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An Automatic Approach to Ship Detection in Spaceborne Synthetic Aperture Radar 
Imagery: an Assessment of ship detection capability using RADARSAT 

Farid Askari, Rcnoit Zcrr 

Executive Summary: Precise rapid reconnaissance of shipping in the littoral 
region is vital to shipboard self-defense systems, ASW, mine-hunting and clearing 
systems. The goals of this investigation are to develop an automated procedure for 
ship and wake detection in space-based synthetic aperture radar (SAR) imagery, 
and to assess the capabilities of the various RADARSAT SAR imaging modes. 

Although ship identification and classification are beyond the capabilities of 
existing commercial sensors, localization and extraction of ship size, and heading 
are feasible. The generic nature of the algorithms described here implies 
applicability beyond SAR ship detection. The methods can be incorporated in to 
ship or AUV-based systems that deal with pattern recognition and target detection. 
Further work includes more effective coupling of the different approaches. 
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An Automatic Approach to Ship Detection in Spaceborne Synthetic Aperture Radar 
Imagery: an Assessment of ship detection capability using RADARSAT 

Farid Askari and Rcnoit 72rr 

Abstract: This report describes a methodology for automated ship and wake detection 
in space-based synthetic aperture radar (SAK) imagcry. The methodology incorporates 
a multistage approach involving several algorithms which can be applied according to 
requirements, computational resources, and scene composition. We suggest that the 
localized K-distribution be used for scene segmentation and identification of 
regions containing probable targets. For a more detailed quantitative scene analysis 
and accountability for probabilities of occurrence of targets in conjunction with 
other oceanic features, a coupled neural-networks/Dempster-Shafer detection 
system is used. The mathematical morphology algorithm is better suited for SAR 
imagery with low signal-to-clutter ratios, as it incorporates neighbouring 
information and signal amplitudes for target detection. The methods are tested on 
several RADARSAT images with different imaging geometry and beam modes. On 
the basis of our findings, concerning the use of different RADARSAT imaging 
modes, we demonstrate conclusively that the STANDARD beam is far superior to 
SCANSAR-NARROW beam for automatic ship detection 

Keywords: remote sensing, ship detection, K-distribution, artificial neural networks, 
RADARSAT, Hough transform. 
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Introduction 

The utility of space-based synthetic aperture radar (SAR) as a surveillance tool has been 
recognized for over twenty years due to its all-weathertday-night imaging capabilities. 
Many nations rely on spaceborne SAR for monitoring of their territorial waters, 
specifically: fisheries management. and pollution. Precise and rapid reconnaissance of 
shipping trafficldensity in the littoral region is equally vital to ship self-defense systems, 
ASW, and mine-huntinglclearing systems. 

Detection of a ship by SAR depends on its size. shape? structure, and orientation to the 
radar, as well as the background sea clutter. There is an abundance of shiplwake detection 
algorithms in the literature [l-  41. But these studies mostly cite image processing 
algorithms for detecting hard target returns or linear features associated with wake 
signatures. Many of the algorithms are inadequate when the SAR image contains ships in 
conjunction with complex features such as oceanic fronts, eddies. swells and internal 
waves. