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CONGRATS, an acronym for the Continuous Gradient Ray Tracing System, 
is an integrated collection of ray tracing programs designed to model 
acoustic propagation and reverberation. The fundamental programs of 
the series, CONGRATS I, construct ray diagrams and generate eigen-
rays, that is, rays that join a given source to a given target [Ref. lJ. 
The most distinguishing feature of CONGRATS I is that the velocity of 
sound in the ocean is represented by a function of depth whose first 
derivative is continuous, and still permits one to integrate the 
resulting ray tracing equations in closed form. 

CONGRATS II processes the eigenray information that was generated by 
CONGRATS I, and displays it in such useful forms as total propagation 
loss as a function of range, and pulse shape as a function of time 
[Ref. 2J. The various multipath arrivals can be summed using random 
phase or coherent phase addition. 

The most recent contribution to the ray tracing series, CONGRATS III, 
is the main topic of discussion [Ref. 3J. Bottom, surface, and volume 
reverberation are computed as a function of time for a given set of 
environmental and sonar parameters. The total reverberation level is 
assumed to be the sum of the three components. Among the notable 
features of CONGRATS III is the large number of multipath arrivals 
that can be considered in the reverberation computation. 

77 



REVERBERATION THEORY 

Let us review reverberation theory. Consider an acoustic signal 
which originates at a point source at a reference time equal to zero 

and is transmitted through the ocean [Fig. lJ. A portion of the 
signal is scattered back toward the source as the signal encounters 
scatterers on the ocean bottom or surface or within the ocean volume. 
When the rescattering of the scattered sound is neglected, a closed 
ray path from a source to a scatterer and back to the source can be 
constructed from an incident ray (a ray from the source at point 'a' 
to the scatterer at point 'b ' ) and a backscattered ray (a ray from 
the scatterer back to the source). Let the incident ray enter the 
water at time to and have travel time tl and let the backscattered 
ray have travel time t 2 • Then the closed r ay path will have round 
t r ip travel time 

t = 

It will return to the source at time 

T = , 

and have an intensity 

where 

I 

I s 

= 

is the reference intensity 1 

is the transmitting response 
yd from the source, 
of the sonar, 'Ild 

'Il d is the receiving response of the sonar, 

'Ilw 
'Il ' w 

is 
is 

the propagation loss 
the propagation loss 

factor of the incident ray, 
factor of the backscattered 

[Eq. 1 J 

[Eq. 2 J 

[Eq. 3J 

ray, and 
k is the backscattering coefficient expressing the ratio of 

reflected intensity to incident intensity per scatter. 

If the acoustic signal has pulse length T, it follows that 

[Eq. 4 J 



and the closed ray paths contributing to the reverberation intensity 
at time T are those with travel time satisfying 

T - T ~ t 5 T [Eq. 5J 

The corresponding scatterers will be contained in a region R. 
Let this region be partitioned into numerous subregions 6R. 

1 
ln 

each of which 
let there be 

~ ~, ~ 'and k are representative values, and ' Id 'Id 'lw 'IW 
N scatterers per unit region. Then if the reverbera-

tion intensity 
contributors 

I rev is the sum of the intensities of the individual 

I = I 2J 'l ' , kN6R. rev s R d 'Il d 'Ilw 'Ilw 1 
[Eq. 6 J 

In the limit as 6R. approaches zero, 
1 

I = I fR 'l d 'Ild 'lw 'Il~ mdR rev s [Eq. 7 J 

where 

m = kN [Eq. 8 J 

is the backscattering strength. 

NUMERICAL INTEGRATION OF THE REVERBERATION INTEGRALS 

When the scatterers are confined to the ocean volume, the 
corresponding reverberation is called volume reverberation and 
Eq. 7 becomes 

I = I ~~ t(~ ) 'Ild 'ld 'lw 'Il ' mrdAd~ [Eq. 9J rev s w 

where 
r is the horizontal range, 
6~ is the change in azimuthal angle, and 

6(~) isthe intersection of the insonified region R 
with tne half-plane ~ = constant. 
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In order to accomplish this integration numerically, the ocean is 
partitioned by vertical half-planes ~ = ~k and each vertical 
plane is further partitioned by a range-depth grid. The eigenrays 
to each point 1n the grid are computed and combined according to 
the summation 

I rev = I s r. A . . 6~k 
1 1J 

[Eq. 10J 

where A.. is an area insonified around the (r., z.) -th grid 
1J 1 J 

point. 

