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CMRE is a leading example of enabling nations to work more effectively and efficiently together by 
prioritizing national needs, focusing on research and technology challenges, both in and out of the 
maritime environment, through the collective Power of its world-class scientists, engineers, and 
specialized laboratories in collaboration with the many partners in and out of the scientific domain.  
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cannot be guaranteed by aerial vehicles (MPA/MPH) due to their
limited time on station. Conventional submarines need to surface to
maintain their batteries and are often unable to be closely
integrated into ASW task-force operations due to their inability or
reluctance to engage in active transmission to maintain
communications. Finally, ships deploying VDS and towed arrays
impose limitations on their sensors [10], through radiated noise
from the platform itself, flow noise when operating at speed and
difficulties in deploying the sensors at the optimum depths due to
the operational envelope of these complicated and heavy systems.

1.1 The rise of robotics in underwater surveillance

Recent advances in marine robotics suggest that maritime
unmanned systems can be used to solve some of the problems
identified above. Today's robots can guarantee persistent
monitoring of an area at lower costs than traditional assets,
complementing or substituting current solutions.

The idea of using autonomous robots or sensing units in ocean
monitoring traces back to the early 1990s [14, 15], when the fast
development of autonomous oceanographic instrumentation and
communication systems encouraged the vision of highly integrated
systems of autonomous oceans sampling networks (AOSN) (see
Fig. 1). AOSN, composed of multiple and possibly low-cost units,
can replace in a cost-effective way the traditional survey methods,
with the additional benefit of providing synoptic data. The original
AOSN concept was to have a network of fixed sensors integrated
with a fleet of autonomous underwater vehicles (AUVs), each one
carrying some payload or sensor, and collecting data over survey
tracks beyond the range of the fixed stations. The key component
of the AOSN concept was the AUV, through which synoptic
observations could be obtained at potentially significantly reduced
costs. At the time of the AOSN proposal, the available operational
AUVs were designed for deep water geophysical surveys,
accordingly to the needs of the oil and off-shore industries. 

The technological evolution of the last decades has made small,
relatively low-cost AUVs a reality: the available systems range
from those employed for acoustic surveillance for military
applications [7] to smaller, less powerful but longer endurance,
oceanographic sensing units that can stay at sea for prolonged
periods of time [17, 18] and to multi-purpose, mission-oriented
assets [19]. The robotic research is now beyond this original idea,
and the AOSN concept is included into an integrated system which
includes aerial and aerospace units, with a reach-back capability
towards the command and control (C2) centre able to monitor in
real time the evolution of the system and to provide commands and
updates to the network itself [20].

Surveillance and monitoring scenarios are amongst those where
these new paradigms can be readily applied. Existing surveillance
systems composed of statically deployed sensors, or based on the
use of expensive and time-consuming ship-based operations, could
be easily and effectively complemented with robotics platforms.
Compared to traditional assets, these small, low-power, sensorised
and mobile units have usually limited processing and
communication capabilities, but when deployed in a spatially
separated manner, they can be interconnected to form an intelligent
network able to achieve high mission performance. Within this
framework, nodes cooperate and make distributed decisions based
on locally collected and/or communicated data. Static nodes collect
data at fixed locations for extended time periods forming the
backbone of ad hoc communication infrastructures. Mobile units
build upon acquired data and use their mobility to extend the
operational area and to adapt mission objectives to ever changing
environmental and mission conditions, as well as to cover
connectivity holes in the network and to avoid the presence of
single points of failure. This results in the possibility for the
network to efficiently adapt to evolving scenarios increasing its
reconfigurability, reliability and robustness. A key aspect of a
cooperative network lies in its ability to share data and information
among its nodes. For underwater robotic networks, the key
challenge is hence how to make effective use of the collected data
and of the limited communication bandwidth in order to
outperform traditional surveillance systems.

The use of cooperative robotic networks with a specific focus
towards ASW applications has been recently demonstrated by the
NATO STO-Centre for Maritime Research and Experimentation
(CMRE) during a number of at-sea experiments [21–23], see
Fig. 2. In the CMRE case [24], the robotic network embodies a
multistatic active sonar system. It is composed of one or more
active sources (transmitters), which transmit signals (pings). The
sound, once reflected off some object, can be recorded by one or
more receivers that are mounted on-board AUVs. 

The operation of the vehicles is supported by WaveGliders [25],
i.e. autonomous surface vehicles (ASVs) exploiting the wave
energy to move, and by additional static buoys, which represent the
backbone of an ad hoc communication and localisation
infrastructure [23]. All nodes of the network are equipped with
acoustic modems to exchange data. Finally, the NATO research
vessel (NRV) alliance is used as an additional source and/or
receiver, as well as C2. Using multiple sources and receivers, the
CMRE network is able to enlarge its coverage while exploiting the
different geometric distributions of source-target-receiver to
increase the probability to receive a sonar echo that is originated by
the target.

1.2 Underwater domain challenges

Several challenges must be addressed to realise and deploy
underwater robotic networks in real-world applications:

• difficulties of underwater operations,
• lack of power and endurance,
• severely limited electromagnetic propagation for both sensing

and communications.

To set up the discussion that follows in the next subsections,
Table 1 summarises the main challenges for the deployment of
underwater robotic networks. To provide a better context for the
reader, the table also compares the specific issues as encountered in
terrestrial/aerial domains. 

1.2.1 Difficulties of underwater operations: Operating
underwater requires that the vehicles are water tight and corrosion
resistant and able to withstand increasing pressures. This results in
a number of engineering challenges which must be met and further
serves to increase the cost of these systems when compared to
terrestrial solutions. Even the basic deployment and recovery of
these vehicles can be challenging and it likely requires the
employment of a sea going vessel with suitable lifting gear. This
adds further costs to the system as a whole. As a result of such a

Fig. 1  A sketch of the AOSN concept. A network of fixed sensors is
integrated together with a fleet of heterogeneous AUVs, each one carrying
some appropriate payload or sensors, and collecting data over survey
tracks not reached by the fixed stations. This concept facilitates synoptic
observations with an increased spatial resolution at potentially reduced
cost with respect to traditional means (adapted from [16])
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hostile environment and the challenging deployment and recovery
processes, the operational deployment of these systems must build
in a degree of redundancy. Since one must always assume that
should any failures occur with the vehicle, it will most likely be
lost. To guarantee the adequate persistency and to alleviate the
work of support vessels, robust and convincing engineering
solutions to autonomous deployment, docking and recharging need
to be found [26].

Other barriers to the diffusion and deployment of underwater
robotic nodes are the lack of generally accepted standards, which
undermines the interoperability of systems [27]. Even if using
software middleware (e.g. MOOS-IvP or ROS [28, 29]) is
becoming common in the robotics community to ease the software
module integration, much has to be done in payload interface and
hardware standardisation. A similar problem is also present for
underwater communications (see Section 5), where only recently,
for the first time a physical-layer communication scheme, called
JANUS [30], has been accepted as an NATO digital underwater
communication standard. This is the first step towards the usage in
the community of digital underwater communication standards.

1.2.2 Lack of available oxygen for combustion engine: The
inability to operate a combustion engine, due to lack of available
oxygen, severely limits the power and endurance of AUVs. Current
solutions must rely on a battery to provide limited electric power to
the propulsion mechanism – and all other on-board systems. As an
example, the batteries currently employed on-board CMRE AUVs
provide for around 6 kWh resulting in an endurance of 16 h at two
knots. For comparison, only 1 gallon of gasoline provides around
33 kWh. With power requirements proportional to the cube of
speed any increase has a significant impact on the remaining
endurance. Therefore, finding a trade-off between endurance and
speed generally drives the employment of AUVs towards a subset
of missions in which their relatively slow speed will not impact
greatly on overall performance.

If however the AUVs are requested to perform an escort
mission, in which they must keep pace with some high-value unit,
their lack of speed will be severely prohibitive and additional
solutions, for instance diesel engine ASVs, should be pursued.

1.2.3 Severely limited sensing and communications: The
underwater domain comprised of salt water is highly conductive

Fig. 2  NATO STO-CMRE Harpo OEX AUV during at-sea operations
(a) Harpo OEX AUV acting as receiver in the CMRE network during LCAS16 trial. The NRV Alliance research vessel and a submarine involved in the trial are also visible, (b)
Harpo during the deployment. The linear hydrophone array towed by the vehicle is visible (photo credit: Arjan Vermeij)

Table 1 Underwater domain challenges
Terrestrial/aerial

domain
Underwater domain Challenges on signal processing Challenges on

robotics
Power Combustion engines,

batteries etc.
Battery dependent. Recharging

difficulties
Array algorithms that trade power for

efficiency
Mission duration, low

speed
Hardware Structural constraints only

due to shape and material
optimisation

Structural constraints due to high
pressures and corrosion.

Limitations for communications
and signal processing (e.g.

narrow bandwidth due to piezo
transducers).no standards

Half-duplex networking Propulsion,
manoeuvrability, limited

interoperability

Network
Deployment

2D dense networks,
mostly static nodes,

possibility of
infrastructures

3D sparse networks, possibility of
multiple mobile nodes, fully ad

hoc

Physical level and network design Autonomy

GNSS signal Yes No Difficult localisation and
synchronisation

Localisation and
navigation

Wave speed 3 × 108 m/s (light) 1500 m/s (acoustics), varies in
space and time

High latency in communications
protocols

Feedback latency for C2

Signal fading Outage models known Outage models unknown Poor target detection, high false-alarm
rates, low rate and unreliable

communications

Autonomy, limited
collaborationMultipath μs ms – seconds

Noise Electronic, non-dynamic Environmental, very dynamic
Freq/band High Low
Bitrate Mbps <15 kbps (acoustics)
Costs Easy to deploy multi-agent

networks (nodes are
possibly low cost)

Costly at-sea operations and
networks composed of expensive

high-value assets

Algorithm validation and robustness Algorithm validation and
robustness
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resulting in the dissipation of electromagnetic waves and extremely
rapid attenuation. For instance, the attenuation in sea water for
electromagnetic waves is given by 1400 f 1/2 such that for just 100 
m the losses at 200 MHz are 20,000 dB [31]. By contrast, the
attenuation of low-frequency sound (2 kHz) over 20 km is <3 dB.
The lack of electromagnetic propagation has severe consequences
for both detection and communication performance – both of
which are central to the utility of AUVs. In the absence of radar,
underwater detection must rely on the transmission and reception
of sound – sonar.

Detecting and tracking objects with sonar is complicated by the
underwater environment (further details can be found in Section 3).
High clutter is in fact usually present especially in littorals, which
are characterised by poor sound propagation conditions. Changes
in the sea water temperature and salinity with depth result in the
bending of sound waves possibly allowing a target to remain
hidden from the transmitted pulse of an active sonar.
Communication must also rely on acoustics with the already
mentioned consequences for both bandwidth and range (see also
Section 5). These limits strongly impact both on the possibility to
remotely control or monitor the activities of the robots and on
information sharing among the nodes, creating problems in the
network coordination and in the data fusion process.

