
RIGSBEE: Modular software development 

A MODULAR SIGNAL PROCESSING SOFTWARE DEVELOPMENT SYSTEM 

by 

Peter A. Rigsbee 
Naval Research Laboratory 
Washington, D.C., U.S.A. 

ABSTRACT 

A software development system is being built by the U.S. Naval Research 
Laboratory (NRL) to aid production of modular signal processing software 
for U. S. Navy airborne ASW platforms using the Navy's Advanced Signal 
Processor (ASP). This system, part of the ASP Common Operational Software 
(ACOS) project, is intended to reduce the costs of programming, maintain-
ing, and modifying ASP software. The development system includes the SPL/I -
support software system, the ACOS Program Generator, and the ACOS Shell. 
SPL/I is a high-level language designed for real-time signal processing 
applications. CROS, the standard SPL/I operating system, supports the 
multiprogramming and data management features of the SPL/I language. SPL/I 
and CROS are being used by the Navy in signal processing applications. The 
ACOS Program Generator (APG) is the key component of the development 
system. It translates software written in a high-level, ASP-independent 
block language into SPLjI code to be processed by the SPL/I Compiler. This 
language allows the programmer to speak in terms of bulk storage variables, 
queues of data buffers, and parameterized signal processing primitives such 
as "FFT" or "AGe". The APG then takes the responsibility for generating or 
executing, as appropriate, code to manage storage and to initiate data 
transfers and complex functions; effectively hiding the underlying hardware 
architecture from the programmer. The ACOS Shell, which serves as an 
extension to CROS for the ASP, is the runtime key to the system. The Shell 
controls and manages access to ASP resources and is the runtime signal 
processing controller. The Shell is accessed only by software generated by 
the APG, and the programmer is never aware of the distribution of functions 
among CROS, the Shell, and the hardware. 

ACOS PROGRAM GENERATOR FACILITIES 

The ACOS Program Generator (APG) is a programming tool that allows the 
implementation of signal processing software in a target machine inde-
pendent manner. The APG converts its input into SPLjI code that accesses 
CROS and the ACOS SHELL (see below) for services. The APG will be respon-
sible for: 

- Allocation of storage 
- Transfer of data between storage areas 
- Creation of control information for the SHELL 
- Scheduling signal processing and data transfer operations 

SACLANTCEN CP-25 24-1 



RIGSBEE: Modular software develop~ent 

PROGRAM GENERATOR USER ARCHITECTURE 

The ACOS user has the following view of a generic signal processor (GSP) 
architecture for which he is to write programs: 

Storage Storage Storage 
Engine - al Engine - a2 Engine - ak 

Data Transport Ether 

Arithmetic Arithmetic Arithmetic 
Engine - I Engine - 2 Engine - I 

Control Control Control 
Engine - I Engine - 2 Engine - m 

Data Transport Ether 

Storage Storage Storage 
Engine - cl Engine - c2 Engine - cn 

There is some number of independent Arithmetic Engines, each of which is 
used to perform signal processing operations. There is some number ,of 
Storage Engines which can be accessed by Arithmetic Engines via a Data 
Transport Ether. These ' Storage Engines are used to buffer incoming data, 
partially processed data, and outgoing data as needed. Arithmetic Engines 
cannot access other Arithmetic Engines. Any Arithmetic Engine-accessible 
GSP storage not in Storage Engines is considered to be local to an Arith-
metic Engine. This local storage (if any) associated with an Arithmetic 
Engine is allocated by the ACOS system (APG and/or SHELL). 

There is some number of independent Control Engines, each of which is used 
to perform control operations. There is some number of Storage Engines 
which can be accessed by Control Engines via a Data Transport Ether. 
Storage Engines are used to buffer incoming data, partially processed data, 
and outgoing data as needed by Control Engines to determine control 
actions. Control Engines effect control through a Control Ether (not shown 
in the diagram) that connects to all GSP engines. Control Engines cannot 
access other Control Engines except through the Control Ether. Any Control 
Engine-accessible GSP storage not in Storage Engines is considered to be 
local to a Control Engine. The local storage (if any) associated with a 
Control Engine is allocated by the ACOS system (APG and/or SHELL). 

