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Data assimilation through an ensemble Kalman filter (EnKF) is not exempt from deficiencies, including the
generation of long-range unphysical correlations that degrade its performance. The covariance localization
technique has been proposed and used in previous research to mitigate this effect. However, an evaluation of its
performance is usually hindered by the sparseness and unsustained collection of independent observations.

This article assesses the performance of an ocean prediction system composed of a multivariate EnKF coupled
with a regional configuration of the Regional Ocean Model System (ROMS) with a covariance localization so-
lution and data assimilation from an ocean glider that operated over a limited region of the Ligurian Sea.
Simultaneous with the operation of the forecast system, a high-quality data set was repeatedly collected with a
CTD sensor, i.e., every day during the period from 5 to 20 August 2013 (approximately 4 to 5 times the synoptic
time scale of the area), located on board the NR/V Alliance for model validation. Comparisons between the
validation data set and the forecasts provide evidence that the performance of the prediction system with
covariance localization is superior to that observed using only EnKF assimilation without localization or using a
free run ensemble. Furthermore, it is shown that covariance localization also increases the robustness of the
model to the location of the assimilated data. Our analysis reveals that improvements are detected with regard to
not only preventing the occurrence of spurious correlations but also preserving the spatial coherence in the
updated covariance matrix. Covariance localization has been shown to be relevant in operational frameworks
where short-term forecasts (on the order of days) are required.

1. Introduction system. Variational and sequential methods are among the most widely

used data assimilation schemes for regional ocean systems, and there

An accurate estimation of the ocean state is required for many in-
terdisciplinary applications, including acoustic, biological, physical and
optical sciences and technologies (Lermusiaux et al., 2006). The dy-
namics of oceanic processes are nonlinear and highly variable, and they
involve interactions across several temporal and spatial scales. These
characteristics, which form the basis of the non-deterministic nature of
ocean predictions, make such estimations unique and require sophisti-
cated numerical ocean models (Brasseur, 2006). These systems are af-
fected by an intrinsic predictability limit (Lorenz, 1969) with an in-
herent scale connected to the nonlinearity of the dynamical equations
and to the errors in the initial conditions (Robinson and Sellschopp,
2002), the atmospheric forcing and the boundary conditions.

Data assimilation techniques aim to estimate the state of the ocean
and the associated uncertainties as accurately as possible by integrating
observations into ocean model states while using consistency con-
straints that obey the dynamical principles governing the observed
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have been exciting recent advances in ensemble and four-dimensional
variational approaches (Edwards et al., 2015). In particular, the en-
semble Kalman filter (EnKF) (Evensen, 1994) has drawn increasing
attention due to its ease of implementation and its ability to forecast
ocean states and their corresponding uncertainties. Unlike the tradi-
tional Kalman filter, the EnKF can operate using nonlinear models by
forecasting an ensemble of states to compute an ensemble mean and
covariance, from which a single Kalman gain is derived. An analysis of
each member of the ensemble allows for a mean analysis to be derived.
Interested readers are referred to Evensen (2003) for further details on
the EnKF approach.

Although EnKF data assimilation systems have been used in several
real-world applications with state-of-the-art atmospheric models
(Whitaker et al., 2008; Houtekamer et al., 2005) and ocean models at
both global (Keppenne et al., 2005; Zhang et al., 2007) and regional
scales (Mourre and Chiggiato, 2014), the implementation of such a
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system is not free of difficulties. The limited statistical representative-
ness of the ensemble is probably the most fundamental issue. This issue
originates from the small size of the ensemble when compared with the
number of states accessible to the dynamics of the ocean. Inbreeding
(Houtekamer and Mitchell, 2001) and the development of long-range
spurious correlations in the ensemble covariance (Anderson, 2001) may
be caused by a statistical misrepresentation of the ensemble. The former
refers to an underestimation of the analysis error covariance after each
assimilation cycle, while the latter refers to the unphysical correlations
between distant locations generated by the forecast covariance. Cov-
ariance inflation (Anderson and Anderson, 1999) and localization
(Houtekamer and Mitchell, 2001) have been proposed to mitigate the
effects of inbreeding and spurious correlations, respectively.

Data assimilated into ocean prediction models are collected using
ocean observing systems. In conjunction with autonomous profiling
floats, glider technology is being used to transform ocean observing
technologies from individual platform-based designs to networks of
sensor nodes. This observational approach has been integrated into
many current ocean observatories, such as the US Integrated Ocean
Observing System (IOOS) and the Australian Integrated Marine
Observing System (IMOS). Gliders make use of buoyancy changes and
utilize their low-drag hydrodynamic shapes to perform zig-zag motions
between the surface and the bottom of the ocean, inducing a net hor-
izontal displacement. Their nominal speed is approximately 0.5 m s~ !
with spatial cycle periods that depend on the programmed pitch and
immersion depths. Thanks to a buoyancy-based propulsion mechanism,
the endurance of a glider can reach up to several months. The man-
euverability of a glider, although limited to some degree by the strength
of the velocity field, is another advantage offered by this technology.

A few studies in the literature have investigated the exploitation of
gliders in operational ocean forecasting systems. A remarkable case was
provided by the Autonomous Ocean Sampling Networks (AOSN)-II field
experiment conducted in Monterey Bay, California, in 2003 (Ramp
et al., 2009). The day-to-day physical variability in that ocean region
was predicted using different ocean prediction models that assimilated
data from heterogeneous observational assets, including a glider fleet
(Chao et al., 2008; Lermusiaux, 2007; Shulman et al., 2009). The im-
pact of the assimilation of glider observations improved the short-term
(1-1.5days) subsurface salinity and surface temperature forecasts
(Shulman et al., 2009); meanwhile, for more extended forecasts, ac-
curate atmospheric forcing data play a critical role. Further research
has also demonstrated an improvement in the forecasting skills of ocean
prediction models with the assimilation of glider observations of tem-
perature and salinity fields (e.g., Zhang et al., 2010a, 2010b; Jones
et al., 2012; Gangopadhyay et al., 2013; Mourre and Chiggiato, 2014).

The importance of assimilating all available information from gli-
ders, including the vertically averaged velocity in addition to salinity
and temperature observations, was emphasized by Dobricic et al.
(2010) when they used an operational forecasting model for the Ionian
Sea (eastern Mediterranean Sea). Mourre and Alvarez (2012) exploited
the autonomy and maneuverability of gliders to explore the benefits of
piloting a glider with an adaptive sampling procedure in the western
Ligurian Sea under a fully operational framework. This adaptivity re-
quired a continuous feedback of information between the glider and an
operational forecasting system based on a 3D super-ensemble (3DSE)
assimilation technique (Lenartz et al., 2010). The above studies, among
others, suggested that glider observations could significantly contribute
to improving the performance of present-day operational forecasting
systems.

An evaluation of the performance of an operational ocean forecast
system is an important aspect of the system's development and ex-
ploitation. Determining the extent to which the events predicted by the
model will compare to a corresponding set of independently obtained
and reliable observations, is the most appropriate method to evaluate
the performance of an operational forecasting system (Willmott et al.,
1985). While the statistical measures of a model's performances are well
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defined, the difficulties in assessing those performances are often gen-
erated by the sparseness and unsustained collection of independent
observations due to economic and/or operational limits generally en-
countered when observations are needed to support data assimilation
and model validation tasks. As a consequence, a coherent view of the
spatiotemporal structure of the prediction error is not usually well de-
fined.

This article investigates the impact of the covariance localization on
an EnKF used to assimilate glider data by means of a field experiment
conducted by the Centre for Maritime Research and Experimentation
(CMRE) in an area of the Ligurian Sea (western Mediterranean Sea).
The trial's specific objectives include an assessment of the predictive
capabilities of a multivariate EnKF, which is augmented by covariance
localization and assimilated data from a glider, coupled with a regional
configuration of the Regional Ocean Model System (ROMS) (Mourre
and Chiggiato, 2014; Falchetti et al., 2015). A high-quality data set was
repeatedly collected each day over a period (15 days) that is longer
than the synoptic time scale in the region (3-4days, Alvarez and
Mourre, 2012) to allow for unique spatiotemporal tracking of the error
forecasts.

The article is organized as follows. The methodology used in the
EnKF system and the observational data set employed in this study are
described in Section 2. The results obtained from the forecast system
and the ocean circulation pattern observed in the region are described
in Section 3. Finally, Section 4 provides a discussion and concludes the
study.

2. Data and methods
2.1. The Mediterranean Rapid Environmental Picture 2013 (MED-REP13)

During 5-20 August 2013, a field experiment known as the
Mediterranean Rapid Environmental Picture 2013 (MED-REP13) was
conducted by the CMRE in a nearly rectangular area (90 km by 70 km
in the along- and cross-shore directions, respectively) of the north-
eastern Ligurian Sea (western Mediterranean Sea, Fig. 1). The main
scope of this field experiment was to investigate the operational feasi-
bility and benefits of using a heterogeneous ocean observing network to
characterize the marine environment.

The seafloor depths range from approximately 50 m to almost
1800 m in this area. Oceanographically, the region is characterized by a
current system called the Northern Current (NC). This current flows
northward at speeds of 0.3-0.4ms~ ! along the continental slope,
which is approximately 20-35 km off the shore of the Italian coast. The
current extends down to a depth of 300 m. Below the mixed layer, the
current is characterized by low salinities (37.8-38.3) and warm
(14-16 °C) water masses corresponding to the salinity and temperature
signatures of the Modified Atlantic Waters (MAW), which result from
the inflow through the Strait of Gibraltar (Millot, 1999; Schroeder et al.,
2008). The regional circulation pattern is subjected to significant dy-
namical variabilities reflected in the meandering nature of the NC and
the presence of intense eddy activities (Marullo et al., 1985).

A Slocum glider (Webb et al., 2001) named Jade was operated in
this region for the duration of the field experiment. From 5 to 10 Au-
gust, the glider transited the northern part of the area before it turned
towards the southern portion, which it traversed from 15 to 19 August
(Fig. 1). The glider trajectory was the result of a compromise between
scientific requirements and operational needs. In total, the glider con-
ducted 285 dives to measure the conductivity, temperature and depth
between 20 and 200 m using a pumped Seabird 41 CTD sensor oper-
ating at 0.5 Hz. The glider was programmed to surface every 3h to
transmit the collected data. Based on the climatological means and
standard deviations of the temperature and salinity in the region, the
outliers in the data were identified and removed; before calculating the
salinity and potential density, the CTD data were low-pass filtered and
corrected for cell thermal mass effects. Subsequently, the density
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Fig. 1. Real trajectories for the glider Jade

during 5-7 August (black line), 8-9 August

(green line), 10-11 August (blue line), 12-13
August (red line), 14-15 August (yellow line),
16-17 August (cyan line) and 18-19 August
(magenta line). The CTD locations are re-
presented by black circles. The northern CTD
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inversions were identified and corrected. Finally, the time series of the
glider measurements were interpolated into vertical profiles with a
vertical spacing of 1 m. A total of 570 vertical profiles of the tem-
perature and salinity with a horizontal interval of ~500 m were ac-
quired after applying these data quality control measures.

For the purpose of collecting a validation dataset for the perfor-
mance assessment, the oceanographic conditions within the study re-
gion were sampled daily from 8 to 20 August using nighttime (daylight
time was devoted to acoustic operations) conductivity, temperature and
depth (CTD) casts with an SBE911 from the NRV Alliance (Fig. 1). The
CTD samples were distributed along two transects spaced approxi-
mately 40 km apart. The two parallel tracks were oriented perpendi-
cular to the shelf break at depths ranging from 100 to 1000 m. The CTD
stations were spaced approximately 10 km from each other and reached
a maximum sampling depth of 600 m, with the exception of one CTD
cast that sampled down to a depth of 1000 m to characterize the dee-
pest layers. The northern CTD transect was sampled seven times on 8,
10, 12,16, 17, 18, and 19 August, while the southern CTD transect was
sampled nine times on 9, 11, 13,14, 15, 16, 17, 18 and 19 August. The
different sampling frequencies were purely dictated by operational
constraints.

Temperature and salinity measurements were gathered along the
periphery of the surveyed domain on 13 August from a towed ScanFish
MKII vehicle equipped with a SeaBird 49 CTD (Fig. 1). The instrument
followed a vertical sawtooth trajectory between depths from 5 to 240 m
with horizontal and vertical speeds of 3 and 1 m s~ ?, respectively, al-
lowing for a horizontal sampling resolution of approximately 3 km.
These data are employed to analyze potential biases in the model runs
introduced through the open boundaries. All the in situ measurements
of salinity are reported using the Practical Salinity Scale (Unesco,
1985).

The CTD data were complemented with current measurements ac-
quired along the ship track using a vessel-mounted, 75-kHz Ocean
Surveyor Acoustic Doppler Current Profiler (ADCP) during the field
experiment. The ADCP was configured to measure the current at 40

depth intervals ranging between 30 m and 650 m. The depth layers
were equally spaced at every 16 m. The ADCP data were processed and
averaged to obtain one measurement for every 2 min. Further details on
the ADCP data collection and processing schemes are described in
Borrione et al. (2016).

Satellite data were not considered in the present study. As was
previously reported in Borrione et al. (2016), limitations in the satellite
data coverage (partially due to cloud cover during the field experiment
and to the low quality of the satellite imagery) as well as the poor
surface thermal signatures of the subsurface water masses prevented a
fruitful exploitation of sea surface temperature (SST) imagery. More-
over, no altimetry track transects passed over the computational do-
main, while the delayed-time gridded maps from Aviso (http://aviso.
oceanobs.com/duacs/) were too coarse (1/8° in the Mediterranean Sea)
to resolve the small (on the order of 10-100 km) coastal features in the
region of interest (Birol et al., 2010; Borrione et al., 2016).

The performance of an EnKF data assimilation system while fore-
casting a temperature field was previously analyzed in a field experi-
ment conducted in the region (Mourre and Chiggiato, 2014). The lim-
ited performance of this EnKF data assimilation system observed during
the initial model runs while additionally assimilating salinity data
motivated the focus on this physical variable. Moreover, the salinity
signature of the MAW in the region provides a natural tracer for
tracking the local circulation. The effects of local sources/sinks in the
salinity (rain and river runoffs) were negligible in this area during the
period of the experiment, thereby reinforcing the tracer nature of the
salinity signature. For these reasons, only the salinity field will be
considered in this work for validation purposes.

2.2. The numerical configuration of the Regional Ocean modeling system
(ROMS)

The circulation in the Ligurian Sea was simulated using a regional
configuration of the ROMS. The ROMS is a primitive-equation, finite-
difference, hydrostatic and free-surface ocean model that uses
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generalized, terrain-following vertical s-coordinates (Haidvogel et al.,
2008). The model domain covers the entire Ligurian Sea with two open
boundaries on the western and southern sides located at 8°E and
42.5°N, respectively. The horizontal resolution of the model grid is
approximately 1.8 km. The vertical grid uses 32 vertical levels that are
non-linearly stretched to allow for a finer resolution of the surface
boundary layer. The surface fluxes are calculated interactively every 3 h
via bulk formulations using the atmospheric fields of the air tempera-
ture, humidity, winds and cloud cover from the 7-km-resolution Med-
iterranean configuration of the atmospheric model from the Consortium
for Small-scale Modeling (COSMO-ME) operated by the Italian Air
Force National Meteorological Center.

This model is one-way nested in the Mediterranean Forecast System
(MFS; Pinardi and Coppini, 2010). The boundary conditions used here
are described in Mourre and Chiggiato (2014). Radiation and nudging
boundary conditions are applied at the boundaries for baroclinic flows
and tracers. Barotropic flows are prescribed by means of Flather
boundary conditions (Flather, 1976), while Chapman boundary condi-
tions (Chapman, 1985) are adopted for the free surface. A generic
length-scale vertical mixing parameterization scheme (Umlauf and
Burchard, 2003) is activated using the Kantha and Clayson stability
functions (Kantha and Clayson, 1994). A third-order up-stream bias
advection scheme with velocity-dependent hyperviscosity is used to
solve the nonlinear terms in the horizontal plane, while a fourth-order
centered scheme is used for the vertical advection. No explicit viscosity
is used, and the horizontal diffusion is modeled using a Laplacian op-
erator along the geopotential surfaces.

2.3. The assimilation configuration

2.3.1. The ensemble Kalman filter (EnKF)

An asynchronous multivariate EnKF formulation was used to as-
similate the salinity and temperature observations at a time different
from the time of the analysis (Mourre and Chiggiato, 2014). This ad-
vanced sequential data assimilation scheme uses an ensemble of the
perturbed model simulations (here, consisting of 100 members) to ap-
proximate the model error covariance and the spatiotemporal varia-
bility. The algorithm advances in two steps: an analysis step and a
forecast step.

Given the vector of the glider observations y; collected between t;-
48h and t; and an ensemble of the model forecasts simulating this
period, the present implementation of the method produces an analysis
of the ensemble of model states at the time t;. The augmented state
vector x; contains the model state variables (i.e., the temperature,
salinity, meridional and zonal velocity components and sea surface
height) at the time t; and the model values at the position and time of
the observations collected during the preceding 48 h. The following
equation is used to update the ensemble mean state vector:

Xt =X/ + K@ - HX/) €]

where the overbars denote the ensemble mean, the superscripts f and a
represent the forecast and analysis states, respectively, H; is the ob-
servational operator projecting the model state onto the observational
space, and K; is the Kalman gain, which takes into account the ob-
servational error R; and the background error covariance P/ to de-
termine the extent to which observations are weighted relative to the
background. The value of K; is calculated as follows:

K= B'H! (HF/H] + R)™ @

In this expression, the superscript T denotes a matrix transpose.
Given the analysis ensemble, the forecast step simply involves fore-
casting each member forward in time to the point at which the next
observations are available (here, 48 h).

The ensemble initialization technique follows the approach de-
scribed in Falchetti et al. (2015). This procedure involves only
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perturbations of the initial conditions to achieve the initial ensemble
spread. The ensemble members are generated by taking snapshots of
the forecast/analysis state values during July, August and September
(at approximately every ten days) from the MFS 10-year reanalysis. The
ocean state anomalies are computed by removing the ensemble mean
from the ensemble members, and the final perturbed members are
obtained by adding the daily MFS ocean state forecasted at the in-
itialization date (5 August) to each anomaly state. To ensure dynamic
stability and correct multivariate correlations (Evensen, 2003), a 48-
hour spin-up time is allowed before commencing the assimilation.

In general, without a way to introduce realistic forecasting errors
into the ensemble projection, the ensemble spread will tend to collapse
(Turner et al., 2008). One way to account for unrepresented sources of
model errors, such as errors in the forcing and boundary conditions, is
to use covariance inflation. The relaxation-to-prior spread approach
(Whitaker and Hamill, 2012) was therefore adopted in this study. In
this way, the posterior ensemble standard deviation is relaxed back to
the prior using the following formula:

X'« x'f (aLaaa + 1)
g 3)
where x’ is the deviation from the posterior ensemble mean for the ith
ensemble member, ¢® and ¢ are the prior and posterior ensemble
standard deviations and a is the relaxation coefficient. We adopted a
relaxation coefficient equal to 1.0, which means that the posterior en-
semble standard deviation is completely replaced by the prior ensemble
standard deviation, leaving an unaltered ensemble mean. Such an in-
flation is applied to the ensemble with the data assimilation. The prior
ensemble standard deviation coincides with the standard deviation
calculated from the free ensemble, while the posterior one is computed
from the ensemble with the data assimilation after the forecast run
following the analysis step. This type of inflation aims to reintroduce
the ensemble spread necessary for the system to properly assimilate the
observations while leaving the spatial correlations associated with the
covariance matrix unaltered, since the ensemble mean is maintained.