Another major impact of the attenuation of electromagnetic
waves is the lack of availability of the GNSS. As a consequence
the vehicle itself may not know precisely where it is located,
resulting in a location estimation error of any detected objects or
mission way points. AUVs typically navigate by either inertial
navigation or through a bottom DVL, or a combination of both.
The latter requires that a sonar signal is bounced off the sea bottom
allowing the speed and heading of the vehicle to be determined
from the resulting Doppler shift. This method however limits the
operation of the vehicle to a maximum sea bed depth with which
the sonar signal can reliably interact. Recent solutions require that
the robot interacts with a number of buoys deployed in the area of
operation to self-localise [32]. Current research trends aim to use
collaborative approaches to localise the nodes of the network [32]
and will be described in Section 2.1.

1.3 Robotics surveillance networks

From a robotic network perspective, a general underwater
surveillance mission might be divided into three phases:

• Phase 1: area search/patrolling.
• Phase 2: analysis and evaluation of target(s) cues.
• Phase 3: target(s) prosecution/neutralisation.

In Phase 1, the robotic nodes are driven by area coverage
objectives, such as exploring or patrolling a region [33, 34], while
guaranteeing a desired probability of detection. We talk of area
search (or exploration) when the targets are fixed, and we talk of
patrolling [35, 36] in the case of mobile targets. In both cases,
targets must be detected, but patrolling needs to guarantee a desired
level of coverage while respecting some defined temporal
constraints dictated by the problem under investigation.

Nodes switch to Phase 2 when cues about possible targets are
detected and can be scrutinised to make decisions such as to
identify tentative targets, using on-board classification algorithms
[3, 37–39].

When some of the cues can be associated to a target, nodes
move to Phase 3, which is dedicated to target(s) cues prosecution.
In this case, the robots need to make decisions and act to increase
the tracking performance to classify and identify the target, and,
depending on the application, to neutralise it. For instance, during
this phase, in an MCM scenario, mines are identified and
neutralised [40]; in ASW the AUVs might manoeuvre to increase
the tracking/classification performance [41, 42].

The concept of robotics surveillance networks is sketched in
Fig. 3. At the lowest level, an executive layer acts as the interface
with the robot hardware, i.e. sensors and actuators. It collects the
data from sensors and provides them to the detection,
classification, localisation and tracking (DCLT) chain. The signal

processing module is in charge of detecting echoes from targets in
the presence of noise and reverberation. The output is a set of
contacts (or detections), typically consisting of range and bearing
measurements. Particular attention has to be paid in the selection of
the appropriate algorithms due to the difficulties of the underwater
scenario, characterised by low target probability of detection (PD)
and high clutter levels. The produced contacts are then passed to
the tracking and data fusion module. This has the role to spatially
and temporally filter the acoustic measurements to produce target
tracks. Difficulties arise in the association of contacts to the targets,
since multiple targets may be present at the same time in the region
of interest. Information received from other robotic nodes (e.g.
contacts or tracks) can be used to improve the track creation quality
and to support the target classification. The classification module,
based on the available information and on a world model (i.e. a
description of the robot working environment), has the crucial role
to select among the present tracks, those who are likely related to
the target(s). The output of the DCLT, together with higher level
information, such as mission objectives and environmental
characteristics, is passed to the autonomy engine. This module
makes it possible for the robot to adapt to the collected
measurements and to re-plan its strategies to achieve the mission
goals. Note that the availability of communications is crucial at
different levels of this structure, as it can be beneficial for the
tracker to fuse data originating from its collaborators, as well as at
the autonomy level where communications allow the robots to
cooperatively select the optimal strategy and to send/receive data
and commands to/from the C2 centre. 

It is useful to clarify here that the concept of autonomy, in
robotics, may have quite different meanings. In some applications,
this also includes automatic operations, such as in the case of an
industrial robotic arm repeating the same movements without
human supervision [43]. In this paper, we think of autonomy as the
ability for a robot to choose actions or behaviours, on the basis of
prior information or collected data (the experience), in order to
achieve some goals. Autonomy is the key element of a robotic
network, and it is the enabler for efficiency and robustness in real-
world applications. For the implementation of this concept, one
important constraint lies in the ability of the selected algorithms to
be executed in real-time on the computer on-board the robots,
typically characterised by relatively low computational power.

While there are some examples of deployed underwater
surveillance networks composed of fixed sensors and manned
vehicles [4, 21], robotic surveillance networks are still an open
field of research [20] and several challenges peculiar to the
underwater scenario must be addressed.

This paper is organised as follows: Section 2 deals with the
autonomy aspects of cooperative robotic networks, while Section 3
tackles the robotic sensing problem in environments characterised
by low probability of detection and high level of clutter, i.e. the
sonar problem. Multitarget tracking (MTT) approaches, which
process the detection data in space and time thus producing
coherent target tracks, are described in Section 4. This section also
presents the opportunities provided by data fusion to increase the
DCLT performance. Section 5 describes the challenges of
underwater communications. This section also discusses solutions
currently adopted together with recent advances and trends to
increase the reliability and robustness of communications in the
underwater domain. Finally, Section 6 draws the conclusions.

2 Autonomy in underwater robotics
The typical approach to set up AUV missions in operational
scenarios is based on using scripted sequences of actions with
generally little or no autonomous decision making [44]. According
to this method, each robot has a set of pre-designed mission steps
that it must follow one after another. This is attractive because it
ensures a high level of predictability, and it might be especially
important when the robot operates in challenging environments, as
for instance in the case of deep water exploration for geoscience
applications [45], where the environment itself already provides a
high degree of uncertainty. In this case, the robot performs the
work but the human operator still maintains most of the control. If
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pre-designed missions are properly designed, they can guarantee
uniform area coverage in a definite time. This planning approach is
guided by an a priori model of the world and by the mission
objectives (see Fig. 4) and can be named model driven [46]. 

Representative examples of pre-deployment mission planning
are reported in [47, 48] in the case of relatively large-scale
missions of up to 400 km and up to 4 days operations and in [49]
for hydrothermal vent prospecting. The authors rely on multi-phase
exploration methods, in which additional surveys are planned on
the basis of the information collected by the AUV in previous dives
during the trial. Similar multi-phase methods are also typically
used in MCM applications [3], where the different phases of the
mission (detection, classification, identification and mine
neutralisation [50]) are performed sequentially with highly
specialised robots covering pre-designed paths. In the case of
robotic networks, the usage of offline planners mainly means that
each robot has to be associated to a specific task (or set of steps)
before the mission start, with little or even no possibility for the
unit to be reallocated after the deployment. In the case of multi-
vehicle systems, this usually translates into strict water-space

management [51], where no more than one vehicle can be in the
same area at the same time.

The mission predictability offered by model-driven robotics
results in robots having little or no delegation of decision. A more
general approach, pushed by the ever growing on-board
computational power, is one where each robotic node of a network
can be used not only as an operative component driven by external
commands (i.e. model driven) but also as a reactive element able to
act in response to changing conditions as measured during the
exploration (data driven, see Fig. 5). Data-driven policies are
critical in communications limited environments where the robot
might need to react to the encountered events without relying on a
persistent communication link with the C2 centre to make
decisions. For this reason, AUV-based data-driven approaches are
today increasingly common, with robots able to modify their paths
on-line [19, 46, 52–54] as well as to make higher level decisions
such as switching mission phase and optimising their planning [19,
44]. Intermediate solutions have also been proposed to find a trade-
off between pre-defined paths and data-driven trajectories [55],
with the AUV diverting from a pre-planned track in response to the
collected data. 

The increased quality in data collection provided by adaptive,
data-driven robots is also beneficial to update the world model
used for the decision-making process. For instance, data
assimilation techniques [56, 57] can be used to improve acoustic
models and predict the effects of sound propagation to gain an
insight into the likely performance of a given sonar system.

Data-driven strategies can be seen as an instance of sensor
management [58], by considering the sensorised robotic platforms
as mobile sensors. In this case, the problem is usually formulated
as a stochastic control problem [19, 58], in which the degrees of
freedom of a sensor system (e.g. the paths of autonomous
sensorised robots) are controlled to achieve some operational
objectives. The objectives are quantified through suitable cost
functions to minimise or through more general utility functions,
typically composed of a reward, that should be maximised, and of a
cost part [59], which must be minimised. The concept of utility is
central in task allocation problems [59, 60] and will be further
discussed in Section 2.2. An optimal or suboptimal policy is sought
to achieve a desired configuration for the sensors on the basis of
the available information from prior measurements and models of
the environment, subject to the constraints of the problem under
investigation.

Utility (and cost) functions can be composed of deterministic
and stochastic components. The deterministic part can include, for
instance, the energy cost for a given movement and sensing action
or bandwidth costs during the communication process. Stochastic
costs can include the predicted tracking accuracy or the predicted

Fig. 3  Robotic surveillance network concept. Robotic nodes receive data from sensors and through the signal processing chain (detection, localisation,
tracking, and classification) produce processed information for the autonomy engine, which makes decisions for the robot. Decisions are made also based on
the information acquired about the environment which is used to build a world model. Communications link all the nodes and the C2 centre enabling data
fusion and cooperative decision making

Fig. 4  Scheme of model-driven missions. Based on an a priori world
model, the mission is planned before the deployment as a scripted sequence
of actions. Generally, the vehicles follow the mission with little or no
autonomous decision making. After the vehicles are recovered, the collected
data are scrutinised, the world model updated and a new mission is
planned. This approach provides a high level of predictability, at the cost of
low flexibility
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entropy of a probability distribution of interest (e.g. target location)
and/or the predicted gain in information [61].

There are two approaches to sensor management: task- or
mission-driven and information-driven sensor management [58].
The former chooses sensor actions based on a given performance
metric or error quantity directly related to the mission objectives.
Mission-driven performance metrics for the problem of AUVs and
multistatic active sonar include:

• Maximising the probability that if a target were present, it would
have been detected given some a priori target probability
distribution (often assumed to be uniform).

• Maximising the probability of detection or track formation over
multiple platforms (for data fusion).

The robot action u^  is chosen as the optimal action u in the set of
all possible actions U which minimises some cost function ϵ(x, u),
where x is the state of interest, for instance the target position. In
the case of stochastic modelling, the cost function can be weighted
by the probability density function (PDF) conditioned on the
observed data z. One possibility is to minimise the expected value,
that is to search for u^  such that

u^ = arg min
U

E ϵ(x, u) = ∫ ϵ(x, u)p(x | z) dx (1)

Alternative solutions for the stochastic component of the cost
function are represented by the use of some norms of the predicted
posterior covariance of a probability distribution of interest given
the adopted sensor policy [56, 62, 63]. Depending on the
application, several criteria can be used and lead to different sensor
policies. For instance,

i. The minimisation of the trace of the posterior covariance
matrix is used to reduce the overall level of uncertainty over an
entire region, (A-optimality) [56], while the minimisation of
each single variance entry makes it possible to obtain different
monitoring objectives in different parts of the area [64] (Aη-
criterion).

ii. The minimisation of the maximum diagonal value is used to
prioritise locations that are most likely to contain extreme
values (G-criterion) [56].

iii. The minimisation of the maximum eigenvalue can be used to
minimise the variance of the worst estimated spatial pattern of
variability hence avoiding the presence of a highly
predominant error mode (E-criterion) [56].

iv. The minimisation of the determinant of the covariance matrix
makes if possible to reduce the volume of the confidence
region (D-criterion) [65].

