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ABSTRACT 

The problem of scattering from a random interface separating two 
fluids with different densities and sound speeds is considered. The method 
is to write coupled integral equations in coordinate space connecting the 
surface and volume values of the Green's function for the deterministic 
problem. In Fourier transform space the equations simplify, and it is 
possible to write a single integral equation for the Fourier transform of 
the surface value of the Green's function. Feynman-diagram methods can be 
used to aid the construction of both the Dyson equation for the mean of this 
Green's function and the Bethe-Salpeter equation for the mean of its second 
moment. These are derived assuming a Gaussian distribution of surface heights 
and using the accompanying cluster decomposition. As an example, a simple 
integral equation for the scattering amplitude corresponding to multiple 
scattering using the Kirchhoff approximation is also derived. It is 
analogous to the smoothing approximation used in random volume scattering 
theory. Its numerical solution for the special case of a Neumann surface 
is presented and, for large values of the Rayleigh roughness parameter, 
yields more coherent specular intensity than the Kirchhoff approximation. 
Other examples and the relation of our formal ism to other methods are also 
discussed. In the limiting cases the general formalism reduces to the 
standard results. In particular, in the flat surface limit we get the 
result in Officer's book. 
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1. Introduction and Notation 

We describe the scattering of a scalar wave from a random two fluid 

interface in Fig . 1. Regions Vl and V2 are semi-infinite fluids with 

sound speeds , wavenumbers, and densities given by el , kl , Pl and c2, k2' P2 

respectively. Coordinate three-vectots are specified by ~ = (x,y,z) = (X.L' z) 

and the random interface by z = h(x~). The latter is assumed to be a Gaussian 

distributed random variable. A three-vector on the surface is A = (xJ.' h(x-L)). 

The method is to derive integral equations for the Green's function of the 

problem, which is composed of two parts, G1 defined in Vlt and G2 defined 

in V2• They satisfy the equations (xeV'J) 

= -8(X_X") ,., ,., 

where a = a lax is the derivative (repeated subscripts are summed from 1 m m 
to 3). appropriate radiation conditions for large I.el, and continuity 

+ 
conditions at the interface. The free-space Green's functi ons G?- (x x") J ~'#v 

(j = 1,2) satisfy similar equations except that x is in all space. 
, -

Explicitly they are 

( 1 ) 

G~±(x x") = [41Tlx-x"l] -1 exp[ ±ik . Ix-x"I ] (2) J ,.,,' - ,., - . J ,.,,., 

where the ± indicate the radiation condition. We now drop this ± notation 

for simplicity, resurrecting it only when necessary. 

Next, apply Green's theorem to Gl and GO 
2 in Vl and to G2 and GO 

2 
in V2, that is use the same free space Green's function in both regi ons • The 

results are evaluated in Vl and combined to yield 

Gl (~' 'L')8 (z' - h(xl)) 

= G0
2(x',x") + (k2l-k22)jG02(X"X)Gl(X,X")8(Z-h(X.d)dX _ ,.., _ N,.,,oJ _ 

( 3) 
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where the step function 

8(z - h(x.l.)) z > h(xJ, ) 

z < h(x~ ) 
(4) 

is used to explicitly indicate the discontinuous nature of the 1.h.s. of (3), 

and the nonnal is nm(x.L) = 8m3 - a'mol. h(x . .I) with 8m3 the Kronecker delta. 

In order to derive (3) we have used a continuity condition on the normal 

derivative of the Green's function 

A further continuity condition is necessary on the Green's function and we 

express it generally as 

G (x x") = 2 ,.,s' -

(5) 

(6) 

The explicit form for a is derived from the flat surface limit of the theory 

in the Appendix and it is shown to be a constant. For the moment we keep it 

genera 1. 

Using (6) in (4), defining the Ifie1d" Green's function G~ and the 

"surface" Green's fu~ction GS as 

GD{x x") = 
1 -' -

G,(x, x")8{z - h{x~)) 
N -

yields the result 

(7) 

(8) 

GD{x' x") = GO(x' x") + (k2-k2)f GO(x' x)GD(x x")dx (9) 1 IV 'IV 2 _ '- 1 2 2 IV ,_ 1 _''V IV 

-2 f a'~G~(~'.,~s )nm( xJ.) r{ xJ.JGS ~s' £') dx.1. . 
with 

r{xJ.) = [' -a (xJ.)] I [1 +a (x.J.}l • ( 10) 

Letting X'-+XS' through positive Zl values in (9) yields 
,." ,." 
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G s ( X ' x" ) = GO (X ' X" ) + ( k 2 - k 2 ) f GO ( X ' x) GO ( X X II ) dx ws J IV 2 NS J ,.; 1 2 2 -s' _ 1 _, _ ,., (11 ) 

where 

(12) 

With G~(k) the Fourier transfonn of G~(X) and 

2i {knu. + ~ml 
2 ki } p(2)(k) k -

= 2 
m A, kz 

( 13) 

Here P in (13) stands for the Cauchy principle value. These functions 

were previously calculated when we discussed scattering from a random Neumann 

surface 1• Equations (9) and (11) can be thought of as coupled surface-volume 

integral equations for the Green's function of the problem. Their utility is 

realised under Fourier transfonnation. 

