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An approximate form of the Rayleigh reflection loss and its
phase: Application to reverberation calculation
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A useful approximation to the Rayleigh reflection coefficient for two half-spaces composed of water
over sediment is derived. This exhibits dependence on angle that may deviate considerably from
linear in the interval between grazing and critical. It shows that the non-linearity can be expressed
as a separate function that multiplies the linear loss coefficient. This non-linearity term depends only
on sediment density and does not depend on sediment sound speed or volume absorption. The
non-linearity term tends to unity, i.e., the reflection loss becomes effectively linear, when the density
ratio is about 1.27. The reflection phase in the same approximation leads to the well-known
“effective depth” and “lateral shift.” A class of closed-form reverberation �and
signal-to-reverberation� expressions has already been developed �C. H. Harrison, J. Acoust. Soc.
Am. 114, 2744–2756 �2003�; C. H. Harrison, J. Comput. Acoust. 13, 317–340 �2005�; C. H.
Harrison, IEEE J. Ocean. Eng. 30, 660–675 �2005��. The findings of this paper enable one to
convert these reverberation expressions from simple linear loss to more general reflecting
environments. Correction curves are calculated in terms of sediment density. These curves are
applied to a test case taken from a recent ONR-funded Reverberation Workshop.
© 2010 Acoustical Society of America. �DOI: 10.1121/1.3372731�

PACS number�s�: 43.30.Ma, 43.30.Gv, 43.20.El �AIT� Pages: 50–57

I. INTRODUCTION

The canonical case for shallow water propagation mod-
eling is the Pekeris waveguide where the seabed is repre-
sented as a half-space characterized by density, sound speed,
and volume absorption. In more complicated environments
variable bathymetry and refraction in the water column are
often introduced but still with a half-space seabed. A recent
ONR-sponsored pair of workshops1 on reverberation model-
ing specified a number of environments such as this. For this
reason the behavior of the reflection coefficient �amplitude,
phase, and logarithmic loss� for a half-space is of interest,
and it can be calculated by the Rayleigh reflection coefficient
formula,2 on the assumption that the roughness does not
spoil the outward and return specular reflections �alternative
forward scattering laws have been suggested3�. For sound
speeds greater than that of water this predicts a critical angle
and a dB loss that is very nearly proportional to angle. In fact
an approximate formula for the proportionality constant has
been derived by Weston.4 Consequently there is ducted
propagation within the critical angle, and the small linear
reflection loss results in an ever narrowing Gaussian angle
distribution and hence mode-stripping. This has a profound
effect on propagation and particularly reverberation since the
propagation favors low angles whereas most scattering laws
favor high angles, or at least, reject low angles.

Combining Lambert’s law with mode-stripping, the re-
verberation behavior can be predicted by closed-form solu-
tions for range-dependent, bistatic, isovelocity, or refracting

environments providing the reflection loss is linear.5–7 If the
reflection loss is not linear then these solutions are still cor-
rect at very long range because the narrowness of the Gauss-
ian angle distribution biases the loss to the linear part of the
curve. They are also correct at short range because, regard-
less of the magnitude of the reflection loss, there are very
few reflections so there is minimal effect. For intermediate
ranges there is clearly some effect, and it would be useful to
be able to estimate it. This paper derives an extremely good
approximation to the Rayleigh formula applicable between
zero grazing and almost up to the critical angle. This clearly
shows the non-linear behavior of the reflection loss in very
simple closed-form. Using the same approach one can also
derive a formula for reflection phase, and from this, one can
re-derive Weston’s effective depth8,9 and clarify its condi-
tions of validity.

In all the closed-form reverberation calculations,
whether monostatic, bistatic, range-independent or
-dependent, the final stage with the linear reflection loss as-
sumption is to evaluate an angle integral whose integrand
consists of a Gaussian times the sine of the angle. A multi-
plicative correction �i.e., a dB addition� can be tabulated for
all ranges and bottom densities in the non-linear case so that
the previous solutions can be easily modified. Use of these
corrections is demonstrated in Sec. III by application to a test
case from the recent ONR Workshop.1 Solving the isoveloc-
ity reverberation angle integral analytically is more difficult,
but numerical approaches to this correction provide insight
into the magnitude and importance of the non-linear reflec-
tion effect. It will be shown that the correction is a function
of two parameters �i.e., a family of curves� for all isovelocity
range-independent environments.