Information theoretic costs have also been used to design the
objective function [58]. Information-driven sensor management
chooses sensor placements and actions that maximise a measure of
the information gain, or of some function of the PDF conditioned
on the observations z and the sensing actions u [66, 67].

Several functions of the fisher information matrix (FIM) [58],
such as its determinant and trace, have been adopted in different
applications [68]. Maximising the FIM is equivalent to the
minimisation of its inverse, the Cramer–Rao lower bound (CRLB).
The CRLB is the lower bound of the variance of any unbiased
estimator, and its minimisation implies a reduction of the
estimation uncertainty and hence a better estimate [69, 70]. For
instance, in [71], the posterior CRLB was used for multisensor
scheduling, whereas in [72] the Fisher information gain is used as a
metric for the effectiveness of the sensor assignment in a
multisensor and multitarget tracking application.

As detailed in [58, 73], using the information gain as
optimisation cost function has the advantage of making the system
more robust to model mismatch and changing objectives as for
example when switching from detection to tracking. Its main
limitation however lies in its requirement for a parametric model of
the observations (often assumed Gaussian) and in giving only a
local measure of information [58].

To overcome some of these limitations, other information
measures such as entropy and mutual information have become
more common in the research community in recent years [58, 74,
75]. The objective of the optimisation becomes the expected update
in the posterior entropy. In contrast to covariance-based objective
functions, entropy has the advantage of quantifying areas of
probabilities and not only the average deviation of a single point. It
is a measure of how much additional information is needed to infer
the exact value from an estimate [76] and predicts an average
distance between the approximate predicted and filtered state
densities for each sensing policy. The distance can be based on the
Kullback–Leibler or the Rényi divergence between the prior and
posterior distributions [58].

An interesting approach is the one proposed in [77], where the
authors control the sensors to minimise the expected future
uncertainty of the target state using the structure of the probability
distributions of the target states and of the measurements for a
specific sensor configuration. Here, the mutual information
between the sensors and the target state is obtained after using a
particle filter to represent the posterior probability distribution. The
approach is scalable to increasing network sizes and
approximations of the mutual information are provided to handle
the complexity. Moreover, the usage of a particle filter makes the
method non-parametric and able to directly use non-linear and non-
Gaussian target state and sensor models. The efficiency of the
policies, a key aspect of entropy or mutual information methods, is
also tackled in [78] where the sensor control law maximises the
Cauchy–Schwarz quadratic mutual information between occupancy
belief distributions and future measurements that can be made by
mobile sensors.

Use of information theoretic costs to manage sensor devices
(i.e. autonomous vehicles) has been applied to different models and
sensor management scenarios. Examples can be found in [79–82]
where a new probabilistic roadmap method is presented that mixes
the robot path planning with the capability for the robot to gather
target information using its on-board sensors.

As an alternative to probabilistic formulations, Bullo et al. [83]
describe a number of geometric approaches tackling the area
coverage and the deployment problem. The geometric approach
has the advantage of making it easier to theoretically analyse the
system performance, especially because it is often based on a
bounded uncertainty assumption.

Independently of the cost function, one key issue is the planning
horizon considered in the optimisation [84, 85]. The sensing
actions can in fact move better towards the overall objective when
the evolution of the tactical scene in the future is considered. Some

Fig. 5  Scheme of data-driven missions. The vehicles, on the basis of the
collected data, modify their path or other parameters. The collected data
are used to update the a priori world model. This increases the effectiveness
of the adaptive mission. More platforms are indicated, since through
exchanging information they can use cooperative adaptive policies. Data-
driven approaches provide flexibility and a possible increase in mission
performance, but they do not assure the predictability of pre-designed
missions
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actions that do not lead to a decrease in the cost function at the next
step of prediction can be beneficial when a longer future horizon is
taken into consideration. Methods that take into account multiple
steps into the future are called non-myopic, in contrast with the
approaches that try to optimise the cost function by looking only at
one prediction step that are called myopic or greedy. Non-myopic
policies have been tackled with different theoretical frameworks,
such as Markov decision processes (MDP) or partially observed
Markov decision processes (POMDP) [86]. The resulting problem
can be theoretically solved optimally using dynamic programming
techniques [84]. With the increase of the planning time horizon, the
problem becomes prohibitive from a computation standpoint (a
large action and/or actions space may make the problem
prohibitive from a computation point of view as well [87]), and
even more so when the algorithms need to be implemented on
resource-limited robots. Approximate solutions such as rollout or
model predictive control [87], even if suboptimal, are used to find a
trade-off between results and required processing resources.
Myopic sensor management strategies are less complex alternatives
to multi-stage policies which offer computational simplicity at the
expense of a possible increase of performance provided by non-
myopic algorithms [58]. One example of these approaches
demonstrated at sea for an ASW surveillance network application
is reported in [41]. In this work, an AUV minimises the one-step
predicted localisation error of a target with the aim to improve the
tracking performance of a multiple hypothesis tracking (MHT)
filter. Even if there are many practical cases in which myopic
approaches give acceptable performance, non-myopic policies have
been demonstrated as effective in underwater surveillance
scenarios. In [88], the AUVs optimise the predicted probability of
detection of the target computed as a function of the hypothesised
target position, receiver trajectory and range-dependent
environmental parameters. In [89], the AUV trajectory is
controlled to optimise the expected SNR looking at the future
evolution of the tactical scene. In [42, 90], a receding horizon
strategy has been proposed to control the heading of an AUV with
the objective to seek for the control sequence which minimises the
sum of the trace of the posterior covariance matrices of a tracker
over a planning horizon. The approach relies on an on-line acoustic
model [91] and has been demonstrated during several ASW at-sea
trials to increase the real-time tracking performance. Results are
reported in Fig. 6, where a simulated trackline trajectory is also
analysed to evaluate the benefits brought by the data-driven policy.
In [92], a target tracking application is proposed, where the
coupling between a non-myopic control law with a particle filter

and a three-dimensional representation of the underwater
environment allows the AUVs to move along the water column to
reduce the uncertainty in the localisation of the target depth. 

2.1 Autonomy and underwater communications

Even when data-driven approaches are used, the typical assumption
for a robotic network is still that continuous information exchange
between the robots and between the robots and the human operator
can be available [20, 93]. When this is not possible, the robot
decision making becomes a key point to accomplish the mission
objectives. The spectrum of autonomy architectures ranges from
purely reactive policies to deliberative solutions. In reactive or
behavioural architectures [94, 95], the mission is described as a
sequence of pre-defined ‘behaviours’. The ‘behaviours’ are based
on the sense-react principle and are activated on the basis of the
external stimuli and mission objectives. In purely reactive
architectures, a world model is not used since the action is driven
by the collected data [43, 96]. Reactive approaches provide simple
solutions effective also in highly dynamic environments with in
general limited computational requirements. Alternatively,
deliberation includes projecting plans which balance near-term
objectives with end-term or time changing goals [44]. Deliberation
architectures rely on a world model, which is used to incorporate
the acquired information with a priori knowledge of the scenario.
This model is the basis to make plans at the cost of an increase in
computational load and some possible delay in the robot's
actuation. For these reasons, typical solutions used in real-world
applications consist of hybrid architectures in which a deliberative
layer works in synergy with a lower-level reactive component
dealing with phenomena in which a fast response is required (e.g.
obstacle avoidance etc.) [97–100].

One important example of a hybrid architecture is represented
by the nested autonomy concept, developed at MIT [28] for
distributed undersea surveillance. The nested autonomy control
paradigm is an approach to combine a system of unmanned
platforms for large-scale autonomous sensing applications. It
assumes heterogeneous platforms with different communication
bandwidth, connectivity, and latency and uses both platform-to-
platform collaboration (e.g. sensor fusion) and platform-to-operator
communication to overcome the limitations provided by each
individual sensor node [101]. The concept builds on top of open-
source behaviour-based [94, 95], autonomous C2 architectures (e.g.
MOOS-IvP [28]), and makes it possible for each platform to
autonomously detect, classify, localise, and track an episodic event
in the ocean, without depending on any operator C2. The

Fig. 6  Example of a data-driven algorithm used in an underwater surveillance application [42]. Data from Co-Operative LittoraL Asw Behaviour in 2013
(COLLAB13) sea trial, 5/7/2013 – Groucho AUV, the target was an the echo-repeater artificial target towed by the NRV Alliance
(a) The real path followed by the AUV controlled by the non-myopic algorithm is visible in black. In grey, the array heading is shown. In dashed black, we also report the AUV
trajectory continuing the trackline it was following at the moment of the activation of the data-driven algorithm, for a performance comparison with the data-driven strategy. In grey,
the NRV Alliance path is visible with the prosecuted track produced by the on-board tracker is drawn in dotted black. Black circles are the prediction of the algorithm for the target
position, (b) computed log10(tr(P)), the trace of the posterior covariance matrix of the target location error estimate of a tracking filter, in the case of the AUV controlled by the non-
myopic algorithm and of the simulated rectilinear path. At the beginning of the manoeuvre, the measurement localisation error increases with respect to the fixed path due to the
array bending. Then, the manoeuvre leads to an important error reduction in the estimate of the target position if compared with the rectilinear path
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prosecution of the event, such as the detection and tracking of a
target or of a feature of interest, may be initiated by the operators
[28] if communication is available, or be entirely autonomous and
decided by an on-board detection capability. In [39], the on-board
decision-making engine of the AUVs is able to autonomously
switch between different pre-defined behaviours associated with
different mission states (exploration and prosecution), with the
final objective of finding a trade-off between area surveillance and
target cues prosecution.

In the general nested autonomy concept, the event information
collected by each robotic node in the network is reported back to
the operators by transmitting an event report, periodically or
asynchronously. Within this concept, collaborative processing and
cooperative control can and should be exploited but only as
allowed by the communication channel (see, for instance [28] for
collaborative tracking of coastal fronts and man-made sources and
[88] for cooperative area search). It is important to highlight that
the nested autonomy concept does not eliminate the operator from
the decision process. Thus, whenever a communication opportunity
arises, the operational paradigm will take advantage of any
information that can be received from the operator or collaborators
in the network. More than this, the operators are still responsible to
deploy the number of units available in a way which is optimal for
the current situation so that there is the highest probability for
capturing the episodic event of interest. The intermittency of the
underwater acoustic communication channel makes it imperative
that each node is capable of completing the mission objectives in
the total absence of communication connectivity.

2.1.1 Underwater navigation: One additional challenge related to
the communication difficulties of underwater systems lies in the
ability for the robots to navigate when underwater. The rapid
attenuation of GNSS and radio frequency signals coupled with the
low bandwidth and unreliability of typical underwater
communications and the unstructured nature of the undersea
environment implies that there is no access to a global positioning
system. Notwithstanding these challenges, AUV navigation and
localisation are today experiencing continuous advances.