An ACOS user first writes a number of ENGINE PROGRAMs. ENGINE PROGRAMs are 
the basic units of software that are executed by the GSP. They specify 
control processing or signal processing to be performed by the GSP to meet 
operational requirements. The user specifies how ENGINE PROGRAMs are 
related to one another by defining a set of GRAPHs. These GRAPHs specify 

SACLANTCEN CP-25 24-2 



RIGSBEE: Modular software development 

the topological connections among ENGINE PROGRAMs (ENGINE PROGRAMs can be 
viewed as the nodes of GRAPHs) by identifying queues to be used to exchange 
data between pairs of ENGINE PROGRAM executions or between an ENGINE 
PROGRAM execution and the outside world . This user software, comprised of 
ENGINE PROGRAMs and GRAPHs, is processed by the APG and the SPL/I Compiler 
and loaded into the target hardware. 

At runtime the GSP executes ENGINE PROGRAMs under the supervision of the 
SHELL. Each instantiation of an ENGINE PROGRAM is executed as an indepen-
dent task by exactly one GSP engine. A GSP engine executes at most one 
task at a time. When a GSP engine completes execution of a task, the task 
and its associated local storage is destroyed. Two engines can concur-
rently execute distinct tasks that are instantiations of the same ENGINE 
PROGRAM. Tasks are created by the SHELL in response to the presence of 
data in the queues specified in GRAPHs. An instance of a GRAPH (called a 
GRAPH task-set) is crea ted at runtime by STARTing the GRAPH . STARTing the 
GRAPH causes the SHELL to begin monitoring the GRAPH-specified queues. 
Upon discovering the presence of sufficient data in some of the queues, the 
SHELL will create tasks to execute GRAPH-specified ENGINE PROGRAMs. 

Tasks are differentiated between control tasks and arithmetic tasks. 
Control tasks are executed by Control Engines and arithmetic tasks are 
executed by Arithmetic Engines. Only control tasks can start and stop 
GRAPHs. Consequently, ENGINE PROGRAMs are called control ENGINE PROGRAMs 
for arithmetic ENGINE PROGRAMs depending upon the type of GSP engine on 
which they are to execute. Similarly, GRAPHs are either control GRAPHs or 
arithmetic GRAPHs. Initially at runtime a user-specified control GRAPH is 
STARTed by the ACOS system. This initiation causes the SHELL to create a 
control task-set. This task-set may then proceed to start other control 
GRAPHs or arithmetic GRAPHs defined by the ACOS user. 

The numbers of Arithmetic Engines, Control Engines, and Storage Engines may 
differ among specific implementations of the GSP. The Storage Engines that 
a particular Arithmetic Engine or Control Engine can access may also differ 
among specific implementations of the GSP. The engines are not necessarily 
homogeneous. Associated ,~ith each GSP engine is a set of capabilities that 
the engine can support. For example, an Arithmetic Engine may be capable 
of executing only certain arithmetic primitives. A Storage Engine may be 
capable of storing only variables of particular SPL/I modes. The parti-
cular capabilities associated with an engine depend upon the specific 
implementation of the GSP. 

PROGRAM GENERATOR USER FACILITIES 

The definitions of the APG facilities are given below. 

Engine Identifiers: 

Arithmetic Engine, Control Engine, and Storage Engine identifiers are 
of two types: engine designators and engine class designators. An 

SACLANTCEN CP-25 24-3 



engine designator references 
Engine, or a Storage Engine. 
specific set of Arithmetic 
Engines. Engine identifiers 
assign execution and storage 
designator is used, then the 
the specified set. 

Storage Template Declarations: 

FIELD 

RIGSBEE: Modular software development 

a particular Arithmetic Engine, Control 
An engine class designator references a 
Engines, Control Engines, or Storage 

are used by the APG and the SHELL to 
resources. In the event an engine class 
ACOS system will select one engine from 

Defines size of field used in one or more block definitions. 
Size defined in bits. 

BLOCK 
Defines data template. FIELD and BLOCK pertain only to the logical 
layout of data. Entities declared using FIELD and BLOCK cannot be 
accessed using ordinary SPL/I features; thus SPL/I packing is neither 
assumed nor enforced. BLOCK templates are used to define the basic 
data entities that comprise instances of QUEUEs and of BUFFERs. 

QUEUE STRUCTURE 

Defines queue data template. QUEUE STRUCTURE names are used to define 
QUEUE variables and formal inputs and formal outputs of ENGINE ' 
PROGRAMs and GRAPHs. , QUEUE STRUCTUREs represent FIFO queues of data 
items defined using a common BLOCK template. 

Variable Declarations: 

BUFFER 
Defines the names for BUFFER variables. BUFFER variables exist only 
in Arithmetic Engine and Control Engine local storage; BUFFER 
variables are used for data exchange among PRIMITIVEs. A BUFFER 
variable has two components: control information and a data element 
(an instance of an underlying BLOCK template). Storage for control 
information may be allocated (when an ENGINE PROGRAM task is executed) 
and freed (when the ENGINE PROGRAM task completes) as a result of the 
BUFFER declaration. Data elemellt storage is allocated and freed by 
execution of BUFFER operations listed below. 

