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A relation between multipath group velocity, mode number, and
ray cycle distance

Chris H. Harrisona)

NATO Undersea Research Centre, Viale San Bartolomeo 400, 19126 La Spezia, Italy

(Received 29 August 2011; revised 17 February 2012; accepted 18 May 2012)

Weston’s ray invariant or “characteristic time” in a range-dependent environment is exactly equiva-

lent to the Wentzel–Kramers–Brillouin phase integral for ducted normal modes. By considering a ray

element it is shown that the ray invariant can also be written in terms of ray cycle distance and cycle

time. This leads to a useful formula for group velocity in terms of cycle distance and mode number.

Drawing a distinction between the ray and wave interpretation, the Airy phase (i.e., the existence of a

group velocity minimum) can be included in this approach. Favorable comparisons are made with

group velocities derived from a normal mode model. The relationship is valid for variable sound

speed and variable bathymetry, and this is demonstrated numerically. The formula is applicable to

active sonar, multipath pulse shape, target signatures, reverberation, tomography, and underwater

communications. VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4726075]

PACS number(s): 43.30.Bp, 43.30.Cq, 43.30.Es, 43.30.Vh [MS]

I. INTRODUCTION

Multipath ducted propagation consists of many arrivals

that follow paths at various elevation angles. These can be

thought of in the frequency domain as modal arrivals or in

the time domain as a sequence of delayed impulse-like arriv-

als. Either way, the acoustic energy travels at a group veloc-

ity that depends on mode number or, alternatively, on the

equivalent ray angle.

For this reason the group velocity influences several

aspects of underwater propagation. The waveguide invariant

depends on group and phase slownesses (Brown et al., 2005).

The resultant striation patterns, seen as source and receiver

separate, can be thought of as the result of a stretching and

shrinking impulse response (Harrison, 2011), which are there-

fore dependent on group velocity. Group velocity can be

thought of as the speed of energy transport (Biot, 1957; Light-

hill, 1965) and, hence, can be expressed in terms of ray cycle

time and cycle distance, as well as rate of change of angular

frequency with modal wavenumber (dx/dK). Group velocity

is also important in calculating reverberation as it is composed

of responses to many scatterers at different ranges. [Strictly

reverberation is a function of time although it is often thought

of as a function of range (Harrison and Ainslie, 2010).]

In this paper we find a relation between (modal and ray)

group velocity and Weston’s concept of a “characteristic

time” T (Weston, 1959), which he defined in terms of an in-

tegral over the water column (depth H) containing ray angle

h and sound speed c,

T ¼
ðH

0

sin h
c

dz: (1)

It is understood that depth integration is limited to the region

between ray turning points (i.e., real h). This characteristic

time is also a ray invariant that is proportional to the mode

number through the Wentzel–Kramers–Brillouin (WKB)

phase integral. In other words in a range-dependent environ-

ment T is a constant, independent of range. The characteris-

tic time is also the basis of Weston’s flux treatment of

propagation (Weston, 1980), and one can derive a related

propagation formula for range-dependent environments from

the point of view of modes, eigenrays, or energy flux (Harri-

son and Ainslie, 2010). The relationships between these

equations, their derivations, and their regimes of validity are

interesting in their own right.

In fact, we will see that the integral in Eq. (1) can be equa-

ted to a function of ray cycle distance, cycle time, and turning

point velocity. The result, which is also range invariant, can be

rewritten as an identity relating group velocity, phase velocity,

and cycle distance. So we find an analytical expression for

group velocity in terms of mode number, modal eigenvalue,

frequency, and cycle distance. (As is well known, the ray cycle

distance can already be calculated directly from the separation

of the eigenvalues.) In a normal mode program that uses group

velocities to calculate reverberation truly as a function of time

rather than range [for instance, the model NOGRP (Ellis, 1995;

Chapman and Ellis, 1983)], one could use the relationship to

avoid having to repeat calculations at closely spaced frequen-

cies to estimate dx/dK.