This work was first reported in Ref. 10.

a�Also affiliated with the Institute of Sound and Vibration Research, Univer-
sity of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom.
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II. THEORY

A. Reflection loss

The Rayleigh reflection coefficient V for a half-space is
usually written2 in terms of the impedances on each side of
the boundary Z1,2, but it is more conveniently written in
terms of the admittances �the reciprocal of the impedance�
A1,2,

V =
Z2 − Z1
Z2 + Z1

=
A1 − A2
A1 + A2

, �1�

where

Zm =
1

Am
=

�mcm

sin �m
, �2�

and �, c, and � are density, sound speed, and grazing angle
with indices m=1,2 representing water and seabed, respec-
tively. In the following, we manipulate these formulae mak-
ing no apologies for retaining all the steps, and only making
approximations where stated. We assume that the sea is loss-
less but that the seabed is an absorbing medium so that

A2 � AR + iAI, �3�

A1 � A1 + i0, �4�

where A1, AR, and AI are all real. Thus

�V�2 = �A1 − AR − iAI

A1 + AR + iAI
�2 = �A1 − AR�2 + AI

2

�A1 + AR�2 + AI
2

=
A1
2 + AR

2 + AI
2 − 2A1AR

A1
2 + AR

2 + AI
2 + 2A1AR

=
1 − X

1 + X
, �5�

where

X =
2A1AR

A1
2 + AR

2 + AI
2 . �6�

Consequently the natural-logarithmic loss �as opposed to the
loss in dB� can be written exactly as

− log��V�2� = − 	log�1 − X� − log�1 + X�


= − 	�− X − X2/2 − X3/3 − ¯�

− �X − X2/2 + X3/3 − ¯�


= 2X + 2/3X3 + 2/5X5 + ¯ . �7�

We now define the fractional imaginary part of the wave-
number in the seabed as �, so that the complex wavenumber
is k�1+ i�� where k and � are both real. This contrasts with
Weston’s taking the imaginary part of the sound speed as the
starting point.4 Thus the wave function is

exp�ik�1 + i��r� = exp�ikr�exp�− k�r� , �8�

and the power decays as exp�−2k�r�. In terms of volume
absorption in the seabed a dB/wavelength, this same power
decay is written as 10−ar�k/2��/10. Taking logs to base e we
find

� =
a

40� log10�e�
=

a

54.575
, �9�

and we see that since a is typically of order or less than
1 dB /� then ��1 is a very good approximation since � is
always of order 0.02 or less. Nevertheless, at this stage we
make no assumptions about �.

We now evaluate the admittances in terms of geoacous-
tic properties and the sine of the grazing angle in the water
for which we use the shorthand s.

A1 =
s

�1c1
, �10�

A2 =
��1 + i��2 − Q

�2c2
= i

��Q − 1 + �2� − 2i�

�2c2
, �11�

where

Q � � c2
c1

2�1 − s2� , �12�

and Q�1 always. To separate A2 into real and imaginary
parts we note that it can be written as �2c2A2 / i=�a+ ib=c
+ id, where

a + ib = �c2 − d2� + i2cd , �13�

so

a = c2 − d2; b = 2cd . �14�

Solving the quadratic for c2, stipulating that c2 must be posi-
tive, we find

c2 =
a + �a2 + b2

2
, �15�

so from the definition Eq. �3�

AI =
1

�2c2
��Q − 1 + �2� + ��Q − 1 + �2�2 + 4�2

2
, �16�

AR =
��2

�2c2��Q − 1 + �2� + ��Q − 1 + �2�2 + 4�2
. �17�

Returning to Eqs. �6� and �7� we substitute Eqs. �10�, �16�,
and �17� to obtain

X =
2�2s�

Xo�1c1�2c2��Q − 1 + �2� + ��Q − 1 + �2�2 + 4�2
,

�18�

where

Xo =
s2

�1
2c1

2 +
2�2

�2
2c2

2��Q − 1 + �2� + ��Q − 1 + �2�2 + 4�2�

+
�Q − 1 + �2� + ��Q − 1 + �2�2 + 4�2

2�2
2c2

2 . �19�

Equations �18� and �19� are exact. Neglecting terms in �2

�which are extremely small, in practice	 �0.02�2=4
10−4�
but retaining � and writing Q as