Operations on BUFFER variables: 

SACLANTCEN CP-25 

CREATE - create storage for the data element of the speci-
fied BUFFER variable 

REPLACE - write a PRIMITIVE output into the data element 
of the specified (and previously CREATED or INSERTed) 
BUFFER variable 

24-4 



QUEUE 

RIGSBEE: Modular software development 

INSERT - create storage for the data element of the speci-
fied BUFFER variable and write a PRIMITIVE output into 
it 

REMOVE - read the contents of the data element of the 
specified BUFFER variable as a PRIMITIVE input and 
destroy the data element storage upon completion of 
the read 

COPY - read the contents of the data element of the speci-
fied BUFFER variable as a PRIMITIVE input 

DESTROY - destroy previously CREATED or INSERTed data 
element storage for the specified BUFFER variable 

Defines the names for QUEUE variables. QUEUE variables can exist only 
in Storage Engines. QUEUE variables are used for data exchange among 
ENGINE PROGRAM tasks. A QUEUE variable has two components: control 
information and queue elements (instances of the underlying BLOCK 
template). Storage for control information is allocated (when a GRAPH 
is STARTed) as a result of the QUEUE declaration. Queue elements are 
allocated and freed by execution of QUEUE operations listed below. 

Operations on QUEUE variables: 

ENQUEUE - add specified number of queue elements to the tail 
of the specified QUEUE variable 

DEQUEUE - remove and read specified number 6f queue elements 
that are at the head of the specified QUEUE variable 

READQUEUE - read specified number of queue elements that are 
at the head of the specified QUEUE variable 

Topological Declarations: 

PRIMITIVE 
Defines a low level primitive available to an ENGINE PROGRAM. A 
PRIMITIVE may consist of any number and combination of executions of 
lower level operations on an Arithmetic Engine or Control Engine. 
PRIMITIVE declarations are always provided a priori to the APG user. 

ENGINE PROGRAM 
Defines a sequence of SPL+I code and PRIMITIVE invocations that 
perform a particular processing algorithm. An instantiation of an 
ENGINE PROGRAM is called a (control or arithmetic) task and executes 
on a specified Control Engine or Arithmetic Engine. Any number of 
instantiations of an ENGINE PROGRAM can exist concurrently. QUEUE 

SACLANTCEN CP-25 24-5 



RIGSBEE: Modular software development 

variables are the inputs and outputs of tasks. A task is scheduled by 
the SHELL when the number of queue elements on each of its input QUEUE 
variables meets or exceeds the threshold specified for that QUEUE 
variable. 

NODE 
Associates actual QUEUE variables with formal QUEUE parameter names 
for a specified ENGINE PROGRAM. 

GRAPH 
References a set of ENGINE PROGRAMs and declares the QUEUE variables 
that serve as the inputs and outputs of ENGINE PROGRAM tasks. A GRAPH 
is a static description of how instantiations of ENGINE PROGRAMs are 
to exchange data. STARTing a GRAPH creates an instance of the GRAPH 
(called a GRAPH task-set) and causes the creation of control storage 
for the QUEUE variables declared within the GRAPH declaration and for 
the QUEUE variables declared within the ENGINE PROGRAMs referenced 
within the GRAPH declaration. There is no executable SPLII code 
within a GRAPH; it is simply a collection of storage template, QUEUE, 
and NODE declarations. A GRAPH must reference only arithmetic ENGINE 
PROGRAMs or only control ENGINE PROGRAMs. 

Primitive Statement: 

INVOKE 

When executed, specifies that execution of a PRIMITIVE should be 
initiated. The INVOKE includes specification of all the input and 
output variables required for initiation of a general purpose 
PRIMITIVE to meet a particular requirement. The QUEUE and BUFFER 
operations described above are used to access QUEUE and BUFFER 
variables. The Control Engine or Arithmetic Engine specified in the 
ENGINE PROGRAM declaration containing the INVOKE will execute the 
INVOKEd PRIMITIVE. 

Control Statements: 

START 

When executed, specifies that an instance of a GRAPH (called a 
task-set) is eligible for scheduling. An already STARTed GRAPH task-
set cannot be reSTARTed without an intervening STOP of the GRAPH 
task-set. 

STOP 

When executed, specifes that a GRAPH task-set is no longer eligible 
for scheduling. In the event a control task-set is STOPped, then all 
GRAPH task-sets STARTed by that control task-set are also STOPped. 