Typical solutions to solve the AUV localisation problem [102]
are based on employing expensive inertial sensors commonly in
combination with fibre optic gyros (FOG) to measure the vehicle
orientation, and with pressure sensors and bottom DVLs to
measure the vehicle depth and speed, respectively, with a necessary
trade-off between performance and costs [32]. Alternative solutions
rely on deploying dedicated beacons in the region of interest [32]
(e.g. long-base line (LBL) or ultra-short base line), or requiring
periodic surfacing of the AUV. These solutions are today being
replaced by dynamic multi-agent systems and networks that allow
for rapid deployment and a higher degree of flexibility. A group of
vehicles, endowed with communication capabilities, can use
cooperative localisation approaches to support their navigation. In
general, cooperative localisation relies on range/bearing
measurements that a vehicle can obtain periodically from the other
network nodes through acoustic communication. These
measurements are used to improve the node's self-localisation. This
kind of approach can bring several benefits. Robots take advantage
of navigational services provided by the network with no need of a
deployed infrastructure (e.g. traditional LBL with moored
beacons). These approaches open the possibility to use fleets of
heterogeneous vehicles, in which a more capable vehicle (equipped
with expensive FOGs and DVLs) supports the navigation of
cheaper, less sensorised assets [32]. In [23, 103], the integration of
navigational services into the communication stack of an ad hoc
underwater acoustic network enabled the improvement of the
navigation and localisation capability of a fleet of AUVs.
Experimental results reported in [104] show the ability of the
network to limit the navigation errors both in short-range
applications (tens of metres), characterised by a short refresh rate,
and with vehicles navigating at long range (tens of kilometres) with
the nodes joining an already existing surveillance network.
Moreover, the presence of a robotic network makes it possible to
rely on nodes that can make decisions and move to optimise their
position when a change in the communication/localisation

performance is detected. Discussion on the optimal geometric
configurations of mobile surface sensor networks is described in
[105, 106]. The FIM, or the CRLB, corresponding to a 3D scenario
is used to characterise the sensor configuration that yields the best
precision with which the position of a target can be estimated. The
determinant of the FIM is used as an indicator of the performance
that is achievable with a given sensor configuration, and hence its
maximisation leads to the most appropriate sensor formation
geometry. Note that the geometry of the optimal sensor
configuration depends strongly on constraints such as the type of
available localisation devices, the maximum number of sensors
and/or on the limits on sensor placement, as well as on
characteristics of the acoustic channel, and that different
formulations are therefore devised based on the available
measurements (range only versus bearing only). An experimental
demonstration of these approaches has been reported in [70] where
a constellation of surface nodes adapts its geometrical distribution
to improve the localisation performance of an AUV performing an
underwater mission.

2.2 Cooperative robotics

When multiple cooperative units are deployed together,
communications becomes even more important since the robots
spatial locations and mutual separation have a direct influence on
their communication capabilities. Recently, studies have been
carried out to include communication constraints into the
development of cooperative strategies for sets of vehicles [46,
107]. However, the impact of limited and/or unreliable
communications has not been fully characterised. Most of the
cooperation strategies proposed in the literature have been focused
on cooperation of aerial or terrestrial vehicles, but these algorithms
are not directly applicable in the underwater case due to the strong
variation in space and time of the communication medium.
Acoustic propagation, the main means of underwater
communications, is strongly dependent on local environmental
conditions. This implies that during the evolution of the mission
each vehicle can experience abrupt changes in the channel, with a
consequent variation in communication performance. Sudden
reduction of the channel capacity and bandwidth, or even a
temporary loss of connectivity with the rest of the team, is a
frequent condition for underwater communications. In operative
scenarios, not only is it necessary to share information but the
ability to securely communicate becomes a key issue so that the
correct data are transmitted and received by the right robots, and
only among the desired group. These strict requirements open new
challenges from the communications perspective (see Section 5).

The field of oceanography has developed many concepts of
multi-agent robotic systems to achieve synoptic monitoring of large
areas with the final objective of overcoming the limits of ship-
based missions [108–110]. In this case, real-time constraints are
not as tight as in the case of surveillance networks, and multi-agent
cooperation can be obtained relying on radio frequency (RF)-
communication when the vehicles, typically gliders, are on the
surface. Representative examples of this kind of approach are
reported in [111], where a full-scale adaptive ocean sampling
network featuring a fleet of gliders was deployed during the 2006
adaptive sampling and prediction (ASAP) field experiment in
Monterey Bay, California. The gliders were able to collectively
coordinate their motion to efficiently sample the ocean, adapting
their motion pattern to the spatial and temporal scales in the
sampled fields, with the final objective of reducing the statistical
uncertainty in the field estimates. Further details on the glider
control algorithms used during the ASAP experiment can be found
in [112, 113]. Using teams of AUVs for the exploration of partially
known or unknown environments is also discussed in [114]. Here,
adaptive cooperative behaviour is achieved by each vehicle in
terms of locally evaluating the smoothness of the sampled field,
and selecting the next sampling point in order to achieve the
desired accuracy.

More recent examples on the use of gliders for oceanographic
missions can be found in [57]. In this case, several approaches are
reported including the usage of adaptive sampling via error
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subspace statistical estimation (ESSE), mixed integer linear
programming (MILP), non-linear optimal-sampling path planning
using genetic algorithms or dynamic programming and on-board
routing for optimal-sampling path planning. Note that, when
multiple underwater robots are available, the typical approach is
still mainly centralised, which means that gliders or AUVs
communicate, possibly when on surface, their known location and
measurements to a unique C2 centre which fuses all this
information together and sends back new waypoints or tracklines
[64, 115].

To overcome the limitations of communications, distributed
policies are necessary to design credible solutions in real-world
surveillance applications. One of the first examples has been
proposed in [6]. In this case, AUVs represented the mobile nodes
of an underwater acoustic network and acted as surveillance assets.
Although the vehicles could be acoustically controlled by the C2
centre to respond against intrusions, they also had the on-board
intelligence to autonomously react to a sudden loss of
communication [5]. A behavioural approach was used to minimise
the computational and communication needs of the vehicles, which
responded to simple local rules based on the available information
to perform the mission and maintain the communication link with
the network.

A multi-agent harbour protection application has been proposed
in [36]. In this work, a team of vehicles is required to dynamically
patrol a certain region applying decentralised control, using only
nearest-neighbours information. The proposed solution is based on
Voronoi tessellations and Gaussian processes, and it allows
robustness with respect to asynchronous events such as temporary
communication or vehicle losses.

An approach to the multi-vehicle coordination and cooperation
of AUVs is presented in [116] based on the formalism of potential
game theory. Within this setting, each robot is associated to a utility
function that depends on its objective (e.g. reach a desired point,
perform a sidescan survey etc.), its current action/state and the
actions/states of the other robots. Each vehicle then selects its next
action to locally optimise its utility function. The paper shows how
very simple games can be used to steer an AUV formation in the
position which best compromises between target destination of
each vehicle and preservation of communication capabilities
among the vehicles.

While the previous solutions exploit the presence of multiple
units, every robot is considered to be equipped with the same
sensing ability and it is assigned to the same and unique task of the
mission that has to be accomplished cooperatively. However, when
heterogeneous assets are present, more solutions become possible,
as for instance, the selection of vehicle-specific tasks that depend
on the ability of each unit.

To treat task allocation, that is the problem to associate tasks to
network nodes, in an optimisation context, it becomes critical to
decide what needs to be optimised. While the goal, at least in a
cooperative setting, can simply be seen as the optimisation of the
overall system performance (a robot might sacrifice its own short-
term benefit for the wellness of the team), this is in general a
difficult quantity to measure. To overcome some of these
difficulties, the usual approach is to utilise some kind of
performance estimate, which is usually defined as the utility of a
specific task allocation choice. Each robot utility can be seen as a
generalisation of different quantities used in literature to
characterise a task: reward characterising the gain of
accomplishing a task [117], cost it takes for a robot to execute a
task [118], fitness [119] quantifying how well a robot can perform
a certain job, and priority to quantify the urgency to accomplish a
task [120].

A combination of these quantities is used to express the value of
a task, or better, its utility. For instance, a common definition of
utility is as follows [121]:

utility = reward − cost (2)

Utility is a flexible measure of value that can include many
different arbitrary computations. The only requirement is that a
single scalar has to be produced which is used to order the

candidates to a certain task. All the important aspects of the state of
the robots and their environment of interest for the group
performance must be included in the utility computation. Each
robot must be able to compute its own utility for a certain task, and
the overall group performance/utility has to be influenced by the
utilities computed by each robot. It is important to note that,
regardless of the method used for the calculation of the utility
value, the robot's estimate will be affected by noise, uncertainty,
environmental change and communication limitations.

In a general scenario, the network can allocate the different
tasks of the surveillance mission to its nodes depending on the
tactical situation and based on the specific environmental
conditions. This problem, known as multirobot task allocation
(MRTA), consists in finding an agreement between the robots of
the team that have to decide how to assign a certain task to one or
to some subset of the nodes to achieve the overall missions goals in
an efficient manner. Specific reviews on the topic can be found in
[60, 121, 122].

If we assume a linear group utility function to be maximised by
the allocation, we can define the simplest case of MRTA as
follows:

maximise

∑
i = 1

n

∑
j = 1

m
γi jui jwj

subject to

∑
j

n
γi j = 1, 1 ≤ i ≤ m

∑
i

m
γi j = 1, 1 ≤ j ≤ n

(3)

with ui j being the utility of task j when robot i is assigned to it, wj a
weighting factor and γi j an assignment variable, which may be
either 0 or 1, 1 meaning that robot i is assigned to task j. The
constraints means that each task can be assigned to exactly one
robot and that one robot cannot be assigned to more than one task.
In this case, the MRTA becomes an instance of the optimal
assignment problem (OAP) [122], which can be solved in a
centralised way by using the Hungarian method [122] or in a
distributed fashion by using the auction algorithm [123]. In
general, however, MRTA is not a one-time assignment and
becomes a dynamic decision problem, since utilities may vary or
tasks terminated or be created. The static assignment can no longer
be considered applicable and iterative procedures must instead be
sought [124, 125]. Furthermore, changing the relations between
utilities, the type of the group utility function and relaxing the
constraints in (3), the MRTA becomes more complex leading also
to NP-hard problems [60].

Among the solutions available in the literature and of interest to
our scenario, Parker [126] proposed a multi-robot software
architecture tailored to the cooperative control of heterogeneous
mobile robots performing missions composed of loosely coupled
sub-task, as for instance when there is an order dependence. This
can be considered one of the earliest demonstration of iterated
assignments for multi-robot-task allocation [122]. The proposed
solution, an example of behavioural approaches, is fully
decentralised, with objective functions based on robot motivations
(e.g. impatience, acquiescence etc.) to complete the mission. This
behaviour-based architecture allocates tasks by maintaining, for
each team member, levels of impatience and acquiescence
concerning the available tasks. A robot gets impatient if it realises
there is a task that nobody is executing. Acquiescence is the
mechanism that makes a robot relinquish a task if it estimates its
performance is below expectancies. These motivations are
combined to form, in effect, a utility estimate for each robot-task
pair. Robots broadcast periodically their current commitments
influencing the nearby team mates actions. L-ALLIANCE, an
extension to the original work, learns its assignment algorithm
from experience, and the resulting algorithm is similar to a greedy
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algorithm which repeatedly takes the best valid option. However,
when well trained, L-ALLIANCE assignment is superior to a
greedy assignment although it is not guaranteed to be optimal.

A similar idea is developed in [127, 128] called threshold-based
task allocation. Each robot has an activation threshold for each task
to be performed. The robots define the stimulus as a value that
reflects the urgency or importance of performing a task. The
stimuli are perceived continuously for each of the tasks. When the
value exceeds a certain threshold for a robot that robot executes the
task. When the stimulus becomes lower than the threshold, the
robot interrupts the behaviours which are executing the task. This
reaction to the stimulus can be deterministic or probabilistic.

Probabilistic frameworks, such as MDP or POMDP as those
presented in [121], can be used to provide an optimal control
strategy in tightly coupled domains. However, the main limitation
to their use is that they quickly become intractable even for small
problems. Approximation techniques need to be further
investigated for an effective use of these frameworks in real
scenarios [129].

One other family of task allocation algorithms is represented by
auction/market-based approaches. These methods, which are
distributed in nature, have the possibility to adapt to changing
conditions, while mimicking some of the aspects of more
centralised approaches, without significantly reducing the fault
tolerance/scalability aspects. The underlying philosophy of market-
based methods is that of distributing common resources among the
team members taking inspiration from human market economies
where individual pursuit of profit leads to the redistribution of
resources and to an efficient production of output [130]. In this
virtual economy, tasks are traded as commodities and virtual
money acts as currency, while robots compete to be assigned to a
task by participating in auctions. When the system is correctly
designed (i.e. costs, revenues and auctions mechanisms), each
robot acts to maximise its own profit while moving towards an
increase in the group efficiency. Most of the research on multi-
robot-task allocation has been confined so far to terrestrial robotics
and usually tested in simulation [131–133], hence without the
required attention to the communications perspective. Further
research is therefore needed to adapt and generalise the work
presented in the literature to design credible solutions in real-world
underwater scenarios. Communications failures must be explicitly
taken into consideration, by investigating and testing redundant
task allocation schemes to guarantee the sufficient required
robustness [134]. The next section goes into the details of the
underwater robotic sensing problem, i.e. the sonar problem.

3 Acoustic signal processing
In underwater surveillance applications, sonar systems are
generally used for target detection and localisation, with the
detection usually achieved at the same time as localisation [135].
The process of localisation involves bearing and range estimation
[136]. These objectives can be accomplished actively or passively,
depending on the scenario and specific application. An overview of
signal processing approaches for automatic target detection and
localisation is provided. The objective of these approaches (see the
signal processing module in Fig. 3) is to produce the contacts (also
called detections), which are target measurements in range and
bearing. The presented methods may be implemented on unmanned
autonomous vehicles running in real time on a network of robots
(see Fig. 3). The detections are typically numerous and not readily
associated with targets (if any are present). The detections must be
spatially and temporally associated in order to produce target
tracks, as detailed in Section 4. Significant example of the wide
open literature available on classification of objects on the seabed
from high-frequency active sonar imaging is [137–141]. Also
passive acoustic classification of noise sources such as marine
mammals or surface vessels is widely described (see, for example
[142–144] and cited references). Open literature is instead limited
on classification of underwater mobile objects through active low-
frequency sonar; some significant works are reported in [37, 145,
146]. A detailed review on classification is not part of this paper.

In many active sonar systems, a pulsed signal is transmitted to
the target and the scattered echo is sensed by a receiver. The
transmitter and receiver may, or may not, be colocated. Directional
receivers, in the form of hydrophone arrays or vector sensor arrays,
are required to estimate the target bearing, typically through
beamforming algorithms [147]; the range of the target is
determined from the time delay of the echo. A gain in detection
performance can be obtained through the increase of spatial
directivity afforded by towing a linear array of hydrophones,
essentially filtering out unwanted noise in directions beyond the
look direction. However, the addition of a long array of
hydrophones places additional load on the AUV propulsion system
and subsequent endurance.

In passive sonar, the target is detected from acoustic signals
emitted by the target, which is localised by exploiting the time
coherence of the emitted signal received at spatially separated
points.

In both approaches performance limitations arise as a result of:

• Sound propagation loss through the water channel, which
mainly depend on the sound speed profile along the water
column, but also on the signal frequency as well as the
characteristics of sea bottom and sea surface, especially in
shallow waters [148–151].

• Additive ambient noise at the receiver [152], given a device
which is able to measure the minimum sea ambient noise in the
bandwidth of interest.

• Other effects of the environment [153], such as a wide variety of
channel dispersions in time, frequency, and angle [154, 155].

For active sonar at short range a strongly limiting factor to
detection is the reverberation level, either diffused or coming from
compact clutter on the seabed [156, 157]; at long range the
performance is limited by ambient noise [158]. For passive sonar, a
further limiting factor is the generally imprecise knowledge of the
characteristics of the target emissions (either from a vessel or from
a marine animal).

Cognitive sonar architecture is a concept inherited from the
radar community [159]. It has been recently proposed [160–163]
with the main localisation performance [164].

Among the array processing techniques of target detection, a
big category is based on adaptive processing approaches [165],
which includes in particular the so-called space–time adaptive
processing (STAP) [166], which is a signal processing approach
most commonly used in radar systems. Radar and sonar signal
processing benefits from STAP in those cases where interference,
either in terms of noise or reverberation [167], is present. Through
careful application of STAP, it is possible to achieve significant
improvements in target detection performance [168–171]. STAP
involves filtering techniques based on the knowledge of the
interference statistics. This can be either known a priori, or
estimated from the collected data themselves along a mission. By
applying the statistics of the interference environment, an adaptive
STAP weight vector is formed and is applied in the beamforming
approach along time.

Both conventional and adaptive approaches include
beamforming of arrays that are not purely linear but maybe twin,
triplet, or volumetric, which are selected in order to overcome the
strong limitation of port-starboard ambiguity typical of linear
arrays.

3.1 Active sonar signal processing

A generic signal processing chain in active sonar is sketched in
Fig. 7. It includes signal conditioning, possible sub-band splitting,
beamforming, matched filter (in the case of broadband waveform),
normalisation, clustering, and finally contact detection (examples
can be found in [147, 172, 173]). 

The selection of specific signal processing approaches strictly
depends on the sonar configuration. One of the possible
classifications of sonar systems is between monostatic and
multistatic systems [174], and refers to the geometry of the sonar
configuration. In a monostatic system, the source and receiver are
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colocated (on the same platform). The typical, traditional ship-
towed sonar belongs to this category and implies less geometrical
uncertainties and conceptually simpler processing approaches
[170]. A multistatic system distributes one (or more than one)
source and multiple receivers in a certain area. This is the natural
configuration of a sonar system based on a heterogeneous network
of robots, and has several advantages, such as the possibility of
exploiting spatial diversity and higher flexibility [175, 176], which
may lead to the capability to overcome the problem of dead zones,
greater coverage, and high potential for data fusion at contact
and/or track level (see Section 4). Spatial diversity is particularly
attractive in active sonar as the scattering response of an extended
target is always highly aspect dependent [177, 178]. The most
favourable geometric condition in order to have the highest SNR is
catching the specular reflection, or ‘glint’, of the insonifying signal
on the target [179]. However, multistatic geometries lead to
increased signal processing challenges, especially if all the assets,
either transmitters or receivers, are in motion. Data contain the
direct blast along with the target echo, which is useful in order to
understand range and bearing of the source at each time, but needs
to be identified through dedicated processing [180]. The estimation
of target speed from a Doppler frequency shift is more
complicated, especially if the target is manoeuvring [181].

3.1.1 Waveform design and selection: There are two main
categories of waveforms used in sonar: the frequency modulated
(FM), broadband waveforms, and the constant frequency,
narrowband waveforms, also called continuous waves (CW). The
FM waveforms can provide good target range information, while
the latter ones allow good Doppler-shifted frequency measurement
and may be more effective under high-reverberation conditions, but
do not allow a good range resolution. One of the major research
topics of the latest decades in the field of active sonar is related to
the exploitation of advanced waveforms and optimisation of
waveform selection [182] in order to respond to specific needs,
such as optimisation of performance under either reverberation-
limited conditions [167, 183], noise-limited conditions [158], target
tracking optimisation [184], geometrical conditions that emphasise
Doppler effect [183] trying to keep good range resolution [185–
187]. This is in perfect agreement with the concept of cognitive
sonar, as the waveform type or parameters can be adaptively
changed on the basis of the current environmental characterisation
[182].

3.1.2 CAS versus PAS modes: Two main active sonar modes
are currently used, in particular for ASW applications: the more
traditional pulsed active sonar (PAS) and the continuous active
sonar (CAS). Conventional PAS has duty cycles in the order of 1%
which means that for the most part of the ping interval the track is
out of date. In contrast, high-duty-cycle (up to continuous) active
sonars have up to 100% duty cycle which enables continuous
updates to the track, hence limiting the data association error
inherent to a PAS system. When the duty cycle is high but <100%,
we talk about high-duty-cycle active sonar (HDCAS) mode.
Theoretically, increasing the processing interval increases target
detectability, but in practice other factors should be considered. In
real acoustic environments, sound propagation is subject to
temporal and spectral spreading effects, and these may limit the
processing gains to lower levels than expected. Target Doppler can
also become a more significant issue with longer processing
intervals.

Traditional PAS waveforms, such as linear frequency
modulated (LFM) broadband pulses, have been adapted to CAS.
One may want to maintain the same bandwidth for a CAS system
as for the PAS system it might replace. This will provide a
significant increase in the time-bandwidth product but may not
produce the increase in gain anticipated if there are significant
coherence limitations associated with the acoustic channel [188–
191]. If sub-band processing is applied, it can not only provide a
higher measurement rate [147, 192] but can significantly mitigate
the effects of limited time coherence of the channel [191] in CAS
mode. However, matched filter gain may decay due to the more
limited bandwidth used in each time interval. To experimentally
examine the advantages and limitations of CAS (or HDCAS) with
respect to the more traditional PAS mode [193], a series of sea
trials have been conducted. Among others, the 2013 sea campaign
Target and Reverberation Experiment (TREX-2013) conducted in
the Atlantic was partly devoted to evaluate the impact of pulse
duration on echo statistics [194] and evaluate sonar performance
with respect to environmental spreading effects, the target's
physical extent and Doppler effects [190, 195]; the Littoral
Continuous Active Sonar (LCAS) joint research and multinational
project started in 2015 and, led by NATO STO CMRE, aims at the
evaluation of CAS performance in littoral waters, generally
characterised as a high-reverberation environment, hence more
challenging for CAS. Two sea campaigns were conducted in 2015
and 2016, respectively, in Mediterranean coastal waters in the
context of LCAS project [191].

A recent, alternative to CAS and PAS is a multiple-input
multiple-output multiple-input multiple-output (MIMO) approach
proposed in [196]: a modified code division multiple access
(CDMA) waveform is adapted to sonar constraints. This offers a
mid-way solution between PAS and CAS allowing the user to
decrease the PRI and then increasing the hits on target but not at
the cost of sacrificing the full bandwidth exploitation.