Q − 1 = � c2
c1

2�sc

2 − s2� , �20�

where sc=sin��c� we have

X =

� 2s�

�1�2c2
2�sc

2 − s2



� s2

�1
2c1

2 +
�sc

2 − s2�
�2
2c1

2 
 = �
2�2c1

2�

�1c2
2sc

3 s�



1

�1 − s2/sc
2�1 + ���2/�1�2 − 1�s2/sc

2�
. �21�

The term in curly brackets on the right hand side of Eq. �21�
is recognized as half of Weston’s linear coefficient � multi-
plied by sine of the grazing angle �rather than the angle it-
self�. He defined � as4

� =
4�2c1

2�

�1c2
2sc

3 . �22�

The remainder of Eq. �21� is the non-linear factor. This is
clearly unity for small s, tends to infinity as s approaches sc,
and otherwise depends only on density ratio.

Returning to the reflection loss as defined in Eq. �7� we
see that the first term in the X expansion is proportional to �,

but the second term is proportional to �3 and is therefore
always negligible since their ratio is proportional to �2. So
the reflection loss can be written as

− log��R�2� =
�s

�1 − s2/sc
2�1 + ���2/�1�2 − 1�s2/sc

2�
. �23�

It is obvious that Eq. �23� fails when s�sc; it is less obvious
that it fails when the grazing angle is extremely close to
critical. The reason can be traced to Eq. �20� where Q−1
→0 as s→sc. Then the denominator of the exact Eq. �18�
contains only terms in �2, and so its neglect begins to have a
serious effect. To avoid this we need

s2 � sc
2 − �2c1

2/c2
2, �24�

but since �2	 �4
10−4 this is not a serious problem in
normal applications.

Some plots of this function are superimposed on the
exact Rayleigh reflection loss for various values of sound
speed, density, and volume absorption in Figs. 1�a� and 1�b�.
Expanding Eq. �23� as a power series we find the approxi-
mation

− log��R�2� = �s�1 + b1�s/ss�2 + b2�s/sc�4 + ¯�

� �s + �s3�1.5 − ��2/�1�2�/sc
2,

b1 = 3/2 − ��2/�1�2; b2 = 15/8 − �5/2���2/�1�2

+ ��2/�1�4. �25�

Although this is an approximation it suggests that the reflec-
tion loss should approach linearity when the second term is
zero, i.e., �2 /�1=�3 /2=1.225.

Of course, we cannot expect exact linearity since the
function inevitably curves upwards just before the critical
angle. However it is clear that densities lower than this value
cause upward curvature �more loss than linear� while higher
densities cause downward curvature �less loss than linear�.
This effect is shown through the non-linear factor in Fig. 2,
and the closest to linear �i.e., flat� can be seen to be near the
density ratio of 1.25. In fact the denominator of Eq. �23�
can be written as �1+ �2B−1�v+B�B−2�v2−B2v3�1/2 with

(b)

(a)

FIG. 1. The non-linear approximation, linear approximation, and exact Ray-
leigh reflection coefficient for two half-spaces, with density ratio, sound
speed, and volume absorption: �a� 1.74, 1600 m/s, 0.2 dB /�; �b� 1.88, 1700
m/s, 0.5 dB /�.

FIG. 2. �Color online� The non-linear reflection loss factor ��1−s2 /sc
2�1

+ ���2 /�1�2−1�s2 /sc
2��−1 �i.e., Equation �23� excluding the numerator� vs.

normalized angle with density ratio as parameter �see key�.