Generally, the approach to calculating group velocity

using this analytical expression has potential to speed up nu-

merical calculations. It is applicable to any underwater acous-

tics problem where travel times are of interest. This includes

active sonar, multipath pulse shape, target signatures, rever-

beration, tomography, and underwater communications.

II. SOME RANGE-INVARIANT PROPERTIES

A. Ray point of view

Consider the phase change along an infinitesimal ray

element at angle h in a refracting medium with sound speed

c(r, z), being a function of range r and depth z. At angular

a)Author to whom correspondence should be addressed. Current address:

Visiting Professor at Institute of Sound and Vibration Research, University

of Southampton, Highfield, Southampton SO17 1BJ, UK. Electronic mail:

harrison@nurc.nato.int
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frequency x the total phase can be written in terms of travel

time t and also in terms of the wavenumber k(r, z)¼x/c and

its horizontal and vertical components, so

x dt ¼ k cos h dr þ k sin h dz (2)

or, dividing through by x, consider travel time

dt ¼ cos h
c

dr þ sin h
c

dz: (3)

We can now integrate from the sea surface to the seabed (at

depth H) to find the ray properties for a ray cycle

ð tc

0

dt ¼
ð rc

0

cos h
c

dr þ 2

ð H

0

sin h
c

dz; (4)

where rc is cycle distance and tc is cycle time. If we invoke

(at least a local) Snell’s law then the integrand in the first in-

tegral on the right-hand side is independent of depth for the

ray and we can write it in terms of the ray turning point ve-

locity or (local) phase velocity V ¼ c=cos h, which is related

to the horizontal wavenumber K through V ¼ x=K. So

Eq. (4) can be written in terms of the ray cycle distance rc

and the cycle time tc as

tc ¼ rc=V þ 2

ð H

0

sin h
c

dz: (5)

We note that already we have an equation that contains the

same integral as Weston’s characteristic time or ray invariant

[Eq. (1)]. As T is invariant with range, so are the other terms

that sum to it, i.e.,

tc � rc =V ¼ 2T ¼ const: (6)

Further, remembering that there is an identity between the

group velocity U and the velocity of transport of energy

(Biot, 1957), we have

U ¼ rc=tc; (7)

so Eq. (5) can be written in several equivalent ways as

tc ð1� U =VÞ ¼ 2T; (8)

rc
1

U
� 1

V

� �
¼ 2T: (9)

Equation (1) can also be thought of as the WKB phase inte-

gral (Morse and Feshbach, 1953) so that, for the nth mode

with horizontal wavenumber Kn, we have

xT¼x
ðH

0

sinh
c

dz¼
ðH

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðzÞ�Kn

2
p

dz¼pðn�eÞ; (10)

where e is a dimensionless end correction that depends on the

upper and lower boundary conditions for the mode, and so

1

U
� 1

V

� �
¼ n� e

f rc
¼ 2T

rc
: (11)

Finally the group velocity is

U ¼ n� e
f rc

þ 1

V

� ��1

: (12)

The terms in this equation are all available in a mode model

run at a single frequency: mode number n; modal end correc-

tion e (which we will investigate here in more detail later),

frequency f; phase velocity V ¼ x=Kn; ray cycle distance

rc ¼ 2p=jðKn � Kn�1Þj {the latter equation comes directly

from differentiating the WKB phase integral [Eq. (10)] with

respect to Kn; see Eqs. (B5) and (B6) in Harrison and Ainslie,

2010}. So the usual procedure of calculating the Kn at nearby

frequencies to estimate dx/dKn becomes unnecessary.

B. Airy phase: Modal point of view

Equations (10)–(12) are valid as long as e, which con-

sists of a contribution from the upper and lower ray turning

points, can be treated as independent of frequency and angle,

which is true for the sea surface (e¼ 0) and for refraction

turning points (e¼ 0.25). They may not be valid when the

seabed constitutes one of the duct boundaries. The earlier

equations, being ray equations, could be applied simultane-

ously at one angle over a range of frequencies. In contrast,

fixing the mode number implicitly alters the angle and the

modal end correction e with frequency. As a consequence

Eq. (12) does not predict an Airy phase (for an individual

mode) correctly, but we will rectify this shortly. Throughout

this paper we use the term “Airy phase” loosely to label the

existence of a group velocity minimum caused by merging

of the waterborne paths with the ground wave (see Tolstoy

and Clay, 1987). To understand this better we can re-derive

Eqs. (9) and (11) by carefully differentiating Eq. (10), i.e.,

pðn� eÞ ¼
ð H

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðzÞ � K2

n

q
dz; (13)

with respect to angular frequency x. Neither n nor H is a

function of frequency but k, K, and e are. So we find

�p
de
dx
¼
ðH

0

k dk
dx�K dK

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�Kn

2
p dz¼

ðH

0

k
c�K

Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�Kn

2
p dz

¼
ðH

0

1

x
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2�Kn
2

p dz�
ðH

0

1

U

Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�Kn

2
p dz: (14)

Writing the latter integral as rc/2, this reduces to

rc
1

U
� 1

V

� �
¼ 2p

x
ðn� eÞ þ 2p

de
dx

; (15)

which is the same as Eq. (11) except for an extra term

involving the derivative of e.
Following the notation of Tolstoy and Clay (1987), for a

half-space where the vertical wavenumber in the water is cw,

[c2
w ¼ k2

w � K2; kw ¼ kðHÞ; amplitude ! exp(icwz)] and the

counterpart in the bottom is gb, [g2
b ¼ K2 � k2

b; kb is wave-

number in the seabed; amplitude ! exp(�gbz)] with den-

sities in the water and bottom of, respectively, qw and qb

CMRE Reprint Series CMRE-PR-2014-003

2



(a ¼ qw=qb) the end correction e as derived from the bound-

ary conditions is

e ¼ a tan
cw

a gb

� ��
p: (16)

Notice that for a ray it would be legitimate to imagine the

angle as remaining constant while changing the frequency.

In this case, both cw and gb are proportional to frequency so

that the argument of arctan, and consequently e are inde-
pendent of frequency. Thus, de/dx¼ 0 would make Eq. (11)

correct for rays. However, for an individual mode, despite

this frequency cancellation, the argument of the arctan is still

a function of angle, which is itself forced to be a function of

frequency for that mode [see, e.g., Eq. (10)].

Even though we have taken the sound speed in the water

to be stratified we will adopt this half-space description of

the interaction at the bottom boundary. Explicitly, the deriv-

ative of e at the boundary is

�p
de
dx
¼ 1

acwgb

�
g2

b þ ðcw=aÞ2
	

� K

U
ðg2

b þ c2
wÞ � ðg2

bk2
w þ c2

wk2
bÞ=x

� �
: (17)

This can be substituted in Eq. (15) and the group velocity

separated out to reveal, after some manipulation

U¼
x
�

rccwgbða2g2
bþc2

wÞþ2aKðg2
bþc2

wÞ
	

�
2pðn�eÞþrcK

	
cwgbða2g2

bþc2
wÞþ2aðg2

bk2
wþc2

wk2
bÞ
:

(18)

More explicitly the cycle distance and the leading term in

the denominator can be written in terms of integrals over the

water column

rc ¼ 2K

ð H

0

1=cðzÞ dz (19)

and

2pðn� eÞ þ rcK ¼ 2

ðH

0

cðzÞdzþ 2K2

ðH

0

1=cðzÞdz

¼ 2

ðH

0

kðzÞ2=cðzÞdz: (20)

Equation (18) can also be written as

UV ¼ cw
2 Agbða2g2

b þ c2
wÞ þ aðg2

b þ c2
wÞ

Bgbða2g2
b þ c2

wÞ þ aðg2
b þ c2

wc2
w=c2

bÞ
; (21)

where

A ¼ cw

ð H

0

1=cðzÞ dz; (22)