2.3.2. Covariance localization

The reliability of the EnKF technique primarily depends on an
adequate representation of the error covariance that is maintained
throughout the cycling of the data assimilation system. The generation
of spurious covariances between distant or physically disconnected
state vectors may lead to ensemble collapse and/or filter divergence.
Covariance localization is therefore introduced to limit the generation
of spurious covariances (Sakov and Bertino, 2011). The localization
approach excludes remote observations from each analyzed location,
thereby improving the conditioning of the error covariance matrices.
Covariance localization in the EnKF is commonly implemented through
a correlation matrix holding the correlations of local support defined by
an influencing distance (see below). Other alternatives to the im-
plementation of covariance localization inversely scale the observation
error variance rather than modify the background error covariance
(Hunt et al., 2007), replace the sample covariance with a multiscale tree
of nodes distributed over a relatively small number of discrete scales
(Zhou et al., 2008), filter the error covariance after a transformation to
a spectral space (Buehner and Charron, 2007) or are raised to a power
ensemble correlation (Bishop and Hodyss, 2009). Previous studies on
geophysical flows (Houtekamer and Mitchell, 2001), biological mod-
eling (Hu et al., 2012), and water resources (Devegowda et al., 2010)
have shown that covariance localization substantially improves the
EnKF analysis results.

The update equations are modified by replacing the state error
covariance by its element-wise (Schur-Hadamard) product with a dis-
tance-based correlation matrix p;:

Ki = [o; (B’ H) [ H:P'HT) + RT™ @
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Here, p is determined using a fifth-order piecewise rational function,
as given by Gaspari and Cohn (1999):

2 ) ) osess
O R OR ORE GEHGEEEHOREL
<2l
0 e>2l

(5)

where e is the Euclidean distance between a grid point and an ob-
servation location and [ is the horizontal influence radius. Only ob-
servations located within a specified distance (defined by 1) from an
analyzed grid point will contribute to the analysis at that grid point.
The empirical orthogonal function (EOF) technique (Hannachi et al.,
2007) has been applied to the salinity and temperature datasets ex-
tracted from the 10-year reanalysis of the Copernicus Marine En-
vironment Monitoring Service (CMEMS) catalog. The horizontal influ-
ence radius was calculated from the horizontal covariogram of the first
EOF spatial mode, which relates the covariance between the locations
of two measurements with their relative horizontal distances for a
stationary process. Considering a 50% correlation threshold, the em-
pirical covariogram analysis resulted in an average horizontal correla-
tion length of 30 km.

Three model versions are operated every 48 h, providing forecasts
over the subsequent two-day period. The first version is the ensemble
free run, in which the ensemble members that are initialized as de-
scribed above run independently without assimilating data. Each
member is one-way nested in the MFS as indicated in Section 2.2. Seven
forecast cycles are run from 7 to 21 August. The other two versions are
ensembles that assimilate the glider observations collected during the
48 h preceding the analysis time both with and without the application
of covariance localization. After the analysis step, a 48-hour forecast
step is performed. Seven assimilation cycles are run while assimilating
the observations collected from 5 to 19 August.

Finally, the observations are treated following Mourre and
Chiggiato (2014). The salinity and temperature observations collected
by the glider Jade are first interpolated onto a fixed model grid and
stretched in the vertical direction before being assimilated. For each
level, the observed variance in the vertical grid cell is used as an ap-
proximation of the vertical representation of the error. The horizontal
representation of the error variance is assumed to be (0.05)? for the
salinity field in the region (Mourre and Chiggiato, 2014).

2.4. Defining the model skill

Quantitatively, the prediction performance of the model is mea-
sured using statistical metrics that compare the model estimates or
predictions with pairwise-matched observations (Willmott et al., 2012).
Most statistical metrics can be encoded by a dimensionless index of an
agreement or a skill score defined as p = 1-8/p, where § is a di-
mensional measure of the average model error and p is the basis of
comparison. The value of p determines the forecast that performs the
best. Different definitions of 6 and p generate different indices of
agreement (see Willmott et al., 2012 for details). Here, 8 and p are the
mean square error and the variance of the observations, respectively,
averaged over the upper 300 m of the water column where the NC and
the associated flow of the MAW are located. The forecast shows a po-
sitive (negative) skill p when 8 < p(8 > p) and shows no skill (p = 0)
when 8 = . The forecast perfectly agrees with the observations (p = 1)
when 8 = 0.

The mean square error and the forecast skill can be written in terms
of the standard deviations of the model and observations (o, o, where m
and o denote the model and the observations, respectively), the squared
difference between those standard deviations (the square of the stan-
dard deviation error SDE = o, — 0,), the cross-correlation (CC)
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between the modeled and observed fields, and the model bias
(MB = m — 0, where the overbars denote the mean values) (Murphy,
1992). The first term measures the statistical variability in the ob-
servations and in the corresponding predictions, while the second term
quantifies the difference between both variabilities. The cross-correla-
tion provides an indication of the similarity between the spatial pat-
terns of the modeled and observed variables, while the last statistic
measures how much the model is biased with respect to the observa-
tions. In order to complement the forecast skill, information concerning
the above mentioned variables is also provided in an analysis of the
model performance.

In this work, the forecast skills and associated statistical variables
rely on the spatial averages of the forecasted and observed fields,
thereby facilitating the tracking of the model's performance through
time when a spatiotemporal series of observations is available.
However, information about the similarity between modeled and ob-
served spatial patterns is rather limited. Direct comparisons between
the spatial distributions of the forecast and the observed fields at spe-
cific times were conducted to provide a qualitative spatial analysis that
complements the quantitative assessment provided by the forecast skill.

3. Results
3.1. Predicted ocean circulation

This analysis describes the performances of different assimilation
configurations for forecasting the path and velocity of the core of the
NC, which corresponds to the most energetic part of the current. Thus,
the horizontal current and vertically integrated salinity within the first
100 m of the water column were analyzed for the different model
configurations. To serve as ground truth for the model forecast, the
local circulation pattern was derived from along-ship tracking of the
ocean current measurements for the period between 5 and 9 August
2013. The velocity field derived from the ADCP measurements from 5
to 9 August 2013 provides a rather detailed description of the circula-
tion in the area, as shown in Fig. 2. The most evident feature is the NC,
which is shown as an intense northwestward current entering from the
southwestern boundary that flows across most of the study area before
turning around the shelf break and then exiting the domain to the
northwest. There is also an anticyclonic eddy centered at approximately
21 km from the coast with a radius of 16 km and a slightly elongated
shape in the north-south direction. The resulting current speed aver-
aged over the first 100 m of the water column is approximately
0.2m s~ . This horizontal circulation pattern provides a synoptic view
of the conditions at the beginning of the experiment.

Unfortunately, the ADCP data collected after 9 August were not
dense enough to provide a reliable synoptic environmental picture for
the following validation periods. However, Borrione et al. (2016) in-
directly inferred that the circulation pattern did not change sig-
nificantly throughout the whole experimental period. This finding was
also confirmed by the small temporal variability observed in the re-
petitive validation sections (see below).

The forecasts from the free run are shown in Fig. 3a, b and c for the
beginning (9 August), middle (15 August) and end (19 August) of the
experimentation period, respectively. The results show very little
variability in the model outputs during the period under consideration.
The NC is represented as a smooth and wide current that cyclonically
crosses the region of interest. An anticyclonic eddy exists between the
NC and the coast, but the eddy is positioned 36 km to the southeast
from the observed location. The resulting vertically averaged current
speed is 0.1 m s~ !. Regarding the vertically averaged salinity field over
the first 100 m of the water column, the model initially predicted the
existence of a water mass with a salinity of < 38 associated with the
anticyclonic eddy (Fig. 3a). This water mass became saltier as the
model evolved due to the mixing of water masses from the open sea, as
seen in Figs. 3b and c.