2. Fourier Transfonnation 

Introducing Fourier transforms of the form 

(14 ) 

and analogous functions for GS and G~ in (9) and (11), then setting the 

resulting integrands to zero using a gauge condition argument previously 

discussed1 yields two equations which can be combined. The most e1egent way to 

define 1he result is to first define singularity free Green's functions r~ and 

r S via 

G ~ J S (~ , J~' ) = ( 211' ) 3 5 (1 I -1") G ~ (k I ) 

+ (211') 3G~(k') r~'s \tl,,t") G~(kll) (15) 
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Note that we now have G~ rather than G~ occurring. This arises 

naturally from the algebra. Then we can derive an integral relation for r~ 

( 16) 

where 

BO(k' k") = -2i(2") - 3k 'r (k' - k") ,., '- m m,.., '" ( 17) 

and 

( 18) 

and an integ ral equation for r S 

rS(k' k") = W(k' k") +! W(k' k)Go(k)rs(k k")dk 
,., '"" N ' ,., ,." ',., 1 _, N IV 

( 19) 

where 
W(k' k") = V (k')r (k' - k") 

IV ',." m ,., m N -
(20) 

and 

Vm(,~} = - (~:)3 G~(k) t(~~-k~}V(k2_k~} S.1. + 6ml 

222 Note that if we set k2 - kJ. II kz in the principle value part of (21) (called 

the "on-shell" or "a" condition) then 

so that 

rS(k' k") 
-'~ 

o 

= k' m 

= rD (k'. k II) 1 _ - ~ 

(22) 

(23) 

Hence we have an integral equation for r S and an algebraic procedure for 

calculating r~ from it. The latter is intimately related to scattering as 

we point out in the next section. Our results here reduce to the analogous 

results for the Neumann probleml when r(xJ) = 1 and k1 = k2• 

'SACLANTCEN CP-17 17-5 



DESANTO: Scattering from random interface 

3. Reduction 

To point out the relation between r~ and the scattering problem we 

note that we can write the outgoing scattered field ~o in terms of the 

incident field · ~i by using the Fourier transform of the r~ part of (15). 

The result is 

Each of these fields can be further decomposed into plane wave fields ~o 

and ~i via 

and the plane wave fields related via 

t/>°+(kJ.) = / T(kJ,.' kl)t/> i+(kl)dkl 

where 

k' - K' z -- 1 

The various conditions on the z-components of the wave numbers describe 

(24) 

(25) 

(26) 

(27) 

(28) 

asymptotic conditions necessary to ensure that we have appropriate incoming and 

outgoing waves. It is in teresting and useful to note that, using these 

conditions. we · can again algebraically relate r~ and · rS 

= -K' 1 (29) 

SACLANTCEN CP-17 17-6 



DESANTO: Scattering from random interface 

Similarly complex conjugate fields can be defined and the scattered intensity 

I (kJ.) given by 

I(k.,.L)c5(k.1. - kl) = <l>°+(kJ) {<I>°+(k~)}* 

( 2 2 J s+ = 7r /K,) r (k.L' Kl ; 

For single plane wave incidence 

(30) considerably simplifies. Note that we've used the functions rS in the 

calculations via (29). 

4. Random Surface 

Up to now we have been describing a deterministic problem. In this 

secti on we wri te down the integra 1 equa ti ons for the fi rs t two moment!; of r S 

without going into detail about their derivation. Details can be found in the 

references. We consider the surface to be Gaussian distributed. Note that the 

only place h(xJ ) occurs explicitly in (19) is in the rm integral v/hich is 

part of the functi on W. Integrati on of rm by parts reduces the prob 1 em to 

taking the ensemble average of an exponential function. If we were to write an 

iterative solution of (19), then take the ensemble of the result term by term 

and resum the result it is necessary to consider ensemble averages of products 

of the rm. This can be simplified using the characteristic function 
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where 

is the two-point correlation function. Equation (33) follows from Gaussian 

statistics. In addition the products of rm are cl uster decomposed using 

methods previously discussed1,2. 

Using these properties we can write the integral equation for the first 

moment of r S, the Dyson equation. as 

< rS+(k I kll) > = M(k I kll) . N.'_ N'_ 

(34 ) 

(35 ) 

where the function M is called the mass operator in analogy "'ith random volume 

scattering theory3. Although three-dimensional. the integral equation (35) 

appears simple. This is deceiving since M is an infinite series of successively 

more complicated terms involving multiple integrals. It Cilnnot be summed, 

although each term can be formally written down quite easily using diagram 

techniques. l ,3 Solutions for this first moment describe coherent scattering. 