B ¼ cw

kw
2

ð H

0

k2ðzÞ
cðzÞ dz: (23)

Equations (18) and (21) are valid for a locally stratified water

column bounded by a simple half-space seabed. Through

Eq. (13) with fixed n [as opposed to Eq. (1) with fixed T] it is

also valid for mild changes in the environment, equivalent to

the adiabatic approximation. If we insert the values for iso-

velocity, i.e., A ¼ H and B ¼ H, we obtain exactly the same

formula as Eq. (4.43) in Tolstoy and Clay (1987), namely,

UV ¼ cw
2 Hgbða2g2

b þ c2
wÞ þ aðg2

b þ c2
wÞ

Hgbða2g2
b þ c2

wÞ þ aðg2
b þ c2

wc2
w=c2

bÞ
: (24)

Equation (18) can be compared with Eq. (12) by the slight

rearrangement as

U ¼ ð1þ dÞ
2pðn�eÞ

x rc
þ 1

V ð1þ dÞ
� 	 ; (25)

where

d ¼ 2aKðg2
b þ c2

wÞ
rccwgbða2g2

b þ c2
wÞ
¼ 2aðg2

bk2
w þ c2

wk2
bÞ

K rccwgbða2g2
b þ c2

wÞ

¼ 2aKðk2
w � k2

bÞ
rccwgbða2g2

b þ c2
wÞ
: (26)

The order of magnitude of d can be estimated by taking the

isovelocity cycle distance to be rc ¼ 2H coth ¼ 2HK=cw, and

noting that gb is roughly related to the critical angle through

gb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � kb

2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kw

2 � kb
2

p
¼ kw sin hc, we have

d � a

Hkw sin hc
: (27)

But the denominator is just the highest mode number N that

the duct will support. It is also related to Weston’s effective

depth h [Eq. (5), Weston, 1960; also Eq. (39), Harrison,

2010],

h ¼ 1

a kw sin hc
; (28)

so

d � a

N
� a2h

H
: (29)

The earlier group velocity formula derived from rays

[Eq. (12)] is valid provided either the density in the seabed is

much higher than in water (a ! 0) or there is a significant

number of modes (N� 0) or the effective depth is small

compared with the actual depth (h�H).

In summary the group velocities given by Eq. (18) or

Eq. (25) depend on the local cycle distance in a refracting

water column, the ratio of water-to-seabed density, and the

properties cw just above the seabed boundary and gb just

below it. Horizontal environmental variations are tolerated

as long as they are slow on a scale of one ray cycle. Implicit

in the treatment of ducting, right from Eq. (1), has been the

assumption that losses at the seabed are fairly low, and so

the lower half-space necessarily has higher sound speed than
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water. If the seabed is strongly layered, then one can often

calculate equivalent half-space parameters. One would

require seabed sound speeds that are predominantly higher

than water, although thin low speed intermediate layers

would be allowable. There would still be a dominant low

loss up to a critical angle followed by higher loss with more

complicated interference. These losses are calculable for

multilayers using well-known techniques (Sect. 1.6.4, Jensen

et al., 1994).

III. NUMERICAL EXAMPLES

In the following examples we use either Eq. (12) or

Eq. (18) for group velocity with the subsidiary integrals

evaluated through Eqs. (19) and (20). Equation (12) is used

when the ray’s lower turning point is refracted, and

Eq. (18) when it is reflected. For a given sound speed

profile (SSP) and a dummy set of Kn we can evaluate the in-

tegral in Eq. (10) for each frequency. Then for each fre-

quency and mode number n we can also evaluate e using

Eq. (16), so by interpolation we can find the value of Kn,

which satisfies the equation. This is then fed into all the

components of Eq. (18) or (12). The lines in the figures can

be distinguished by the fact that the upper curves are phase

velocity and the lower curves exhibiting a minimum are

group velocity.