SACLANTCEN CP-25 24-6 



RIGSBEE: Modular software development 

Execution: 

Runtime entities: 

An instantiation of an ENGINE PROGRAM is called a (control or arith-
metic) task and executes on a specified Control Engine or Arithmetic 
Engine. QUEUE variables are the inputs and outputs of tasks. 

Task Queue Discipline: 

A task is scheduled by the SlillLL when the number of queue elements on 
each input QUEUE variable meets or exceeds the threshold specified for 
that QUEUE variable in the ENGINE PROGRAM's formal parameter list and 
in the referencing NODE declaration. By its completion a task must 
have DEQUEUEd exactly the number of queue elements specified for each 
input QUEUE variable as the consume amount and the task must have 
ENQUEUEd exactly the number of queue elements specified for each 
output QUEUE variable as the produce amount. 

Computational Determinancy: 

Any number of instantiations of an ENGINE PROGRAM can exist concur-
rently. In the event that an ENGINE PROGRAM's engine identifier is a 
class designator, then the SHELL preserves the queue data ordering 
implicit in each GRAPH for concurrent instantiations of the same 
task-set NODE. (It is sufficient to prohibit multiple concurrent 
tasks executing the same task-set NODE. It may be useful, however, to 
allow mUltiple concurrent tasks executing the sam~ NODE in a task-set. 
If they do, then "the NODE" must be run as a pipe.) 

ACOS SHELL FACILITIES 

The ACOS SHELL is the runtime support software of the ACOS system. 
Development of the SHELL facilities must, of necessity, lag behind that of 
the APG facilities. The following is a brief description of the main 
features of the ACOS SHELL. 

Monitors 

The SHELL consists of a set of runtime engine monitors. .Each engine 
(control, arithmetic, or storage) is represented by a single monitor. 
Monitors consist of SPLII processes and procedures that have three 
functions: 

task scheduling: 
task. 

the initiation of the execution of an ACOS 

meassage transmittal: the format and transmittal of a message to 
some other monitor. 

message receipt: the translation and processing of a message 
sent by some other monitor. 

SACLANTCEN CP-25 24-7 



RIGSBEE: Modular software development 

Lists 

Monitors manage two logical lists of resources. One list is that of GRAPHs 
that can execute on the engine. This list contains information about all 
the tasks that comprise the GRAPH. The other list is that of QUEUEs stored 
in the engine. Not all monitors necessarily manage both list types, nor do 
the number of elements in the lists necessarily bear any relationship 
between monitors. 

Messages 

Moni tors communicate through the use of messages. 
tenta tive list of SHELL messages. 

The following is a 

Message Processing Complete _ sent after processing of some other 
message; specifies that processing has completed and that another message 
may be sent to this monitor. 

Start Graph - specifies that a particular graph may be scheduled. May 
cause "Connect Queue" messages to be issued. 

Stop Graph - specifies that a particular graph may no longer be 
scheduled, may cause "Disconnect Queue" messages to be issued. 

Connect Queue - associates actual queues with a node, graph, or system 
feature as a sink or as a source. 

Disconnect Queue - disassociates actual queues from a particular sink 
or source. 

Add Data - transfers data to a queue. May cause "Data Ready" message 
to be issued to the queue sink. 

Read Data - asks for data to be sent from a queue. 

Data Transmit - sends data from a queue in response to a "Read Data" 
message. 

Data Rea.dy - indicates that a queue has sufficient data for task 
initiation. 

Error Processing 

Monitors must monitor and process runtime error conditions. The set of 
error conditions and the processing mechanism is to be determined. 

SACLANTCEN CP-25 24-8 



RIGSBEE: Modular software development 

SUMMARY 

The APG and ACOS SHELL are intended to raise the level of the programming 
signal processing software beyond that of standard high level languages. 
This will both reduce programming cost and, because of the improved under-
standibi lity of the resultant operat ional software, reduce life-cycle 
maintenance costs. Although designed for the ACOS project, it is of 
sufficient generality for use in other signal processing application. In 
addition, because architecture details are buried in the PRIMITIVE defini-
tions and the SHELL implementation, the resulting operational software is 
highly machine transportable. 

DISCUSSION 

J.E. Vernaglia Will SPL/I programming still be necessary 
under the ACOS system? 

P.A. Rigsbee Yes, SPL/I code is integrated with APG 
facilities in the ACOS system. Some functions will need -
none of the ACOS features and,therefore, will be coded 
purely in SPL/I. 

R. Seynaeve What was the overall cost of SPL/I development? 

P.A. Rigsbee Two and half million dollars and five years. 

SACLANTCEN CP-25 24-9 