A similar analysis results in the boundary reverberation summation 
r . 6r. 

I rev = I 6~ (~d ~d ~w ~~ m) c~s 9
1 

6~k [Eq. llJ 
s k ~ bot 

At present, analytical bottom and surface backscattering equations 
d eveloped by Mackenzie [Ref. 4J 

10 loglo \-.l = - 27 + 10 log (I sin 91 sin 92 I ) [Eq. l2J 

and Chapman-Harris [Ref. 5J, 

10 log10 \-.l = 9 3.3 (3 log 30 - 42.4 log10 (3 + 2.6 [Eq. l3J 

where 

, [Eq. l4J 

v is the wind speed, and f is the frequency, respectively 
have been implemented in the computer program. The volume back-
scattering strength is found by interpolating in a table of strength 
versus depth. Figure 2 illustrates a typical backscattering strength-
depth curve. The actual unit of strength is more complicated than 
simply decibels and should be associated with a unit of volume, in 
this case, cubic yards. 
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Independent array response models supply the transmitting and 
receiving responses of the sonar in the form of tables of loss 
versus inclination angle at a particular azimuthal angle. Then 

by looping through the reverberation program numerous times, one 
is able to consider three dimensional beam pattern effects. 

The propagation losses and travel times of the eigenrays, which 
are required in the reverberation calculation, are computed in 
CONGRATS I using the continuous gradient ray tracing technique to 
be described shortly. 

A CONTINUOUS GRADIENT RAY TRACING TECHNIQUE 

The basic assumption of CONGRATS I is that the velocity of sound in 
the ocean can be adequately approximated by a function of depth only, 
say V(z). Let us also confine our attention to ray segments that 
do not intersect ocean boundaries. 

V(z) = C dr 
v ds 

Then Snell's law 

[Eq. l5J 

uniquely determines the coordinates (r,z) of a point on the ray 
segment as a function of initial position (r ,z ), initial direction a a 
~: I a ' ~: I a}' and arc length s . The vertex v e loc i t y Cv is constant 
along the segment and can be expressed in terms of the initial 
conditions through Snell's law. Travel time t is related to sand 
V by 

ds = V (z) dt 

It is well known that a ray passing from an initial depth 
greater depth z will undergo the change in range b 

6,r = 

and travel time 

Cv dz 
= 
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[Eq. l6J 

z to a 
a 

[Eq. 17J 

[Eq. l8J 



providing that C is always greater than V. v 
the ray is horizontal and is said to vertex. 

When Cv equals V, 
It can also be shown 

that these integrals are convergent unless the velocity gradient 
V' (z) vanishes at a vertexing depth. 

In practice, V is known only at discrete data points (z.,V.), and 
1 1 

one must evaluate Eqs. 17 and 18 numerically. Unfortunately, the 
number of data points is usually insufficient to expect standard 
numerical integration formulae to give accurate results. An alterna-
tive approach is to first fit the data with an interpolating function, 
and then either integrate Eqs. 17 and 18 in closed form if possible, 
or generate additional data points to be used in conjunction with 
standard numerical integration formulae. However, it is desirable to 
approximate the velocity-depth profile with a function that has a 
continuous derivative, for discontinuities in the velocity gradient 
often cause erroneous values of geometrical spreading loss [Ref. 6J. 

Before describing the particular velocity representation that is used 
in the CONGRATS programs, it is convenient to clarify the notation. 
The function V(z) denotes the velocity of sound in the ocean and is 
defined from the ocean surface to the ocean bottom. V. is the value 

1 

of V(z) evaluated at the depth zi [Fig. 3J. 