A. Isovelocity

Figure 1 shows the group and phase velocities for the first

seven modes in a simple, isovelocity, flat bottomed environ-

ment with water depth 100 m, cw¼ 1500 m/s, cb¼ 1600 m/s,

qw¼ 1, qb¼ 2 using Eq. (18). Figure 1 also shows the simple

formula, Eq. (12) [or Eq. (25) with d set to zero] as dashed

lines. These deviate at the lowest frequencies because they

lack the group velocity minimum associated with the

frequency-dependent e and therefore the Airy phase.

B. Stratified water column

If the water column is stratified one can separate out

four regimes according to ray turning point velocity (i.e.,

phase velocity) and therefore ray angle. At the upper ray

turning point there may be a WKB offset eT of either 1/4 for

downward refraction or zero for surface reflection (i.e.,

phase offsets of, respectively, p/4 or zero). At the lower turn-

ing point the WKB offset eB may be either 1/4 for upward

refraction or e as in Eq. (16) for bottom reflection. Therefore,

for steep angles [phase speeds from cb down to max(cw)

including the Airy phase] we expect eTþ eB¼ e as in

Eq. (16). Then for upward refracted rays trapped in a surface

duct, we have eTþ eB¼ 1/4, but for downward refracted rays

in a bottom duct we have eTþ eB¼ 1/4þ e. Finally for a

sound channel we have eTþ eB¼ 1/2. There will be a slight

jump in this offset (from the point of view of the earlier

equations, but not from the point of view of strict modal

propagation) as we go from one regime to another.

C. Downward refraction

The transition from reflected–reflected to downward

refracted is illustrated in the following example, superimpos-

ing results on a modal solution [using the propagation model

ORCA (Westwood et al., 1996)]. There is a uniform gradient

between 1500 m/s at the surface and 1480 m/s at the seabed

(100 m deep), where bottom properties are the same as in

Fig. 1. Figure 2(a) shows the result for the first mode (which is

pushing the WKB solution to the limit). The line with an Airy

phase minimum and slope discontinuity at �52 Hz is group

velocity calculated using the e from Eq. (16) alone for all

angles. Steep angles are to the left and shallow angles are to

the right, and this discontinuity occurs at the above-mentioned

transition, in fact when the refracting ray just grazes the sea

surface and therefore has phase speed equal to 1500 m/s. The

upper phase velocity curve shows that this is indeed true at

this frequency. For the reasons stated above, as the ray starts

to refract away from the sea surface eT jumps from 0 to 1/4,

and the dashed line shows the group velocity with this alterna-

tive assumption. The thick gray lines are the ORCA mode sol-

utions and we see perfect agreement for low frequencies,

through the Airy phase, and then also for high frequencies but

with a discrepancy near the transition. Similar observations

are true for the phase velocity curve (upper) and its alternative

phase curve (dashed). At high frequencies the group velocity

begins to decrease with frequency. This strange behavior cor-

responds exactly with the “sail shaped” deformation of the

leading edge of the pulse noted by Harrison and Nielsen

(2007). The earliest arrival comes from the vicinity of the tran-

sition, i.e., refracted rays that just graze the surface. Any other

refracted rays and steeply reflected rays are all slower.

Figure 2(b) shows the equivalent plot for the second

mode. Because of the relationship between mode number,

angle, and frequency [see Eq. (10)] the transition point (slope

discontinuity in group velocity) moves out with frequency

even though the ray angle at the transition remains the same.

In Eq. (10) the depth integral is a constant, whereas n
has changed. Thus, but for minor differences in e at the two

frequencies, the transition frequency is proportional to n.

FIG. 1. Group velocities (solid) and phase velocities (dashed-dotted) for the

first seven modes [Eq. (18)] for flat bottom, isovelocity, and bottom proper-

ties: cw¼ 1500 m/s, cb¼ 1600 m/s, qw¼ 1, qb¼ 2. For reference, the simpli-

fied group velocities [Eq. (25) with d¼ 0] have no Airy phase minimum

(dashed).
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Figure 2(c) shows mode number 8, again with normal mode

calculation superimposed. The discrepancy between these

formulas and the ORCA modal solution clearly diminishes as

mode number increases.