CMRE Reprint Series

CMRE-PR-2019-002

Fig. 2. Integrated horizontal current field from 0 to 100 m obtained
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from the ADCP data. The CTD locations are represented by black
circles, while the light gray lines correspond to the isobaths of 200
and 500 m depth.
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The sequence of the model forecast for the integrated horizontal
current and salinity (with data assimilation but without covariance
localization) is displayed in Fig. 3d (9 August), e (15 August) and f (19
August). During the first two assimilation cycles (Fig. 3d and e), the
glider started sampling the coastal water masses moving towards the
middle of the cyclonic gyre and later turned northwest to reach the
northernmost region of the domain. Fig. 3d shows the circulation pre-
dicted by the model after the data collected along the described tra-
jectory were assimilated. The alignment between the NC and the sali-
nity front is evident from the figure. The jet crossed the northern and
southern CTD transects nearly perpendicularly. The maximum in-
tegrated speeds are found along the middle (offshore) portions of the
northern (southern) CTD transect. Note that the salinity gradient across
the northern section is steeper than that across the southern region. A
clear deficiency in this forecast is the lack of anticyclonic circulation
between the NC and the coastline.

Fig. 3e shows the circulation pattern predicted by the model after
the data collected along the glider trajectory from 9 to 15 August were
assimilated. During this period, the glider was commanded to loop back
in order to reach a location between the two CTD sections on 15 August.
Except for the northernmost part of the trajectory, the glider sampled
the MAW inside the NC cyclonic gyre between 9 and 11 August. The
resulting width of the jet is reduced relative to that of the previous
pattern (Fig. 3a), and the jet presents a more pronounced curvature.
Accordingly, the model also predicted a shift of the 38.3 isohaline to

10°E

follow the modified jet circulation (Fig. 3e). A strong readjustment of
the 38.2 isohaline is consequently observed. A weakening of the salinity
gradient across the CTD transects is detected from these modifications.
Finally, a weak anticyclonic eddy is generated between the NC and the
coast. However, the location of the eddy is 26 km to the south of the
position where it was observed.

During the final assimilation cycle (Fig. 3f), the glider was directed
towards the southern CTD transect on 16 August while following a
trajectory that was almost perpendicular to the jet flow; thus, the glider
sampled the fresher water located to the east of the southern CTD
section from 17 to 19 August. Fig. 3f shows that the NC flow develops a
strong positive curvature associated with local cyclonic circulation to
the east of the southern section. In this cycle, salinity values higher than
38.5 are restricted to a very limited area. The predicted anticyclonic
eddy remains weaker than the observed one, but its location becomes
closer to its observed position due to a northwestward drift of ap-
proximately 16 km from its previous location.

An interesting feature is observed when analyzing the sequence of
predictions of this model setup. Specifically, a comparison between
Fig. 3d, e and f reveals that the spatial coherence among the current and
salinity fields degrades as the data assimilation and model integration
proceed. The initially smooth patterns of the current and salinity fields
(Fig. 3d) evolve into structures with significantly smaller scales after
the different assimilation cycles (Fig. 3f). This change could have been
caused by the loss of spatial coherence in the covariance matrix each
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Fig. 3. Integrated horizontal current and salinity from 0 to 100 m for (a) 9 August, (b) 15 August and (c) 19 August obtained from the free run. Figures d), e) and f) are similar to a), b) and
c) but for the model with data assimilation. Figures g), h) and i) refer to the model with data assimilation and covariance localization. The CTD transects are represented by the black
dashed lines. The magenta lines indicate the horizontal glider track along which the data collected were assimilated to produce the forecast on 9, 15 and 19 August. Colour scale refers to
salinity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

time that it is updated by the EnKF procedure. This hypothesis is con-
firmed by Fig. 4a and b, which show the correlation map for the salinity
field at a depth of 50 m at an arbitrary location along the glider tra-
jectory during the second and third assimilation cycles, respectively.
These figures show a clear loss of spatial coherence in the correlation
field with the ongoing assimilation cycles. After the assimilation cycles
are terminated, the correlation field for the selected location is de-
scribed by small-scale patches of correlated areas within the study
domain. Thus, assimilation without covariance localization could gen-
erate an error covariance that correlates analyzed locations with dis-
tant, irregular, localized regions in the domain. This is expected to
degrade the performance of the EnKF.

As in the previous cases, Fig. 3g, h and i display the forecasts ob-
tained using the model setup with assimilation and covariance locali-
zation for 9 August, 15 August and 19 August, respectively. The NC
flows along a well-defined salinity front between the coast and the open
sea. The overall circulation of the current resembles the structure built
from the observations. A weak anticyclonic circulation is present be-
tween the current and the coast. This anticyclonic circulation is re-
inforced in the forecast for 15 August due to the assimilation of glider
data (Fig. 3h). Specifically, the salinities of the water masses between
the current and the coast are lowered due to the assimilation of glider
observations of low-salinity waters (~37.7) in this region. Never-
theless, the predicted anticyclonic circulation is more elongated than in
the observations (Fig. 2). The salinity of the open seawater is also re-
duced with respect to the previous forecast (Fig. 3g). The lack of glider
sampling in this region prevents the retention of relatively high salinity
values in the open sea, as they are smoothed by advection and diffusion

processes in the model. Note the different impacts of the assimilation of
glider data when comparing this forecast (Fig. 3h) with the corre-
sponding forecast in the case of assimilation without covariance loca-
lization, as seen in Fig. 3e. The data assimilated by the model comes
from the transit of the glider across the southern part of the domain of
interest. Salinity gradients in the anticyclonic eddy are not supported
by glider observations, as they are smoothed out by advection and
diffusion processes in the model. As a consequence, the anticyclonic
eddy becomes weak and geographically less defined. Similar to the
previous assimilation case, the impacts of covariance localization on the
preservation of spatial coherence in the updated covariance matrix with
ongoing cycling of the assimilation system are analyzed in Fig. 4c and d.
These figures show that this reduction is significantly smaller in this
case than in the case without covariance localization, although the
spatial coherence is reduced (Fig. 4a and b). The assimilated data in this
case evidently influence the modeling results at greater distances than
in the assimilation setup without covariance localization, consequently
producing well-defined ocean structures in the model forecast.

