 
state Si(t i,j) for j = 0,1, ... , Ni, we predict the sequence of 
target states at the time instants t = t i,n for n = j + 1, ... , Ni: 

Si = { {si (ti,nlti ,j)} ~~j+l } ;~o ' 
where the estimate Si (t i,n It i, j) is given by (10) for the NCV 
model, and by (15) for the au model. The parameters (}i 

used in the prediction are estimated from the velocity samples 
themselves, as described in Section III. 

We can now define the prediction error as a function of the 
prediction horizon t > 0: 

de! [ T T ] T es, (t) = ex,(t) , ex, (t) 
= Si (t + to) - Si(t + to lto) , (33) 

which is a zero-mean random variable, as also shown in 
Fig. 2 and 3, where we report the empirical and theoretical 
distributions of the positional and velocity components of 
{e s , (t)} ~l at several time instants, for the positional and 
velocity components of the target state, respectively. The 
empirical distributions come from the real-world dataset, while 
the theoretical Probability Density Functions (PDFs) are zero-
mean Gaussian distributions with variance defined by (18)-
(21). 

The dependency on the generic instant to is not made 
explicit in the notation because we are interested only in its 
first and second moments, which are independent of to because 
of the properties of the target process described in Section II. 
Therefore, we will consider hereafter that to = 0, without 
affecting the analysis. Having predicted the target states at 
the time instants when the measurements are available, the 
prediction intervals for the ith trajectory are 

T; = { {ti,n - ti, j} ~~j+l} ;~ l ' 
meaning that the prediction error is sampled at the time 
instants t E T;. The computed prediction error should cor-
respond to the diagonal elements of (12) in the NCV case, 
and to (18)-(21) under the au assumption on the target 
velocity. In order to verify the suitability of the models under 

investigation for the prediction uncertainty, we analyze the set 
of prediction errors {e s , (t)} ~l for both models versus the 
prediction horizon t. 

The first hurdle is related to the fact that, as already 
discussed in Section III, each trajectory i is a realization of the 
stochastic process -on the target velocity- with a specific 
set of parameters (}i . Also the data analysis and the model 
validation are affected by the inhomogeneity of the samples 
drawn from different trajectories, being these not directly 
comparable because of the different process parameters. The 
validation must, therefore, be carried out by separating the 
effect of the parameters from the time dependency in the 
diagonal entries of (12) and in (18)-(21). This is possible by 
normalizing the error in amplitude for the NCV and in both 
amplitude and time scale for the au. Specifically, the error 
can be normalized as follows 

where 

e (t) = ~ {r;-les i (t) if NCV, 
Si r;-les i (thi ) if au, 

if NCV, 

if au. 

(34) 

(35) 

In this way the second moment of eSi (t) is independent of i. 
Specifically, the error variance can be derived easily from the 
diagonal elements of (12) and from (18)-(21) 

d (E [es, (t)~ (t) ]) = 17(t), 

17(t) d;j 4 , 4 , , { [t4j t4j t2 t 2] T 

[f(t), f(t) , g(t), g(t)f 

if NCV, 

if au, 

(36) 

(37) 

where d (.) is the vector of the diagonal elements, and the 
functions f(t) and g(t) are defined in (22)-(23). 

At this point we can verify if the sample covariance of 
the normalized prediction error, provided by the data, fits the 
theoretical expectation 17(t). This is possible by using 

de! 1 ~ (~ c:::T ) K ---+oo 17K(t) = K ~ d e S i (t)e S i (t) -+ 17(t), (38) 
i=l 

where the convergence can be intended in mean square or in 
probability [29]. 

Roughly speaking, in our case, given a sufficiently large 
sample size K, then the sample variance of the normalized 
prediction error is close to the expected one 17(t). In Section V 
we compare the empirical curve 17K(t) with the theoretical 
curve 17(t) for both au and NCV models. 

V. MODEL VALIDATION USING REAL-WORLD VESSEL 
TRAFFIC DATA 

In this section we provide evidence that the au -for the 
velocity- and IOU -for the position- models fit better than 
the NCV to the uncertainty of long-term state predictions of 
non-maneuvering vessels. 
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the empirical variance and the theoretical model over the prediction time. 
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Fig. 5. Superimposition of all the realizations of the squared prediction error on the target position, for the OU (left) and NCY (right) models, together with 
the empirical variance and the theoretical model over the prediction time. 