The function V.(z), 
1 

on the other hand, is only defined in the 
interval zi::; z ::;:; zi+l' Primes of functions denote differentiation 
with respect to depth, while G. is the value of V' (z) evaluated 

1 

at Z . 
1 

In general 
the given data V. 

1 

G. is not known but can be estimated from 
1 

using numerical differentiation. The quantities 
are parameters. They are constant in each 

horizontal layer but may differ from layer to layer. Then a 
continuous gradient velocity approximation can be constructed as 
follows: 

For each pair of adjacent data points i and i+l, find a four 
parameter analytic function V.(z) such that its derivative V.' (z) 

1 1 

is continuous in the closed interval zi ~ z ::;:; zi+l and satisfies 
the boundary conditions 



V. (Z. ) = V. [Eq. 19J 1 1 1 

Vi(Zi+l) = Vi +l [Eq. 20J 

V. I (Z. ) = G. [Eq. 2lJ 1 1 1 
, 

and 

V. I (zi+l) = Gi +l [Eq. 22J 
1 

Finally, set V(z) = V. (z) 
1 

in the half-closed interval 

It can be shown that parameters vo ' go gl and g2 can be chosen so 
that the function 

where 

V.(Z) = 
1 

t;,.z = z - Z. 
1 

[Eq. 23J 

[Eq. 24J 

satisfies the above conditions [Ref. 7J. It can also be shown that 
the corresponding range integral Eq. 17 and time integral Eq. 18 can 
be evaluated in closed form in terms of elementary transcendental 
functions. 

There are some difficulties involved with this curve fitting method, 
most of which are due to computer truncation errors. All can be 
removed by making appropriate modifications. The method has been 
used extensively ln CONGRATS I, and every velocity profile that was 
considered could be satisfactorily fitted. 

A useful option in the program allows one to relax certain boundary 
conditions. The resulting representation still has a continuous 
gradient but is not forced to go through all of the data points. 
Instead, the condition 

[Eq. 25J 
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must be satisfied, where €~O is a velocity tolerance to be 
supplied by the user. This option tends to reduce the number of 
functions in the form of Eq. 23 required to fit the given profile. 
Hence fewer integrals need to be evaluated, and a substantial 
saving in computer execution time is realized. 

CONTINUOUS VERSUS CONSTANT GRADIENT FIT TO AN EPSTEIN PROFILE 

A second option in CONGRATS I allows one to substitute the well 
known constant gradient technique for the continuous gradient 
technique. The velocity-depth profile is then approximated by 
straight line segments instead of by functions in the form of 
Eq. 23, and one can integrate the resulting ray tracing equations 
more easily. In fact, because of the relative simplicity of the 
constant gradient technique, it is the most commonly used ray 
tracing method. The reason we prefer the more complicated continuous 
gradient technique will become clear after the following example. 

Figure 4 shows an Epstein velocity-depth profile which was fitted 
with five CONGRATS velocity functions. There were fifty original 

data points as indicated by plusses. The CONGRATS velocity break-
points are indicated by circles and by plusses within circles. 
A 0.1 mls velocity tolerance was used. That is, the maximum error 
in the curve fit was less than 0.1 m/ s. Since the continuous grad ient 
technique would perform only one-tenth the number of integrations 
required by the constant gradient technique, and a single integration 
uses five times more computer execution time, CONGRATS appears to 
be twice as fast, at least ln this particular example. 

When the source is placed on the channel axis at 76 m, there is a 
high degree of focussing as shown in Fig. 5. The CONGRATS ray diagram 
(on top) and the constant gradient ray diagram (on the bottom) are 
similar. Note, however, that the constant gradient solution is not 
focussed as sharply. 

The corresponding propagation loss curves for a 60 m target depth are 
given in Fig. 6. Anomalies in the computed value of geometrical 
spreading loss which were caused by discontinuities in the velocity 
gradient, are clearly visible in the constant gradient solution . 
There are no such anomalies in the CONGRATS solution. 
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EIGENRAYS 

The most important function of CONGRATS I with respect to the 
reverberation program CONGRATS III is to determine acoustic eigenrays, 

that is, those rays that join a given source (r ,z) to a given s s 
target (rt,zt). One method of determining eigenrays which was tried 
and later discarded involves an iterative scheme: 

a. 

b. 

c. 