3.2. Performance evaluation along the northern CTD transect

The performance evaluations along the CTD transects will focus on
the upper 300 m of the water column, which is where the NC and the
associated flow of the MAW are located. Fig. 5a, b, ¢, and d characterize
the model performance when the glider is located at near, intermediate
and far distances from the CTD transect, respectively. Fig. 5a reveals the
transit of the MAW across the transect during the experiment. The
isohaline contours show clear temporal variability with a vertical
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Fig. 4. Correlation map of the salinity at 50 m depth for the
(a) second and (b) last assimilation cycles for the case
without covariance localization. Contours display the cor-
relation between the salinity at the location indicated by
the black star and the corresponding values at the re-
maining grid points in the domain. Solid lines represent the
glider track. Panels (c) and (d) refer to the second and last
assimilation cycles for the case with covariance localization
applied, respectively.
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Fig. 5. CTD northern transect: Observed (a) and predicted salinity field for the case (b) without the assimilation of glider data, (c) with the assimilation but without covariance
localization, and (d) with the assimilation and with covariance localization applied. The solid black, solid gray and dashed gray lines refer to 10, 16 and 19 August, respectively.
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Fig. 6. Depth averaged (0-300 m) statistics for the salinity

forecasts at the northern CTD transect showing (a) the skill
index, (b) the normalized MB, (c) the normalized squared
SDE and (d) the CC. The black, blue, green, and red lines
refer to the MFS forecast, the free ensemble and the as-
similation solution without and with covariance localiza-
tion (CL), respectively. (For interpretation of the references
to colour in this figure legend, the reader is referred to the
web version of this article.)
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contraction of > 50 m in the upper layer. The absence of a significant
horizontal spread associated with this contraction seems to suggest that
its origin is related to natural variability in the transport of the MAW
rather than to dynamical effects (i.e., a gain in the relative vorticity). In
particular, the northern section is located in the middle of the strong
salinity front, which characterizes the NC cyclonic gyre (Fig. 2). The
onshore CTD stations in the first 100 m of the water column are sub-
jected to the transit of the MAW along the Ligurian coast with salinities
ranging from 37.8 to 38.1. The offshore CTD stations are characterized
by the transit of saltier MAW in the first 100 m of the water column
with salinity values ranging from 38.1 to 38.4 that are bounded at the
bottom by a more saline water mass (38.5). The most obvious temporal
variability in the observed vertical pattern is associated with a shift in
the MAW in the surface layers from a patched structure to a more
compact shape. The observed vertical structures resemble that of a
boundary current in the geostrophic balance flowing along an isobath.

The free ensemble run shows very limited variability during each
forecast cycle (Fig. 5b). The saltier isohalines show a rather weak
gradient in comparison with the observed ones; the saltier waters are
confined to the intermediate water layers, while the observed 38.3 and
38.5 isohalines reach shallower depths of 50 m and 100 m, respectively.

The forecasts with data assimilation but without covariance locali-
zation improve upon the results of the free run during the first assim-
ilation cycle, as shown in Fig. 5c. The horizontal location and depth of
the core of the current system more closely resemble the observations
(Fig. 5a) than the forecasted results from the free run (Fig. 5b). Defi-
ciencies are also present, however, as is seen in the predicted depth of
the 38.5 isohaline. The forecasts degrade with ongoing time and as the
glider leaves the neighborhood of the validation transect. The salinity
pattern resulting from the first assimilation cycle is significantly dis-
torted in successive assimilation cycles as a result of internal model
dynamics. These results indicate that the impact of data assimilation is
not strong enough to constrain the model dynamics.

The benefits of data assimilation with covariance localization as the
glider moves across the northern part of the domain are evident when
comparing Fig. 5c, d and b with Fig. 5a.

The assimilation of glider data significantly corrects the spatial
geometries of the isohalines predicted by the free ensemble by adjusting
their corresponding depths and slopes to be more similar to the ob-
servations. As in the case without covariance localization, the perfor-
mance of the forecast for the northern CTD transect is degraded as the
glider starts to move towards the southern part of the study domain, as

16 17 18 19
Day (August 2013)

shown in Fig. 5d. The degradation of the performance is more evident
for the deeper isohalines that are below the diving depth of the glider.
This degradation becomes even more noticeable during the final as-
similation cycle when the glider moves into the southern region far
from the northern CTD transect. Despite the observed deficiencies, the
forecasted temporal evolution of the haline structure along the northern
CTD section obtained in this case is more similar to the observations
than the case with assimilation but without covariance localization.

Figs. 6a, b, c and d display the temporal evolution of p and the MB,
SDE and CC, respectively, for the forecasts from the different model
configurations and the MFS. The skill score p changes from 0.73 to 0.68
during the free run experiments, as seen in Fig. 6a. The near constant
value of p with time is probably associated with the reliability of the
wind forecasts and the internal evolution of the model dynamics. The
forecasts with assimilated data generally have higher p values than
those obtained by the free run. However, there is an important differ-
ence between the skill indices from the model with assimilation only
and that with assimilation and covariance localization. The former
shows a strong irregular behavior over time with values bounded be-
tween the initial value of p and those produced by the free run. This
finding is another indication that the performance of the forecast may
not be robust to the location of the assimilated data. Conversely, the
value of p decreases relatively smoothly from its initial value of 0.9 to
the final value of 0.84 for the model with both data assimilation and
covariance localization. Fig. 5d shows that the discrepancies between
the model results and observations are mainly concentrated in the
subsurface layers, and thus, the degradation of the performance may be
due to the southward trajectory of the glider at the end of the experi-
ment. Finally, note the similar magnitudes and evolution of p corre-
sponding to the forecasts generated by the free run ensemble and the
MEFS.

The evolutions of the MB, SDE and CC (Figs. 6b, ¢ and d) resemble
the characteristics described above for p. In general, the model with
assimilation performed better than the free run and MFS forecasts. The
MES forecast is affected by a negative model bias that grows from an
initial value of — 0.2 to a final value of — 0.34. The free run does not
show such a degradation of the MB, which registers a maximum value
of — 0.18. The evolution of the SDE shows a trend similar to those of
the MFS forecast and free run forecasts, while the MFS forecast shows a
higher correlation with the salinity field at the end of the experiment
than the free run. The indices of the forecasts from the model with data
assimilation and without covariance localization show a sharp and
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Fig. 7. Southern transect: Observed (a) and predicted salinity field for the case (b) without assimilation of glider data, (¢) with assimilation but without covariance localization, and (d)
assimilation with covariance localization applied. The solid black, solid gray and dashed gray lines refer to 9, 15 and 19 August, respectively. Black shaded areas represent the

bathymetry.

irregular variability. Finally, the forecast from the model with both
assimilation and covariance localization shows the best performance
among the three indices (the MB, SDE and CC). Moreover, the temporal
variability in this model is relatively smooth and shows a higher degree
of robustness than the approach with only assimilation.