3.2 Passive sonar signal processing

Passive sonar aims to detect and localise noise sources that may be
biological (such as cetaceans, shrimps, and invertebrates), natural
(such as seismic waves) or man made (such as surface or
underwater vessels, wind farm activities etc.) [154]. Noise sources
may be intermittent (i.e. cetaceans clicks and whistles, sonar
pings), transients (seismic waves), or continuous (vessels) [152].
The characteristics of the measurement systems (sensor array
geometry, sampling frequency and bandwidth, recording strategies
etc.), as well as the signal processing approaches, strongly depend
on the characteristics of the noise emissions. Traditional passive
acoustic monitoring networks of sensors are static (generally
deployed on the bottom) and cabled [13, 197]. Some passive
measurement systems are hosted on moored buoys, so that they can
send data (but also results and alarms achieved through local data
processing) to a shore C2 station [198, 199]. More recently, due to
the spread of long-endurance, silent, small, relatively low-cost
autonomous platforms, passive sonar systems hosted on networks
of mobile unmanned vehicles have been proposed [144, 200–202],
often based on vehicles such as underwater gliders and
WaveGliders. One common requirement imposed by passive
acoustic monitoring is persistence, which in general means low-
power systems; this may imply strong limitations on the
measurement hardware design (number of array channels,
computational power), hence on the system capabilities. Another
main limitation in the use of small mobile robots for passive

Fig. 7  Generic signal processing chain up to the contact formation (range and bearing) in active sonar. Data from a hydrophone array are acquired and
conditioned. The time series on each of the array's hydrophones is mathematically transformed in such a way as to produce a time series per look direction
(beam) via beamforming algorithms. For each beam, the time series is filtered using a replica of the source's outgoing pulse (matched filter), resulting in a
pulse-compressed time series allowing computation of the measurement ranges. The matched filter output is normalised to reduce diffuse reverberation level
and calculate the SNR per point. After the clustering of the measurements, an SNR threshold is applied to the normalised data to form contacts (also called
detections) [147]
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surveillance is on the maximum physical aperture of the sensor
array, if the targets are very low-frequency noise sources.

In some systems, the array is compact and volumetric and
consists of few elements in order to meet better the constraints
imposed by the size and power of its platform. In the case of
volumetric array, 3D direction of arrival techniques are
implemented [201–203].

The selection of the most suitable signal processing approach is
conditioned by the computational load in order to achieve quasi-
real-time responses [202]. Two main signal processing
methodologies are generally applied for the passive acoustic
detection and localisation of noise sources. One is shared with
active sonar signal processing and is based on beamforming, either
conventional or adaptive [136, 171] and can be computationally
heavy if the array has a large number of sensors. A second
interesting methodology is based on the measurement of the
difference of time of arrival (TDOA) between pairs of non-
colocated sensors, which is accurately related to the direction of
arrival of sound (through simple trigonometric formula), if the
observer is in the far field of the noise source (plane wave
assumption), the time coherence is preserved in the propagation
channel that separates the two sensors, and the sensors’ spacing is
much bigger than the signal wavelength [197]. The estimation of
the time difference is generally achieved through cross-correlation
of signals appropriately gated in time windows, either computed in
time or in frequency [204] and thus generally fast, enabling real-
time processing over a relatively high number of sensor pairs
[144]. The selection of the window duration is crucial to be able to
detect transients or continuous sounds and depends also on the
sensor spacing and the time coherence of the channel. The
approach can be easily extended to a distributed sensor array, under
the hypothesis of time coherence of the signal and real-time
availability of each sensor data and position in a central processing
node. A set of time differences are then fused to achieve the
estimate of direction of arrival (on a cone for linear arrays, on a
slant plane for planar arrays, on azimuth and elevation for
volumetric arrays) though a number of methods, such as a simple
triangulation [197], the hyperbola method [205] or the least
squared method (LSM) [206] if the number of pairs is higher than
the problem dimension. While this approach provides high
resolution, data association between pairs is difficult, hence is
particularly suitable in presence of one target, or should be aided
by an appropriate tracker in the case of multiple targets [207].

In passive sonar, target range cannot be derived from the
exploitation of the time of arrival, as happens in active sonar
systems consisting of synchronised transmitter and receivers. Open
literature proposes a variety of approaches to achieve target
localisation from pure bearing-only measurements [208]. These
approaches work under the hypothesis of (at least piece-wise)
constant speed and straight path trajectories of the target or use
knowledge on the bathymetry.

The described algorithms allow the robots to produce contacts
(or detections) in range and bearing (see Fig. 3). The contacts are
typically many and not easily associated to targets (if any targets
are present). The problem of associating contacts in both spatial
and temporal domains to produce coherent target tracks is detailed
in the next section.

4 Multitarget tracking and distributed information
fusion
The MTT problem refers to the problem of jointly estimating the
number of targets and their states using measurements from one or
multiple sensors [209]. Problems of this kind arise in a number of
scenarios and have considerable practical importance in
applications such as ballistic missile defence [210], visual
surveillance [211], biomedical analytics [212, 213], robotics [86,
214], indoor localisation [215, 216], and autonomous driving [217–
219]. One of the first applications of MTT however was
underwater surveillance from sonar measurements [220].

The MTT problem has a tradition of over 40 years of studies
[221]. Its fundamental aspect is the measurement origin uncertainty
(MOU), first described in [222]. MOU occurs in surveillance
systems when the sensor produces clutter, i.e. false-alarm
measurements, or when several targets are close to each other and
it is not possible to associate measurements to targets with
certainty. A pictorial explanation of the MOU is provided in Fig. 8.
Measurements collected by an active or passive sonar systems are
always subject to MOU. In particular, in the littoral environment a
significant amount of false alarms is typically produced due to
features of the seafloor or reverberation. 

A trivial approach to address the problem of MOU is to perform
a nearest neighbour association of measurements to targets. It has
been shown that the resulting nearest neighbour filter can lead to
very poor results in an environment where false-alarm
measurements occur frequently [223]. One of the first promising
approaches for tracking a single target in the presence of MOU was
the probabilistic data association (PDA) filter proposed in [220,
223, 224]. Its generalisation to multiple targets, the JPDA filter was
presented in [220]. In parallel to the PDA, a powerful alternative
called the MHT was developed. The basic idea of propagating
multiple hypotheses for tracking a single target was given in [225],
while Reid [226] first developed a complete algorithmic approach
for tracking multiple targets. A review of the JPDA and the MHT
can be found in [227, 228], respectively.

Both the JPDA and the MHT have been fundamental building
blocks for the future development in MTT, leading to more
sophisticated solutions. Most important developments include the
interacting multiple model (IMM) filtering [229] to track
manoeuvring targets, the variable structure IMM [230] to
incorporate additional prior information in the tracking algorithm,
the capability to deal with unresolved targets [231], and the random
matrix framework to track extended targets [232]. A quantitative
comparison among the MTT strategies is provided in [233].

MTT methods, like JPDA and MHT, are based on conventional
probability theory [226, 234]. A more recent class of methods is
based on finite set statistic (FISST) [235–238]. Here, target states
and measurements are modelled as random finite sets (RFSs),
which means that they have no order and also their number is
modelled as an unknown random variable. RFS methods facilitate
the modelling of target appearance and disappearance in a
Bayesian setting; however, they typically perform approximations
based on rather non-intuitive quantities. A Bayesian filtering
solution, the probability hypothesis density (PHD) filter [235], is
proposed in which the first-order statistical moment of the
multitarget posterior is propagated instead of the full posterior

Fig. 8  Example of the MOU problem. Two ‘tracks’ (blue and red) are
currently active. Tracks are targets that are hypothesised to exist by the
tracking algorithm. Their spatial uncertainty is represented by ellipses
known as gating regions. New target-originated measurements are expected
to lie within the gating region of the corresponding track. At the current
time step several measurements have been collected. In general, all of them
can be associated to both tracks but only the ones that are inside a gating
region are likely to have originated from the target related to that region.
Three measurements can be associated with Track 1 and two measurements
with Track 2, one of them is in common. Each of them could be target
originated or false alarms. For a reduced computational complexity, many
MTT approaches consider for a given track only the measurements inside
its gating regions
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distribution. The PHD is the function whose integral in any region
of the state space is the expected number of targets in that region.
The PHD filter and its extension, the cardinalised PHD (CPHD)
[239] filter are gaining increased popularity in the MTT
community and have led to many different derivations,
interpretations and implementations [236, 238]. Further developed
in the RFSs framework include the multi-Bernoulli filter [240] and
the labelled multi-Bernoulli filter [241, 242]. Another important
building block for both the classical MTT and RFSs-based MTT
are sequential Monte-Carlo (SMC) methods [243, 244]. The SMC
methods provide a computationally efficient solution for sampling
probability distributions of time-varying random states. They
enable the development of MTT algorithms for non-linear non-
Gaussian motion and measurement models.

Many MTT methods are computationally demanding and their
complexity does not scale well in the number of targets and other
relevant system parameters. Thus, they are often impractical for
use on resource-limited devices. MTT algorithms with low
complexity and good scalability can be obtained by using the
methodology of BP. BP can provide a principled approximation of
optimum Bayesian inference that achieves a very attractive
performance-complexity compromise [245, 246]. However, only
recent works have considered its use for MTT [207, 247–252].
Using BP for MTT is promising due to the highly efficient solution
of the data association problem combined with sequential Monte-
Carlo techniques and is potentially suitable for arbitrary non-linear
and non-Gaussian problems. Owing to their low complexity and
good scalability, BP-based methods are also suitable for large-scale
tracking scenarios involving a large number of targets and/or
sensors and/or measurements, and for use on resource-limited
devices, such as on-board an AUV.

Another important aspect of the problem is the definition of
suitable performance metrics and benchmarks. There exists a large
variety of metrics for the MTT problem, such as the time-on-target
(ToT) (per cent of time steps where targets in the surveillance area
are correctly declared present) and the false-alarm rate (FAR)
(normalised number of false tracks or contacts) [253, 254]. ToT
and FAR only take into account detection errors. Other metrics
such as the mean square error [255, 256] are only related to errors
in state estimation. The recently proposed optimal subpattern
assignment [257] metric can take both detection and estimation
errors into account.

Mathematically, the MTT problem is twofold in the sense that it
consists of detection and estimation. It can be summarised as
follows: let Xk = {x(1), …, x(Nk)} be the unknown state of all Nk

targets at time k and Zk, s = {z(1), …, z(Mk, s)} be the set of Mk, s
measurements generated by sensor s at time k. Based on the
measurements Zk, s provided by all sensors s up to time k, the
model of the sensor f (Zk, s |Xk), and the model of the target
f (Xk |Xk − 1) we want to

i. detect the number of targets N^
k;

ii. estimate their state X^
k ≜ [x^k

(1)T⋯x^k
(N̂k)T]T.

Due to the high computational complexity related to evaluating the
model of the sensor suffering from MOU, approximations have to
be made in order to obtain a feasible solution for the MTT
problem. Different approximations lead to different tracking
algorithms. For instance, the JPDA calculates the number of targets
using a heuristic track logic and assumes that the marginal
posterior (and prior) of each target is Gaussian [221]. The PHD and
the CPHD filter approximate the RFS related to xk by its expected
value [235]. The belief propagation tracker (BPT) [207, 252]
computes approximate marginal posterior PDFs for each element in
Xk.