The integral equation for the second moment is a Bethe-Salpeter type 

equation and is 

< rS+(k k) rS-(k ' k') > 
N' Na ;.II '-a 

= <rs+( k k) > <rs- (k I k I) > + L (k k k I k I ) ,.,' _a - ' -a ,.,,' Na; _ .'-a 

+1 L (!" ,til; k I k I ) G 0+ ( k II ) rS+(k ll k) dk ll 
'" '_a 1 .,...'Na -

+J L(k, ka; k' k") GO-(k") rS- (!." k I) dk" 
.,., IV 

_,_ 1 ' ·Na -
• < rS+(k ' k) rS-(k" ' k ' » dk" dk'" 

_ • N a ~. ,." a ~. """'. 
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Where the intensity operator .L is again an infinite series of terms also 

most easily written down using diagram techniques. The solution of (36) 
yields the incoherent intensity. Writing down higher order moment equations 

is also possible~ 

We have presented the above as examples of what can be done using this 

general method of approach. The problem can be considered formally in a very 

straightforward way. But the general cases of (35) and (36) are too complicated 

to be solved as yet. What is available however is a simple example of (35) which 

can be solved. If we approximate M as the first term in its series expansion 

it is possible to write an approximation to the coherent specular intensity for 

plane wave incidence (at angle 9i ) as 

where 

and where 

R(p I N I 

p = p 1/P2 

N = . kl/k2 

ki = kl sin 9; 

. i 
Ki • (k~ - kl2) 

R is the plane wave reflection coefficient 

(1 - N2s; n2 9;) i -P cos 9. 
9.) = ' 

, (1 - N2sin2 0.)1 +pcos e. , . , 

(see the Appendix) 

Here V+ satisfies a one-dimensional integral equation of the form 

f+ (e I t ~") = C (~I _~ II) o 
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where (41) 

and (42) 

with a is the rms height of the surface, ~ the Rayl eigh roughness parameter, 

and the definition 

( 43) 

I f we furthe r approximate V+ by the Co term in (40) we get the Ki rchhoff 

result. The full equation (41) can be interpreted as a lowest order (in the 

mass operator) multiple Kirchhoff expansion. Numerical solutions of (41) for 

the Neumann surface (R = 1) have been presented4 and are shown in Fi g. 2. For 

~ < 1 the result agrees with the Ki rchhoff approximation but for ~ > 1 the 

multiple scattering yields more coherent specular intensity than that expected 

from the Kirchhoff result. This effect has been experimentally observed in 

diverse scattering problems and explained using various theoretical models. 5 

A comparison of our results with others will be discussed elsewhere. 6 

5. Summary 

We 'have presented rather briefly an outline of our ~ethod of approach to 

scattering from a random interface. It;s based on using only a single free-

space Green's function in deriving the coordinate-space integral equations. the 

use of Fourier transform methods, and cluster decomposition methods similar to 

those used in statistical mechanics. Once the general method is understood it 

, iss trai ghtforward to write down moment equati ons as in Sec. 4. A program to 

investigate the general properties of these equations as Vlell as numerical 

solutions of specific examples is under way. Early results indicate the necessity 

of considering multiple sca t tering in problems of this type. 
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Appendix - Flat Surface Limit 

We have already pointed out that the formalism reduces to the Neumann 

case when r(x~) = 1. but have not shown how to derive r(x~). or equivalently 

a(xJJ. which we used in the boundary condition (6). We do this here •. For a 

flat surface. h(xJ) = O. and 

where 1!(k.&.) = J dx.L exp(-ikJ.:x ... Jr(xJ) . 

and thus 

Substituting (A.3) into (19) . it is easy to show that 

Similarly (16) yields 

for a flat surface. Substituting (A~5) into (15). Fourier transforming the 

result, carrying out the integrals and defining 

(A.1 ) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

where R(k~) is the same plane wave reflection coefficient defined in (39). yields 

the . resu1 t 

exp(iKiz") il 
Gl(z'. Zll) = ~XP(-iKl'z')+R(kJ.)exp(iKl'z') -2iKl ' L: (A.8) 

which is the one-dimensional Green's function for the flat interface. Similarly •. 

results can be derived for the transmitted field. If we set kl = 0 in (A.6) we 

can solve for r(k.L.)' r(xJ.) by f='ourier inversion using (A.2). and hence a (x",,J 

to yield 
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just the ratio of densities of the two media. Thus starting with a general 

fonn for a \ole are led to a coordinate independent result via the flat surface 

limit. Several equations in the paper are thus simpli f ied. 
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.x 

FIG. 1 SECTION OF A RAN DOM INTERFACE z = h(xl) SEPARATING TWO SEMI-INFINITE FLUIDS 

(REGIONS VI AND V2) HAVING DIFFERENT DENSITIES P AND WAVENUMBERS k 

O.OOOr-~~~'--------.--------'--------r------~ 
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FIG. 2 COHI:RENT SPECULAR SCATTERING FROM A RANDOM NEUMANN SURFACE (Ref. 4) PLOTTED 
VERSUS ~ = k] (J cos e i, THE RAYLEIGH ROUGHNESS PARAMETER. Co(2) =exp(-2 ~2) 
IS THE KIRCHHOFF RESULT, B(l, -1) ANOTHE R SINGLE SCATTER RESULT INVOLVING 
COMBINATIONS OF EXPONENTIALS AND T(l, -1) THE MULTIPLE SCATTERING SOLUTION OF 
Eq- (41) HERE FOR R = 1 
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