B= ��2 /�1�2−1 and v= �s /sc�2. Its gradient is zero near v=0
if B=0.5, i.e., when the density ratio is �1.5 as before. Forc-
ing the value of the denominator to be unity at v=0.25 �cor-
responding to approximately 10° in Fig. 2� leads to B
=0.619 and a density ratio of 1.27.

B. Reflection phase

Starting with Eq. �1� and using the same approach we
can derive a formula for the phase change on reflection.
Again we write the complex reflection coefficient �see Eq.
�5�� as

V =
A1 − AR − iAI

A1 + AR + iAI
=

�A1 − AR − iAI��A1 + AR − iAI�
�A1 + AR�2 − AI

2

=
A1
2 − AR

2 − AI
2 − i2A1AI

�A1 + AR�2 − AI
2 . �26�

Therefore the phase � is given by

tan � =
2A1AI

A1
2 − AR

2 − AI
2 . �27�

Substituting Eqs. �10�, �16�, and �17� we find the exact rela-
tion

tan � =
�2s

Yo�1c1�2c2


��Q − 1 + �2� + ��Q − 1 + �2�2 + 4�2, �28�

where

Yo =
s2

�1
2c1

2 −
2�2

�2
2c2

2��Q − 1 + �2� + ��Q − 1 + �2�2 + 4�2�

−
�Q − 1 + �2� + ��Q − 1 + �2�2 + 4�2

2�2
2c2

2 . �29�

Note that Yo differs from Xo �Eq. �19�� only in two sign
changes. Again neglecting terms in �2 we obtain

tan � =
2s

�1c1�2c2

�Q − 1

� s2

�1
2c1

2 −
Q − 1

�2
2c2

2

=
2s�2
sc�1

�1 − �s/sc�2

�1 − �1 + ��2/�1�2��s/sc�2�
. �30�

The phase is understood to start in the third quadrant and
move round to the fourth as s increases up to critical, i.e.,

� = − � + atan�2s�2
sc�1

�1 − �s/sc�2

�1 − �1 + ��2/�1�2��s/sc�2�

 , �31�

or with a four-quadrant tangent

� = atan4Q�− 2s�2
sc�1

�1 − �s/sc�2,

− �1 − �1 + ��2/�1�2��s/sc�2�
 . �32�

This can be written more elegantly in terms of

sin x = s/sc �33�

and

tan y = �2/�1 �34�

as

tan � =
sin 2x sin 2y

cos 2x + cos 2y
. �35�

The top line of Eq. �30� can be recognized as the expansion
tan 2
=2 tan 
 / �1−tan2 
� in which �=2
, and conse-
quently

tan2 
 = ��1c1
�2c2


2 �Q − 1�
s2

= ���1
�2

cot ��2


�1 − � c1
c2

2sec2 �� . �36�

This agrees with the formula given by Eq. �2� of Weston8

�except for a typographical error� which is easily derived
directly from Eq. �1� in the loss free case. It also demon-
strates that the above formulae are exact for loss free seabed,
and that the phase is otherwise independent of � to first
order.

There is an interesting special case when �1=�2. Ac-
cording to Eq. �34� y=� /4, so tan �=tan 2x, i.e., �=−�
+2 asin�s /sc�. For small phase angles, phase is proportional
to s, in other words the complex reflection coefficient rotates
in a helix between zero grazing angle and the critical angle,
starting at �−1+ i0�, passing near �0− i1�, ending at �1+ i0�.
Figure 3 shows this behavior for a number of densities. It can
also be seen that the phase remains linear over a larger range
of angles when �2 /�1�1.25, i.e., when the reflection loss is
linear �see Fig. 2�. Equations �34� and �35� also show that as
seabed density tends to infinity �hard bottom� or zero �pres-
sure release� the tangent of the phase tends to zero, indepen-
dently of angle �in the former case the phase itself is zero,
and in the latter it is ��.

FIG. 3. �Color online� Reflection phase �radians� for normalized grazing
angle with density ratio as parameter �see key� using Eq. �31�. Note the
closeness to linearity particularly near a density of about 1.25.