This evidence is based on the analysis of a significant record 
of the commercial maritime traffic in the Mediterranean Sea, 
collected by the NATO Science and Technology Organization 
(STO)-Centre for Maritime Research and Experimentation 
(CMRE). Specifically, the data set consists of AIS messages 
broadcast by commercial vessels in the Mediterranean Sea in 
two months of 2014 and collected by a network of receivers. 

An initial step has to be accomplished before the actual 
analysis can start, because of the models described in Sec-
tion II being valid under the assumption of a non-maneuvering 
vessel. This pre-processing phase consists of enforcing this 
assumption on the given real-world data set by breaking every 
observed trajectory into linear piecewise parts wherein the 
target has essentially no process noise. 

This first step leaves us with a set of observed trajectories of 
non-maneuvering vessels. The prediction procedure is repeated 
for all the trajectories and for the different motion models, 
leading us to a collection of prediction errors relative to the 
target position and velocity as described in Section IV. The OU 
motion model for the velocity and its integrated version for the 
position, as described in Section II-A2, are characterized by 
three parameters for each coordinate: the noise level CJx, y , the 
desired speed v , and the reversion rate "(x, y, which basically 
represents how quickly the target tends to restore its desired 

speed after a perturbation. The NCV motion model has instead 
just one parameter for each coordinate: the noise level CJ x,Y ' 

It is apparent that these process parameters are important 
to the specific realization but, more importantly, they are 
not known a priori and therefore have to be estimated, see 
Section III. The estimation of the process parameters is not 
error-free but, on the contrary, introduces additional error. 
However, our analysis shows a good match between the real-
data and the theoretical curves, meaning that the trajectories 
are sufficiently long to guarantee a parameter estimation with 
a negligible error. 

Fig. 4 and 5 show the prediction error variance on the target 
velocity and position, respectively, over the prediction horizon. 
The plots on the left refer to the OU models, while those 
on the right to the NCV; for brevity, only the x component 
of the error is reported, being the y component analogous. 
In each figure, scatter plots illustrate the empirical data, i.e. 
the actual prediction error variance observed on the target 
velocity, whereas dashed lines represent the theoretical models. 
As discussed in Section IV, a normalization step, see (34), is 
necessary in order to compare the trends of the prediction 
uncertainty of all the trajectories in the data set. Therefore, 
the numerical values in OU and NCV plots do not show 
the actual variance of the prediction but rather represent the 
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normalized variance. The OU the time axes have also been 
scaled according to the reversion rate of each trajectory, while 
this is not necessary for the NCV model. 

From Fig. 4 and 5 it is also easy to recognize that, while 
the NCV models fit the empirical curve only in the short time 
prediction, the OU instead fits the whole evolution. It is worth 
mentioning that in the long time prediction the fundamental 
difference between the two model becomes clear: the NCV 
uncertainty diverges, as for a Brownian motion, while the OU 
reaches an asymptotic level provided by g(t) -7 1/2, see (37) 
and (23). The asymptotic unnormalized OU uncertainty is 
instead given by cr;, y/2ix ,y; basically it is proportional to 
the noise variance cr~ ,y and to the reversion rate l /ix ,y. As 
already explained in Section II, the NCV model is equivalent 
to the OU for ix,y -7 O. This explains from another point of 
view why the NCV uncertainty diverges. 

VI. CONCLUSION 

We have studied the problem of issuing long-term pre-
dictions of future target states, with specific focus on the 
modeling of the related uncertainty. We have derived an 
optimal prediction procedure and investigated its variance over 
the prediction horizon. 

Experimental results confirm that Ornstein-Uhlenbeck (OU) 
stochastic processes may be used to model the motion of non-
maneuvering vessels while under way. Their major advantage 
over the more traditional NCV model is that the variance of the 
predicted position grows linearly with the prediction horizon, 
resulting a prediction uncertainty that is much more contained 
in larger time scales. 

In the future, this model may be applied to relevant sce-
narios that might benefit from a more accurate modeling 
of the prediction uncertainty. For example, in the task of 
satellite image acquisition, the reduction of uncertainty in 
vessel location could enable higher resolution imagery over 
a smaller area, thus providing more accurate classification. 
Future investigations are needed to study on-line procedures 
for estimating and updating the OU parameters while the data 
are observed. 
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