Set i = 1 and choose an initial vertex velocity C (1) 
v 

Trace the ray with vertex velocity C (i) 
v to the target 

(i) by r depth Zt and denote the corresponding range 

\rt-r(i)\ 

If 

If is sufficiently small, convergence has 
\rt-r(i)\ is not sufficiently small, occurred. 

set 

C (i+l) = C (i) + 
r _ rei) 

t [Eq. 26J v v 

increment i, and return to step b. 

This iterative scheme has two drawbacks. 
is slow near caustics (points at which 

First 
or 
oC v 

of all, convergence 
vanishes) 

Z = Zt · 

unless a convergence acceleration technique is used. Secondly, the 
method is inefficient when many eigenrays are to be determined. 
For example, assume that there are 1000 targets, that each target 
has 5 eigenrays, and that each eigenray requires 3 iterations for 
convergence to occur. Then the total number of rays to be traced 
(15000) becomes excessive. 

An alternative approach involves a preselected set of rays. When two 
adjacent rays bound a target, an interpolation is performed to determine 
the eigenray. If the derivatives ~ I are known, one can use oC v Z = Zt 
a higher order interpolation routine. Otherwise a linear interpolation 
can be used instead. 
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The interpolation technique was incorporated into CONGRATS I and was 
found to be as accurate as the convergence method. 
of the program is geometrical spreading loss N sp , 

N = 60 + 10 10glO sp 

One of the outputs 
where 

[Eq. 27J 

is in decibels, and 8 s and 8 t are the inclination angles at the 
source and target, respectively. The number 60 appearing in Eq. 27 
is present because the unit of range is in kiloyards. The total 
propagation loss N along a ray is given by 

N = N sp + N a + N s [Eq. 28J 

where N is the attentuation loss, N is the loss incurred at a s 
surface reflections, and Nb is the loss incurred at bottom reflections. 

If several eigenrays arrive at the same target, the effective 

propagation loss Neff is given by 
N(j) 

= - 10 10glO '6 10- 10 
j 

(random phase addition) or by 

= - 20 10 glO I ~ 10 
J 

[Eq. 29J 

, [Eq. 

where i = p, 
time in seconds, 

f is the frequency in hertz , t(j) is the travel 
~(j) is the phase change in radians of the jth 

eigenray (coherent addition). Phase changes are caused by interactions 
of the ray with the ocean surface and bottom, and they also occur when 
a ray passes through a caustic curve. In the last instance, a phase 
change of n radians is added although the generally accepted value 
is - n /2 radians. The erroneous phase shift of n radians reduces 
the high intensities predicted by ordinary ray theory. It is used as 
an artifice to make reasonable predictions until one of the more 
sophisticated theories treating caustics can be added to the computer 
program. 
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EXAMPLES 

Figures 7, 8 and 9 illustrate some of the more widely used programs 
in the CONGRATS series. They pertain to the Mediterranean Sea in the 
summer. Some of the results have been compared to measured data taken 
during the summer of 1970 by the Ocean Sciences Division of the Naval 
Underwater Systems Center. Figure 7 is a plot of sound speed as a 
function of depth. The warm surface temperatures cause a sharp nega-
tive gradient near the surface, which causes the energy from a near 
surface source to be initially directed downward as shown in Fig. 8. 

The ray plot shows both bottom bounce and convergence zone rays. 
The convergence zone is defined by the caustic line intersecting 
the surface at a range of about 44 kyds. For the set of data, the 
predicted zones and measured zones have agreed in range to 
approximately 200 yards. This is a relative error of about one-half 
of one percent. 