Because the phase velocity is equal to the ray’s turning

point velocity cT we can always calculate a ray angle h at the

depth of the lowest sound speed. Thus, we can use the fol-

lowing relation:

V ¼ cT ¼ cmin=cos h;

rearranged as

h ¼ a cosðcmin=VÞ;

to plot group velocity against angle as in Fig. 3. In this plot

for mode number 8 both the Airy phase and the maximum

velocity at the transition kink are still visible, and one can

also just see the slight disagreement with the modal solution

as in the earlier graphs.

D. Upward refraction

Figure 4 shows a similar example for mode 3 and

upward refraction (1480 m/s at the surface and 1500 m/s at

the seabed). The transition between reflection at both bounda-

ries and upward refraction occurs when the ray grazes the

seabed and phase velocity is 1500 m/s. Clearly the group ve-

locity curve would be incorrect if we were to allow eB to be

defined by Eq. (16) for rays with refraction turning points.

Instead we need to switch to the dashed line for eTþ eB¼ 1/4.

The ORCA modal solution is shown by the thick gray line,

and agreement is excellent away from this transition. Note

that with upward refraction there is still a maximum in the

group velocity for the same reasons as stated previously for

downward refraction.

E. Range variation

The point of this paper has been to show not just that

there is a formula for group velocity, but that it can be deter-

mined in a range-dependent environment through the rela-

tionship to the invariants T (characteristic time) or n (mode

FIG. 2. Group velocity (lower solid) and phase velocity (upper solid) vs fre-

quency [Eq. (18)] for flat bottom with downward refraction superimposed

on ORCA normal mode equivalents (thick gray): (a) Mode 1, (b) mode 2,

and (c) mode 8. To the right of the discontinuity the rays have an upper

refraction turning point, and an additional WKB offset of 1/4 (dashed)

brings the formula into alignment with ORCA. For reference, an offset of

zero is also shown (dashed-dotted). Bottom parameters are as in Fig. 1. The

inset is an enlargement of the group velocity transition.

FIG. 3. Group velocity (solid) for mode 8 as in Fig. 2 but plotted against

ray angle. ORCA normal mode equivalent (thick gray) and WKB offset of

1/4 (dashed) are also shown. The inset is an enlargement of the group veloc-

ity transition.
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number) [Eq. (11)]. Here we demonstrate the variation of

group velocity and phase velocity in an environment where

water depth gradually increases from �100 to 600 m as in

Fig. 5. This is actually a 500 point cubic interpolation

between the water depths, 100, 105, 110, 150, 300, 450,

600 m, equally spaced between 0 and 6 km. Bottom proper-

ties are the same as assumed earlier. The SSP could also

have been range-dependent, but to facilitate comprehension

a fixed SSP (Fig. 6) is taken. Sound speeds are piecewise lin-

ear between the dots shown.

This particular profile is chosen because, when com-

bined with the varying water depth, it demonstrates all four

possible permutations of reflection or refraction at the sur-

face and bottom (i.e., sound channel, upward refraction,

downward refraction, surface-bottom reflection). This is pos-

sible because the peak surface sound speed of 1506 m/s is

reached at the bottom of the duct at depth 331.67 m, so for

water depths less than this, i.e., ranges less than 4211 m,

downward refraction with bottom reflection is possible,

whereas for greater depths or ranges surface reflection with

bottom refraction is possible. Both sound channel and

surface-bottom reflection are also possible at all ranges, of

course.

Figure 7 shows group and phase velocities vs range at

100 Hz for (a) modes 1–5, (b) modes 6–20. The first five

modes are low enough angle that they do not have a group

velocity minimum, and as the water deepens they tend to

refract away from either boundary, finally entering the sound

channel, which can be recognized by the horizontal lines on

the right, which can be attributed to the lack of boundary

interaction with a fixed sound speed profile.