4.1 Distributed information fusion in cooperative robotic
networks

Sharing local information among the AUVs and/or with a fusion
centre (FC) is one of the key aspects for an improved target
detection and tracking performance in cooperative robotic
networks. Two main schemes have been proposed in [258], in
which the information shared among AUVs consists of (i)
measurements zk, s, generated by the local detectors at each vehicle
and (ii) tracks generated by local tracking algorithms at each
vehicle. In the first scheme, measurements are fused in a Bayesian
multisensor tracking algorithm, adopting a single Bernoulli RFS
formulation [258, 259] or a BP formulation [207, 260]. In the
second scheme, tracks already created by local tracking algorithms
are combined using the track-to-track (T2T) association and fusion
procedure [258]. These schemes are often referred to as
DIFFUSION strategies [258]. It is worthwhile to note that the
number of publications in the open literature that report underwater
surveillance results using real-world measurements is very limited.

The performance of different information fusion schemes was
investigated in [207, 258] in post-processing using measurements
collected by the NATO Science and Technology Organization –
CMRE during the exercises Proud Manta (POMA) in 2012 and
2013 and the LCAS sea trial in 2015. In the considered datasets, an
echo-repeater towed by a ship simulated a target with high target
strength. The measurements were provided by the cooperative
robotic network for underwater surveillance operated at CMRE,
deployed with one acoustic source and two receiver sensors. The
receivers were hydrophone arrays towed by two AUVs (Harpo and
Groucho).

Results based on POMA 12 and 13 datasets are reported in
Table 2 (see also [258]). It is shown that information fusion can
lead to a significantly improved tracking performance compared to
the case where measurements of a single AUV are considered.
Specifically information fusion can increase the ToT and at the
same time reduce the FAR by two orders of magnitudes.
Furthermore, the robustness against communication errors was
investigated by simulating different communication failures [258].
In particular, we simulated measurements collected by an AUV not
being received by the other AUV at certain time steps and
quantified this error by the communication error rate (CER) [258]. 

Recently, the BPT approach [207, 252] was applied to an LCAS
dataset with a very high number of false alarms, see Figs. 9a and b.
Due to information sharing (detections) among AUVs, the target
can be detected and tracked reliably by BPT, despite the high

Table 2 Comparison in terms of ToT and FAR (s−1km−2) of DIFFUSION, local tracking algorithm (MHT), and local detector.
The CER is the percentage of expected communication failures. In POMA 2012, a Bayesian multisensor tracking algorithm is
considered at Harpo and Groucho with 75% of CER and with no communication errors. In POMA 2013, T2T fusion is
considered with no communication errors. The parameter γ is a score that is used to confirm new track candidates

POMA datasets
2012 2013

Method CER FAR ToT % Method γ FAR ToT %
Harpo Detector — 7.5 × 10−5 78 MHT — 1.6 × 10−5 83
Groucho Detector — 9.1 × 10−5 53 MHT — 1.2 × 10−5 70
DIFFUSION RFS Harpo 75% 5.8 × 10−7 95 T2T 0 0.9 × 10−5 92
DIFFUSION RFS Groucho 75% 6.7 × 10−7 91 T2T 1 1.3 × 10−7 85
DIFFUSION RFS 0 2.5 × 10−7 94 T2T 2 6.4 × 10−8 78
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number of false alarms (see Fig. 9c). A comparison with the
distributed MHT [261, 262], which is a state-of-the-art algorithm
for underwater surveillance is provided in Fig. 9d. The improved
ToT versus FAR trade-off of the BPT compared to the MHT is
related to a Bayesian optimum strategy for fusing measurements
from different AUVs. Note that in these results it is assumed that
all collected measurements can be exchanged by the AUVs, which
is infeasible in practice due to bandwidth and delay limitations of
the underwater communication channel. However, these results
show potential gains related to information fusion in cooperative
robotic networks for underwater surveillance. 

4.2 Challenges of MTT for underwater surveillance

As demonstrated in the previous subsection, the use of multiple
AUVs can lead to a significantly improved detection and tracking
performance in MTT for underwater surveillance. However, while
many spatially distributed AUVs and many measurements per
AUV are desirable for MTT in order to increase target detection
probability and estimation accuracy, both network size and data
rates are limited by the challenging underwater communication
channel. Therefore, there is a need for smart distributed inference
architectures that enable MTT performance gains related to
cooperative robotic networks in real time.

As suggested in [263, 264], existing architectures for distributed
inference can be broadly classified into three different classes. The
first class considers that all local measurements of the AUVs are
collected by an FC [265–267], which then performs the inference
task. Either all AUVs are able to directly communicate with the FC
or communication is performed over multiple hops. Therefore,
algorithms in this class do not scale well with the size of the
networks. The information fusion algorithms discussed in the
previous Section 4.1 belong to this first class.

In the second class of architectures, there is no FC and AUVs
can communicate only with neighbouring AUVs. AUVs operate in
two phases. In the sensing phase, each AUV collects observations
from the environment over a sufficiently long period of time.
Subsequently, in the communication phase, AUVs exchange
information iteratively with their neighbours and run a consensus
algorithm to arrive at a globally optimum solution [268].

A third class of architectures for distributed inference in which
sensing and communication phases can also overlap, i.e. sensing
and communication occur simultaneously, has recently been
proposed [269–271]. This third class is suitable for networks that
are able to adapt and to react to the possible changes in the state of
interest [272–274]. Algorithms from this class seem to be
promising for the MTT problem in which the number of targets and
their states are time-varying. A special case of this class are
distributed filtering algorithms based on consensus [275–277],
which have recently been applied to the MTT problem [278, 279].

Unfortunately, all existing fully distributed MTT algorithms are
not suitable for underwater surveillance using cooperative robotic
networks. For instance, in [277], iterative consensus schemes are
employed in order to calculate the joint likelihood function using
only local communication among AUVs. In an underwater
surveillance scenario, this would mean that multiple packet
exchanges need to be performed among AUVs for each pulse
repetition interval of the sonar transmitter, which is not feasible
due to the limited communication bandwidth. Other existing
distributed filtering solutions have similar communication-related
implications. The design of a fully distributed inference
architecture for MTT in the challenging underwater
communication channel therefore remains an open research
problem.

5 Underwater communications
As discussed above, cooperative robotic networks require frequent
exchange of information. Relying on acoustic waves for ranges
beyond tens of meters, several factors affect the communications
performance such as limited bandwidth due to frequency-
dependent absorption loss, multipath propagation, Doppler spread
and long propagation delays due to the sound speed in water. There
is no universal underwater acoustic channel since every

communications link has unique operating parameters (ocean
depth, transmitter/receiver depth, sea-surface wave-height, sea-
bottom composition, sound speed variation, to name a few). Due to
the complexities of the underwater environment, it is very tedious
to find a representative channel fading model. This implies that a
coded modulation (physical-layer) scheme optimally designed for a
specific fading model (e.g. Rayleigh fading) will become
suboptimal when the environment changes [280]. This is in stark
contrast with mobile radio channels where standardised models
exist such as the family of IEEE 802 models. Consequently, current
technology does not support interoperability for distributed sensing
since different stakeholders develop their systems based on rigid,
closed, proprietary all-in-one implementations of acoustic modems
and protocol stacks. Commercial acoustic modems [281] can
provide about 30 kbps data transfer in vertical links where the
multipath propagation is not significant. However, performance
reduces to 1 kbps or less in horizontal links where the multipath
becomes substantially long. In what follows, we describe the main
achievements obtained by the research community within the
framework of interoperability, physical layer, networking protocols
and hybrid solutions. Security aspects, together with current trends
and future works are discussed as well.

5.1 Interoperability solutions

One of the first efforts on standardisation and interoperability at the
higher layers of the protocol stack is presented in [282] where the
underwater network architecture is defined. This initiative joins
together institutions from the US and Singapore in defining an
OSI-like protocol stack tailored to the specific needs of underwater
networks. Other contributions have been proposed in the recent
past highlighting the need to develop next generation of underwater
acoustic networks (UANs) based on software-defined solutions
with the support for intense cross-layering data exchange [283,
284].

To demonstrate the market requirements for underwater systems
interoperability, an international oil and gas industry network has
established the subsea wireless group (SWiG) [285]. The SWiG has
as primary objective to promote interoperability for subsea wireless
communications. Other objectives of the SWIG include identifying
areas where standards need to be developed for the industry in the
underwater domain and promoting best practices across the
industry.

CMRE has developed, in collaboration with academia and
industry, a physical-layer communication scheme, called JANUS
[30], which has been recently promulgated as NATO standard
(STANAG) [286]. JANUS is the first underwater digital
communications standard to be agreed internationally. It is publicly
available and free for civilian and military users. JANUS is based
on frequency-hopping binary frequency shift keying with tunable
centre frequency and bandwidth. If the default 9400–13,600 Hz
band is chosen, the resulting bit rate is 80 bps. Characteristic
applications of JANUS are the transmission of automatic
identification system and meteorological and oceanographic data to
submerged assets [287, 288]. The objective is to use a standardised
solution to increase the maritime situational awareness and to
improve safety and water-space management between manned and
unmanned surface and underwater assets, including swarms of
cooperative robots.

5.2 Physical-layer solutions

The physical layer of the communication stack defines the coded
modulation (and hence the data rate) for transmission of raw bits as
well as the signal processing method employed at the receiver for
recovering the transmitted bits. In surveillance applications, data
rates of about hundreds of bits per second are typically sufficient
for control and command (e.g. status information, navigation)
signals between robots with the stringent requirement that the bit
error rate must be very low (about 10−6). Frequency shift keying
(FSK) modulation with energy detection is typically favoured for
this type of application scenarios since it can robustly cope with
multipath and Doppler of the received signal. In addition, FSK
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systems can be efficiently realised in hardware using DFT-based
filters. Note that robust performance and ease of implementation
come at the expense of low spectral efficiency (not higher than 0.5 
bits/s/Hz). Representative FSK systems can be found in [289, 290].
Reported results indicate data rates from few bps to 2 kbps over
ranges of 5–10 km in various environments.

In scenarios where data collected from sonars or other robotic
sensors (e.g. camera) must be exchanged between robots for
mission improvement, it is required a transmission rate of tens to
hundreds kilobits per second with a bit error rate requirement of
about 10−3. In such a case, bandwidth-efficient techniques based on
phase-coherent modulation such as phase-shift keying (PSK) and
quadrature amplitude modulation are needed. An intermediate
solution between FSK and PSK methods is differential phase-shift
keying (DPSK). DPSK enjoys simpler carrier recovery than PSK,
however, it suffers from higher errors for the same data rate.
Nevertheless, both PSK and DPSK are highly sensitive to channel
multipath conditions and a precipitous non-linear degradation
occurs in the face of environmental mismatch. Dealing with
multipath impairments and mobility to achieve high data rates are
one of the most challenging goals in underwater acoustic
communications. As this is still an active research area, a plethora
of coherent systems have been developed and deployed in various
shallow and deep water environments [289–291]. Popular signal
processing methods include equalisation, orthogonal frequency
division multiplexing, time reversal and their extensions to MIMO
systems. Reported results vary from 48 kbps over 2 km to 120 kbps
over ranges up to 80 m.