3.3. Performance evaluation along the southern CTD transect

A performance analysis similar to that conducted for the northern
CTD section is applied to the southern CTD transect. The southern
section is located along the margin of the NC salinity front on its off-
shore side, and it is not intersected by the sharp salinity gradients that
characterize the northern section (Fig. 7a). The MAW flows across this
section in the first 100 m of the water column with salinities < 38.1. An
ill-defined vertical structure characterized by the existence of different
patches with variable shapes in both space and time suggests that the
observed variability can be understood in terms of the transit of diverse
bifurcations of the local current system. Specifically, an analysis of the
ADCP data (Fig. 2) acquired during the campaign reveals that this
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transect intersects the southern boundary of an anticyclonic eddy along
its nearshore segment and intersects the inflow jet of the NC along its
offshore segment.

Figs. 7b and c display the evolution of the model forecast from the
free run and the forecast from the model with assimilation but without
covariance localization, respectively, for 9 August, 15 August and 19
August. Qualitatively, no significant benefits from the assimilation of
glider data are observed in the temporal evolution of the salinity field
except for the deeper isohaline, which shows a trend in both the slope
and depth similar to those observed on 15 August. For the shallowest
isohaline, the forecasts from the model without assimilation produce
better matches with the observations than the forecasts from the model
that assimilates glider data throughout the entire forecasting period.
Note that the doming of the isohalines predicted for 19 August by the
model with assimilation indicates the generation of a cyclonic circula-
tion in the model results, as shown in Fig. 7c. This predicted circulation
was not observed in the period under consideration. The degradation of
the forecast appears to be a direct consequence of the trajectory of the
glider during the second and third assimilation cycles (Fig. 3f) and the
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Fig. 8. Same as Fig. 6 but for the southern validation
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associated flow-dependent model error covariance. In general, we ob-
serve that the free ensemble reproduced the spatial pattern reasonably
well, as the reproduced pattern is coherent with the large-scale dy-
namics of the Ligurian Sea; meanwhile, the assimilated ensemble was
affected by spurious model anti-correlations at a high-frequency scale
that propagate inside the model domain with the ongoing cycling of the
data assimilation system. As explained in Section 2, an inflation of
ensemble perturbations is employed here to prevent the collapse of the
ensemble variance during the assimilation cycles. While the resulting
standard deviation agrees with that of the free ensemble, the spatial
correlation associated with the updated covariance matrix is unaltered.
Finally, the forecast from the model configuration with data assimila-
tion but without covariance localization shows a strong temporal
variability that does not correspond to the observations.

The forecasts from the model with both assimilation and covariance
localization are shown in Fig. 7d. The results still show deficiencies
when compared to the observations. Specifically, the onshore isohalines
are deeper than the observed ones. This difference from the observa-
tions is slowly corrected as the assimilation proceeds, at least with re-
gard to the 38.1 and 38.5 isohalines. Note that the temporal variations
in the forecasts are weaker than in the previous case and are more si-
milar to the observations. This finding agrees with the forecast eva-
luation along the northern transect, where the use of covariance loca-
lization smooths out the sensitivity of the model forecast to the newly
assimilated data.

The temporal evolutions of p and the MB, SDE and CC are displayed
in Fig. 8a, b, ¢ and d, respectively, for the southern transect. The free
run forecasts show high values of p during the different assimilation
cycles. Meanwhile, the models with assimilation initially generate
oceanographic conditions in the southern region that are far from
reality. Unlike the model with only data assimilation, the model with
both assimilation and covariance localization shows rapid increases in
the value of p as the glider approaches the southern region and termi-
nates with the best index during the last assimilation cycle. Regarding
the normalized MB and SDE, Fig. 8b and c show that all models gen-
erate forecasts with different non-zero values of the MB and SDE. The
MB of the free run remains nearly constant throughout the simulation
period, while the MFS forecast shows an increasingly negative bias after
15 August, ultimately reaching a maximum value of — 0.26 at the end
of the experiment. The MB values for the models with assimilation vary
in form and intensity, as seen in Fig. 8b. Both models with data as-
similation try to correct the negative model bias in the free run; the
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model without covariance localization shows a maximum MB of 0.26
against the lower value of 0.1 for the model with covariance localiza-
tion. At the end of the experiment, both of the models attain a negative
model bias; the model with covariance localization registers a lower
model bias of — 0.05. The correction of the SDE during the assimilation
cycles of the model with both assimilation and covariance localization
is the most remarkable fact that is displayed in Fig. 8c. Note that the
initial non-zero value of the SDE is not corrected by only assimilating
the data without covariance localization. Finally, the evolution of the
CC for each different forecast is shown in Fig. 8d. The CC values for the
free run and the MFS remain nearly unaltered with high correlation
values for the duration of the experiment. However, the forecast pat-
terns from the models with assimilation become more correlated with
the observations as the assimilation proceeds. The predicted patterns
obtained when the assimilation is complemented with covariance lo-
calization results in the forecast with the highest correlation with the
observations. In summary, the figures seem to indicate that data as-
similation when the glider is far from the validation region induces a
degradation in the forecast quality with respect to the free run forecast.
However, the initial deficiencies are corrected when the model assim-
ilates data with covariance localization and when the glider observa-
tions are representative of the oceanographic conditions within the
validation region.

3.4. Assessment of the model biases

The analysis of the MB values displayed in Fig. 6b and 8b deserves
further attention. This is because the existence of an MB in the free run
model may significantly degrade the performance of the assimilation
scheme. MBs can be mainly introduced through open boundaries or
atmospheric forcing, among other sources. An identification of the MB
sources can be conducted from a comparison of long-term model runs
with available observations. In contrast, due to the limited size of the
open sea, long-term environmental knowledge is sparse or inexistent in
the region considered. Alternatively, a comparison of the data gathered
during the ScanFish transect along the periphery of the surveyed do-
main with the different model results could support an effort to discern
whether MBs are introduced through the open boundaries. Fig. 9a
displays the salinity field sampled along the ScanFish track (see Fig. 1),
while Fig. 9b, c and d show the model errors obtained from the MFS, the
free run, the model with data assimilation but without covariance lo-
calization and the model with both assimilation and covariance
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Fig. 9. a) Salinity observations obtained with the
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localization, respectively. A comparison of Fig. 9a and b reveals that the
MEFS results underestimate the salinity along the sampled track. This is
in agreement with the negative values of the MFS MB reported in
Figs. 6b and 8b. Moreover, the magnitude and spatial pattern of the
salinity errors obtained from the free run (Fig. 9c) closely resemble
those from the MFS (Fig. 9b). This supports the hypothesis that MBs are
mostly introduced through the open boundaries. The similar initial
evolutions of the MBs associated with the MFS and the free run (Figs. 6b
and 8b) also reinforce this hypothesis. Fig. 9d and e provide insight
about the robustness of the different assimilation procedures to the
existence of biases. The results from the model run with both data as-
similation and covariance localization significantly correct the salinity
differences observed from the other runs (Fig. 9e). Again, this result is
in agreement with the evolution of the MB displayed in Figs. 6b and 8b.