Figure 9 displays the level at a point as a function of time. Since 
the intensity at a point changes whenever a sound pulse arrives and 
since the travel times associated with each arrival are generally 
different, the curves are composed of numerous step functions. 
These curves were obtained by adding beam pattern information to 
each arrival, and then adding the resultant signals in random phase. 
For the relatively large pulse length of one-half second the 
intensity builds up quickly, remains constant until the first 
arrival ceases to contribute, and then decays. On the other hand, 
if the pulse length is sufficiently small such as 10 ms, then the 
dominant individual arrivals become more apparent. The computer 
program can also add the signals coherently if the user so desires. 

In order to plot propagation loss as a function of range, a single 
point from the pulse shape plot is chosen as a resultant level. When 
random phase addition is used, the maximum level is usually chosen. 
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CONGRATS VALIDATION 

For certain simple propagation situations, for example constant or 
linear sound speed profiles, the ray integrals, the spreading loss 
formulae, and the reverberation integrals have been evaluated 
analytically and compared to the results produced by the computer 
programs. The analytic answers and computer answers have been in 
excellent agreement. For the numerical integration scheme described 
for the reverberation calculation, the range-depth grid over which the 
integral is taken must be sufficiently fine. At any rate, the close 
agreement indicates that the mathematical equations used to model 
propagation and reverberation are being evaluated correctly in the 
computer for the circumstances examined. We are now trying to 
determine how well the program predicts propagation and reverberation 
levels measured at sea. 

The propagation loss for a 25-foot target depth is shown in Fig. 10. 
The strengths of the various arrivals were summed using random phase 
addition, as shown by the dashed line, and coherent phase addition, 
as shown by the solid line. The predictions generally agree well 
with the measured data. Here the peak level is about 80 dB. 

Figure 11 is similar to Fig. 10 except the target depth is now at 
503 ft. Note that the maximum level has dropped about 10 dB which is 
also in agreement with measured data. 

Figure 12 shows reverberation level as a function of time, as 
predicted by the CONGRATS programs. Again the predictions were good. 

In addition to the in-house validation effort, a joint programme 
between NUSC and SACLANTCEN here at La Spezia has been developed. 
Two joint reports will be published, one presenting propagation loss 
measurements and predictions; the other comparing reverberation 
levels. A preliminary investigation has shown very good agreement 
in the propagation loss area, and good agreement in reverberation. 
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SUMMARY 

To summarize, CONGRATS I is the fundamental ray tracing program of 
the CONGRATS series. It uses a continuous gradient ray tracing 
technique in order to reduce the problem of false caustics, a problem 
which often occurs when discontinuities in the velocity gradient are 
introduced. Eigenrays are found by interpolation rather than by 
iteration in order to reduce the running time of the program. Options 
allow the user to reduce the number of horizontal layers into which 
the ocean is divided, to substitute the constant gradient ray tracing 
technique for the continuous one , to print and plot ray data, and to 
use various attentuation, surface loss, and bottom loss models. 
Although the examples discussed pertained to oceans in which the 
boundaries are assumed to be horizontal, one can also input a linear 
segmented surface and bottom. 

The propagation loss curves and pulse shape curves were supplied by 
CONGRATS II. There are several other programs in this series, but 
most are of a specific nature and would not be of general interest. 
The user may choose between random phase and coherent phase additions 
to obtain resultant intensities. 

CONGRATS III computes bottom, surface, and volume reverberation as a 
function of time. Future plans include the addition of a program to 
compute echo-to-reverberation level as a function of time, and attempts 
to increase the efficiency of the existing reverberation program . 

CONGRATS IV when completed , will allow the sound speed to vary with 
range as well as depth. 

The existing programs have been implemented on UNIVAC 1108 computers 
in New London, in California, in Rome, and at other installations. 
It has run on General Electric and Burrough ' s computers also. There 
is an effort presently underway to program a modified version of 
CONGRATS on a shipboard computer. Thus CONGRATS has become a useful 
tool in the field of underwater acoustics. 
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DISCUSSION 

Typical times to run the CONGRATS system were given as one to two 
minutes for a range of 100 kyd and a flat bottom, and 10 to 15 minutes 
for a volume reverberation calculation, both on a UNIVAC 1108. 
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