5.3 Network protocol solutions

Due to the challenges posed by the communication channel,
underwater networking is currently a very active area of research.
Particular importance is given to the design of new medium access
control (MAC) and routing protocols that account for the high
propagation delays, the low bandwidth available and the many

challenges posed by the acoustic signal propagation [290].
Distributed and ad hoc solutions are of particular interest to cope
with the dynamics of the acoustic medium, which can change in
space and time, and with the presence of mobile assets changing
the network topology over time. The support of mobility is of great
importance, since it enables operation in areas where no
infrastructure has been deployed and to enlarge the area of
operations if required.

Recently, several underwater MAC protocols have been
investigated considering different potential approaches [292]: time
division multiple access (TDMA), frequency division multiple
access (FDMA), CDMA, carrier sense multiple access (CSMA),
medium access collision avoidance (MACA), and hybrid schemes.

TDMA protocols could represent the most suitable option for
small and static networks, but node synchronisation is required.
Additionally, in the presence of mobile assets, TDMA approaches
do not scale well with the network size. FDMA solutions are
usually not very efficient in underwater networks due to the limited
available bandwidth. CDMA is therefore often favoured over
TDMA and FDMA when a decrease in point-to-point data rates
due to code spreading is admissible. Additionally, many CSMA
and MACA solutions have been proposed assuming a light,
medium or heavy use of control information to reserve the
underwater acoustic channel [293]. It has been shown that,
depending on the network configuration, the environment and the
quality of the channel, different solutions should be preferred and
adaptive approaches should be considered [294].

Various routing protocols have been also proposed for UANs
[295, 296]. Geographic and hop-by-hop based, depth-based (for
scenarios with the data collection points placed on the surface),
flooding-based, source-path based, and multi-point relay protocols.
Recent trends in protocol design have shown that cross-layer
techniques can impact protocol performance positively, especially
in networks with limited resources and/or deployed in challenging
environments, like UANs [297]. Various underwater cross-layer
solutions have therefore been implemented for underwater acoustic

Fig. 9  Dataset from the LCAS15 sea trail
(a) Measurements collected by the first, (b) The second AUV. (c) Comparison of the multisensor BPT [207, 252] with the distributed MHT [261, 262] in terms of ToT versus FAR.
(d) Estimated tracks from multisensor BPT and trajectories of the AUVs and the target. Despite the high number of false alarms, the BPT can reliably track the target
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networks. A performance comparison based on simulation and
experimental data can be found in [298]. To reduce the overhead
introduced in the network various solutions have been proposed
combining cross-layer networking functionalities with services
required by mobile vehicles, such as localisation and
synchronisation [104, 299].

Delay-tolerant networking (DTN) [300] solutions have been
also addressed in the contest of underwater networks [301]. Work
on DTN was initially motivated by problems in planetary-scale
networking for space exploration, but to a large extent the same
problems of large propagation delays and occlusion in shadow
zones are also relevant in underwater communications. As a
general rule, DTNs forward data opportunistically, typically
exploiting the mobility of nodes to have packets routed to
otherwise unreachable portions of the network.

From this wide spectrum of solutions, it is plausible to argue
that there is no solution fitting all the possible scenarios, since the
communication parameters (intrinsic and channel) may
significantly vary in space and time. Depending on the specific
surveillance application, on the network topology and on the
channel condition, a different selection and combination of MAC
and routing protocols may be needed to meet the quality of service
requirements in terms of delay in the data delivery, throughput, and
packet delivery ratio. The possibility to remotely reconfigure and
adapt the protocol stack to use [302] would be very welcome.

5.4 Hybrid solutions

Acoustic waves is the default way to convey information wirelessly
in underwater environments; however, the need for very high-
speed communications has triggered the investigation of RF and
optical communications. RF, optical, and acoustic links are
characterised by very different achievable ranges and bit rates.
These characteristics are summarised in Fig. 10. 

One scenario that drives this need is the docking of AUVs in
underwater stations for charging and data transfer. Having
underwater stations significantly prolongs mission duration since
the time spent to recover and redeploy the vehicle is minimised. RF
underwater could aid in precisely positioning the vehicle inside the
confined area of the docking station as well as to exchange vast
amounts of data with the base station. Another driver for very high-
speed communications is data muling systems. Such systems
facilitate the collection of data from remote sensors without the
need to physically connect with them. This can happen by using a
mobile robot that swims near the sensor and downloads the data
using optical communications.

Despite underwater optical communications being a young field
of scientific research, various modem developments from different
research groups have been reported. The study in [303] reported a
data rate of 5 Mbps for ranges of 100–200 m in very clear deep
ocean. In [304], the fastest achievable rate reported was 2 Mbps at
50 m in a swimming pool. Another notable system was presented
in [305] where the authors claim an achievable rate of 58 Mbps in
an outdoor water tank of 2.5 m with strong sunlight disturbance.
RF communications is a rapidly growing area as well. Compared to
optics, RF is not susceptible to turbidity and fouling and can

provide about 100 Mbps at very short distances (<1 m) [306]. A
hot topic currently is to implement IEEE 802.11 networks in
underwater with the aid of software-defined radios [307].

EM, optics, and acoustics are viewed as complementary
solutions since there is little overlap in their operational
mechanisms. Consequently, hybrid underwater communication
systems are the way forward to maximising performance in
underwater data transfers. Indicative examples of such hybrid
implementations are presented in [308, 309]. The application of
high data rate and low latency links (such as the ones offered by
optical communications) open the way for applications such as
physically detached and re-shapeable distributed sensors. An
example of such potential applications is detached acoustic
antennas that can use high data rate, low latency links to exchange
acoustic data and coordinate their relative positioning, exploiting
acoustic signal coherence. A simulation study is presented in [310].

5.5 Security solutions

The broadcast nature of the underwater acoustic channel allows an
attacker to jam or intercept communications in a robotic network.
Part of the success for achieving reliable and secure underwater
communications relies on the nature of the transmitted signal.
Following the paradigm of radio communications, sophisticated
modulation techniques employing spread spectrum (SS) signals can
be used to give the communications receiver an advantage against
jammers [311, 312]. The same SS signals have the inherent ability
to provide covertness, i.e. low probability of intercept/detection
(LPI/LPD) characteristics due to their low-level transmit power
densities.

Cryptographic keys handled by upper-network-layers are
typically used for security of information (authentication,
confidentiality, and privacy). Unfortunately, these types of crypto
keys induce an overhead in the message, which comes at a high
price in underwater robotic networks due to the severely limited
bandwidth. An interesting concept, termed as physical-layer
security [313], indicates that noise and channel fading can be
exploited for ‘covert’ communications, without requiring the usage
of an additional secret key. In the underwater domain, the authors
in [314] exploit the received signal strength for secret key
generation. Another example is [315] where a protocol that
generates secret keys dynamically based on the channel frequency
response is proposed.

Although physical-layer security solutions can be used to
ensure confidentiality on the communication link, various denial of
service attacks can be still conducted to impair the performance of
a network of collaborative nodes. Jamming, spoofing, and packet
manipulation and redirection (just to name a few) can be
effectively applied to impair the navigation and localisation
capabilities of mobile robots. These are critical capabilities which
have to be ensured in order to correctly accomplish the requested
tasks. One recent attempt to tackle the security problem at different
network levels is presented in [316], where the authors propose a
security suite specifically designed for underwater acoustic
networks. The security components are a secure routing protocol
and a set of cryptographic primitives aimed at protecting the
confidentiality and the integrity of the communications. The
approach was integrated into a deployed network during the
UAN11 sea trials of the European funded FP7 UAN Project [6].

While a network of cooperative robots is vulnerable to various
attacks, the use of node cooperation and mobility can be effectively
used to react to these attacks by adapting the network geometry
similarly to what has been described in [70]. Different strategies
can be explored to allow mobile nodes to cover connectivity holes
in the network, to increase the quality of the communication links
and to avoid the presence of single points of failure. Similarly, the
use of a hybrid communication system can be considered as well in
order to select the best communication interface to use, according
to the current network geometry and on-going attack.

5.6 Current trends and future works

From the above discussion, a promising way forward is to abandon
existing monolithic integrated modems and develop software-

Fig. 10  Characteristics in terms of achievable range and bit rate of the
various communication interfaces in the underwater domain
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defined open-architecture communication stacks. The study in
[283, 284, 317] proposes the use of (i) a software-defined approach
with intense use of cross-layer messages, (ii) the use of context
awareness and adaptive trust and reputation models, and (iii) node
cooperation and mobility. Although interesting guidelines are
presented towards the deployment of secure and robust underwater
networks, no implementation, at-sea testing and validation of the
proposed solutions are provided.

Recently, software-defined solutions with the support of cross-
layering data exchange and hybrid communications have been
published [283, 284]. Fig. 11 displays the networking architecture
presented in [283]. The presence of a software-defined component
(policy engine), which selects different protocol implementations
(from coded modulation to routing and application support) can be
seen. Cross-layering information is used in support to the decision-
making process. For example, based on the work in [318], selecting
the most appropriate modulation and coding scheme given the
specific channel conditions is possible. This physical-layer
information can be provided to upper layers to adjust the use of
control messages and the selection of the next node to follow for
data delivery. Similarly, upper layers can share quality of service
data, e.g. message priority and maximum delivery time, to drive
the selection of lower layers parameters in selecting the best
waveform, error correction coding and encryption solution to use. 

The field of underwater communications is rapidly moving
towards exchanging data from heterogeneous systems in order to
provide more general and complex services to end-users. Towards
this end, the development of modular communication stacks with
the ability to adapt to the environment, counteract security attacks,
switch between different modalities (optics or radio), and
sustainably manage the underwater network for long-lasting
operations is a wide open research problem.

6 Conclusions
A review of recent advances in cooperative robotic networks for
underwater surveillance has been presented. To this aim, the
underwater surveillance scenario has been divided into four main
research areas: (i) underwater robotics, (ii) acoustic signal
processing, (iii) tracking and distributed information fusion, and
(iv) underwater communications networks. For each area, we
overviewed the main challenges and highlighted some areas for
future work in the field. Thanks to the ever rising power and
computational abilities, today's robots can be deployed in networks
so that when properly interconnected can form adaptive and
intelligent systems capable of unprecedented level of scalability,

robustness, and adaptability. The peculiarities of the underwater
environment have been outlined, and we highlighted the constraints
that they put on the development of robotic networks. The
impressive recent development of underwater communications has
represented a key enabler to fostering the further deployment of
autonomous sensor networks where robots can make collective
decisions, share relevant data in a secure manner, and fuse
information together to achieve a network gain. In parallel, sonar
signal processing, the main sensor modality for underwater
surveillance, can today exploit new waveforms thanks to
availability of new transducers with larger dynamic ranges. At the
same time the available computational power available on today's
embedded computers allows to use quite advanced algorithms, able
to bridge the sensors with the more complex adaptive vehicle
behaviours. Real-world operation of robotic networks is on the
verge of a paradigm shift, and it seems easy to envision multiple
robotic networks to be deployed in the coming years. At the same
time, there are still multiple research challenges that need to be
addressed to reach the necessary maturity for the robust operation
of robotics surveillance systems. More in particular, two main
points still need to be tackled. First, a tighter integration of the
cross-disciplinary methodologies and topics presented herein
driven by a system-of-system approach. Second, a stronger effort
in the industrial world and in the interested end-users to narrow the
gap between technology evolution and user adoption in real-world
applications is presented.
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