The curves for modes 6 onward show a distinct group

velocity minimum and resemble the earlier plots vs fre-

quency in that mode cutoff for increasing mode number

occurs in progressively deeper water. This is because

increasing depth has a similar effect on group and phase ve-

locity to increasing frequency [see, e.g., Eq. (11)]. At higher

frequencies (not shown) behavior is similar except that there

are more modes.

Whether valid or not it is still possible to calculate group

and phase velocity assuming all four of the upper and lower

turning point conditions separately. We then select the cor-

rect one by inspecting the mode amplitude at the sea surface

and seabed. This can be deduced from the relative magni-

tudes of Kn and k(z). Thus, we have

(a) surface reflection! k(0)>Kn,

(b) surface refraction! k(0)<Kn,

(c) bottom reflection! k(H)>Kn, and

(d) bottom refraction! k(H)<Kn.

At the angle where a refracted ray just grazes the sur-

face or seabed, the first integral in Eq. (10) is a constant. So

increasing e from 0 to 0.25 reduces the frequency slightly.

Thus, these “correctly selected” solutions always have a

slight overlap in frequency as we have already seen in

Fig. 2. This effect translates into an overlap in range, and an

enlargement of mode 3 from Fig. 7(a) is shown in Fig. 8

where, passing from left to right, one can clearly see over-

lapping transitions from reflected–reflected, through

FIG. 4. Group velocity (lower solid) and phase velocity (upper solid) vs fre-

quency for mode 3 [Eq. (18)] for flat bottom with upward refraction super-

imposed on ORCA normal mode equivalents (thick gray). Dashed lines

denote WKB offset of 1/4.

FIG. 5. Bathymetry for the range-dependent case.

FIG. 6. Fixed sound speed profile for the otherwise range-dependent case.
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downward refracted, to sound channel. Although compari-

son with a range-dependent mode model would be interest-

ing, the formulas used here implicitly apply to adiabatic

modes, which depend only on the local water depth and

sound speed profile. Therefore, in this adiabatic approxima-

tion the earlier tests are adequate.

IV. CONCLUSIONS

In a stratified medium phase velocity (i.e., ray turning

point velocity) is simply related to the modal eigenvalue and

frequency. In most normal mode programs, however, compu-

tation of the group velocity for each mode involves computa-

tion of eigenvalues at adjacent frequencies. The analytical

approach here, based on the WKB “phase integral” and West-

on’s ray invariant or characteristic time has derived a rela-

tionship [Eq. (25), being a generalization of Eqs. (12) and

(18)] between group velocity, mode number, ray cycle dis-

tance, phase velocity, and frequency. Thus, group velocity

can be estimated in a range-dependent environment with less

computational effort. Possible applications include active so-

nar, multipath pulse shape, target signatures, reverberation,

tomography, and underwater communications.

The WKB solution in the water column has to be ter-

minated at the depths corresponding to the upper and

lower ray turning points, which each may be reflected or

refracted. This leads to four possible WKB phase offsets

in the phase integral [Eq. (13)], two of which include a

group velocity minimum. Although it is clear when each

of these is valid, there is a transition from one regime to

the other in this scheme. When superimposed on an equiv-

alent normal mode calculation using ORCA (Figs. 2–4) it

is seen that agreement is very good away from the transi-

tion, particularly for the higher mode numbers. The transi-

tion shown in Fig. 2 occurs at a maximum in group

velocity, which corresponds to the ray that just grazes the

boundary on the high sound speed side of the duct. Both

steeper and shallower angle rays are slower than this, as is

well known, and this can lead to complicated arrival struc-

tures in time.

The relation to Weston’s ray invariant is brought out by

demonstrating the behavior of group and phase velocity in a

range-dependent environment (Fig. 7). Most of the features

seen in the earlier frequency plots can also be seen when

plotted against range.
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