4. Discussion and conclusions

The availability of near-daily CTD casts at fixed spatial locations has
allowed for a detailed temporal and spatial validation of the perfor-
mance of a regional ROMS-EnKF system used to assimilate temperature
and salinity observations collected by a Slocum glider over a 15-day
period. The performance assessment was conducted by tracking the
temporal evolution of a commonly used performance index and by
comparing forecast patterns with observations along two pre-
determined transects located halfway between the centerline of the
domain of interest and its northern and southern boundaries. The latter
was possible thanks to the sustained collection of independent ob-
servations.

A set of numerical simulations were run to consider the production
of near-operational forecasts for the region through a free run en-
semble, a model configuration including data assimilation, and a model
configuration that augmented the data assimilation with covariance
localization. It was found that the forecast of the salinity field in the
northern validation section using the model with data assimilation
generally improves the p, MB, SDE and CC estimates relative to the free
run. The impact of assimilation was favorable for the simple circulation
structure in that portion of the study domain characterized by a geos-
trophically adjusted current associated with a salinity front that evolves
at a slow scale. Thus, a glider transect inside the salinity front is
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sufficient for constraining the model state to a dynamical evolution
closer to the observations from the first assimilation cycle. For this
reason, data assimilation corrects the wide structure of the NC derived
from the free run. The performance indices obtained from the model
with both assimilation and covariance localization improved upon
those obtained from the other cases considered. Moreover, they were
also more robust to the location of the assimilated observations. Data
assimilation was not very efficient at improving the model forecasts in
the southern validation section. The complicated spatial circulation
pattern along the southern transect with a current bifurcation and re-
combination clearly reduces the ability of the model ensembles to
produce reliable forecasts in this region. Assimilating data when the
glider transits the northern part of the domain significantly degrades
the performances of the model predictions in the southern area with
respect to the free run. This initial difference in the performance is
reduced and overcome by using the assimilation approach in-
corporating covariance localization when the glider reaches the
southern validation transect.

As was previously mentioned (see Fig. 4a and b and the related text
in Subsection 3.1), the estimation of the covariance in the EnKF de-
grades essential properties, leading to the underestimation of the ana-
lysis error and the generation of spurious long-range correlations. The
results presented here also indicate the loss of spatial coherence in the
covariance, which is another undesirable deficiency introduced during
the update process. These detrimental effects start after the second
assimilation cycle and propagate over the subsequent successive cycles,
resulting in model anti-correlations at a high spatial frequency that
become meaningful when the glider moves outside of the NC gyre. It is
hypothesized that the generation of the spurious sample covariance
matrix originates from the introduction of higher-frequency time scales
(uncorrelated with the slow scales) in the system that eventually
dominate the first sample covariance matrix derived from the free run
ensemble. These fast, uncorrelated scales progressively degrade the
EnKF performance and, in particular, attenuate and distort the salinity
front. This degradation mechanism resembles the mechanism identified
by Ballabrera-Poy et al. (2009) in a test case for a nonlinear chaotic
model coupled on two different spatiotemporal scales. These authors
found a detrimental effect in the EnKF when introducing fast, evolving
scales uncorrelated with the rest of the dynamic system. This generates
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a spurious sample covariance matrix when using a finite ensemble. Fast,
evolving scales are produced during the adjustment of the analysis field
in the present case. The sorting of the assimilation periods dictated by
the fast and local dynamics prevents an adequate computation of the
numerical covariance.

The positive impacts of covariance localization are more evident for
the northern validation section, where the oceanographic structure of
the water column is described by a geostrophic current flowing along
the continental slope. Moreover, the distance of the glider from this
section generates a slower degradation of the forecast performance.
However, in the southern validation transect, such positive effects are
observed only when the glider is in relatively close proximity to the
transect. The dynamical complexity of the circulation pattern in the
southern region of the study domain increases the sensitivity of the
forecast performance to the sampling strategy. Although some studies
have attempted to address the definition of the most effective sampling
strategy based on the available resources and the dynamical variability
of the region (Alvarez and Mourre, 2012; Mourre and Alvarez, 2012;
Heaney et al., 2016), this issue still remains largely unexplored.

Our findings are aligned with previous works that analyzed the
benefits of the EnKF assimilation scheme together with covariance lo-
calization in regional simulations. Keppenne and Rienecker (2003)
identified multiple key factors, including an inhomogeneous, aniso-
tropic background error covariance model, a dynamical estimation of
the covariance model and a possibility for multivariate updates, that
can improve the performance of the EnKF when compared with a
standard univariate optimal interpolation. A similar conclusion was
reached by Miyazawa et al. (2012) when studying the interactions
among the open and coastal seas. The need for an EnKF approach is
justified in terms of the highly variable scales originating from the
coexistence of multi-scale phenomena, the statistical representation of
which requires an anisotropic and continuously updated error covar-
iance. Covariance localization is considered a fundamental metho-
dology for filtering long-range correlations that result from small en-
semble sizes employed to estimate the anisotropic error covariance
(Miyazawa et al., 2012). Our results complement previous studies by
highlighting another beneficial mechanism resulting from covariance
localization. Specifically, it limits the detrimental effects originating
from the introduction of fast, evolving scales that might be uncorrelated
with the rest of the dynamic system. To this end, covariance localiza-
tion was identified as an efficient way for partially mitigating these
spurious effects. This approach is especially relevant in the framework
of this experiment, where short-term forecasts (i.e., 2 days) were con-
sidered. This time scale limited the possibility of applying other ap-
proaches for filtering out undesirable high frequencies.

Data assimilation schemes using the EnKF and covariance localiza-
tion are not exempt from further improvement. An important issue to
consider is the fact that model errors are not unbiased. In the present
study, the model bias was derived from a large-scale model and was
then introduced to the regional model through the open boundaries.
The presence of model biases may generate additional difficulties when
observations are localized in a relatively small region of the domain. A
bias can produce field discontinuities in modeling areas far away from
the observations. An approach that can be used to mitigate the effects of
error biases consists of the assimilation of different data types and the
use of observations with global coverage, if available, even when
studying spatially limited areas (Keppenne and Rienecker, 2003). In
this regard, satellite observations are particularly useful. However, the
assimilation of satellite data was not specifically considered in our
work. Rather than providing an operational forecast, the purpose of this
study was to isolate and identify the mechanisms that degrade the es-
timation of the error covariance in the EnKF as well as to evaluate the
efficiency of covariance localization in mitigating those errors when
modeling a limited coastal area. This approach could be hindered if
these mechanisms are masked by the assimilation of a rich set of ob-
servations. Moreover, limitations in satellite data coverage and/or
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quality during an experiment could prevent their exploitation.

To conclude, this study has shown that the use of covariance loca-
lization can significantly improve the performance of an EnKF for a
field experiment with a dense data set that was continuously collected
to allow for a unique model forecast validation. This improvement both
prevents the occurrence of spurious long-range correlations in the
covariance and contributes to preserving the spatial coherence in the
covariance matrix throughout the estimation process in the EnKF.
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