C. Weston’s effective depth

In reality we have a single reflection from a simple half-
space boundary and we wish to replace this true reflecting
surface with a roughly equivalent, slightly deeper, pressure
release boundary. This concept was originally developed by
Weston8 and then revisited in Refs. 9, 11, and 12. The effect
can easily be understood by inspection of typical normal
mode shapes. The first mode �very shallow angle� tends to
have a relatively small value just above the seabed, and if
extrapolated downwards would approach zero at a point just
below the boundary. In contrast the highest mode �at nearly
the critical angle� has gradient zero at the boundary, and
therefore, if extrapolated would approach zero at one quarter
of its vertical wavelength below the boundary. Because this
wavelength is smaller for the high order modes than for the
first, all modes tend to meet at approximately the same
depth, an effective depth where there could have been a pres-
sure release surface. This is the same phenomenon as the
end-correction on musical instruments, such as a flute or
recorder.13

Mathematically we take the equation for the reflection
phase and we equate it to the phase difference � imposed on
a plane wave by shifting the reflection boundary down a
distance h and reflecting from a pressure release boundary,
i.e.,

� = − � + 2hkos , �37�

where ko is the wavenumber in the upper medium.
From Eqs. �31� and �37�, using the shorthand of Eqs.

�33�–�35� generally we have

h =
�o

4�s
atan� sin 2x sin 2y

cos 2x + cos 2y

 , �38�

where �o is the wavelength in the upper medium. For small
angles this reduces to

h =
�o

2�sc

�2
�1
, �39�

which is identical to Eq. �5� of Ref. 8. Also, the special case
for any angle, where �1=�2 leads to

h =
�o

2�s
asin�s/sc� . �40�

If, in addition, s is not too close to sc then

h = 1/�kosc� = �o/�2�sc� . �41�

This is clearly a distance that depends on frequency and criti-
cal angle but is independent of angle �or mode number�. This
limiting case is obviously independent of density.

Another limiting case of interest is �2→�. From Eq.
�34�, y=� /2, and so from Eq. �35�, �=0. Under these con-
ditions the concept of an effective angle-independent depth
to a pressure release surface certainly does not hold. In fact
the surface in this extreme case is already a hard boundary.
To investigate the general utility of the effective depth we
plot normalized effective depth h /�o �sc�1 /�2� against s /sc

for various densities in Fig. 4 using the general formula �38�

combined with Eqs. �33� and �34�. The effective depth is
nearly constant when �2 /�1�1.3, i.e., when both the reflec-
tion loss and its phase are linear.

Note that there are a number of similar “effective/shift/
displacement” terms used in the literature and two genuinely
different phenomena as well. Weston12 distinguishes, and
shows the mathematical relation between, what he calls a
“wave shift” and a “beam shift.” The former results in the
effective depth described here and is associated with the
modal phase velocity since it is a pure phase effect. The
latter results in the lateral shift �or “lateral wave”� associated
with point source/receivers, spherical waves,14 and the modal
group velocity since it is seen, for instance, in laboratory
experiments where there is a tangible arrival corresponding
to the path that runs for part of its course along the boundary.
Mathematically the effective depth in this paper corresponds
to Eq. �4� of Ref. 12 and Eqs. �2� and �3� of Ref. 8, as already
stated. Equations �4.4.5� and �4.4.6� of Ref. 14 �the lateral
wave�, after minor rearrangement, is the same as Eq. �A3� of
Ref. 9 and Eq. �17� of Ref. 12 �except for typographical
errors�. Finally note that the same effective depth term has
been used with different meaning in at least two other
contexts.15,16

III. REVERBERATION

A. Reverberation angle integral

The purpose of searching for an approximate form of the
Rayleigh reflection coefficient was to be able to modify the
reverberation integral under conditions when the reflection
loss was non-linear. The closed-form equations for rever-
beration have been derived for various types of
environments.5–7 For Lambert’s law

S = � sin��1�sin��2� , �42�

with isovelocity water and flat bottom a general expression is

FIG. 4. �Color online� Normalized effective depth �h /ho where ho

= ��o /2�sc���2 /�1�� against normalized grazing angle with density ratio as
parameter �see key� using Eq. �38�. Note the flatness particularly when
density is slightly larger than 1.25.
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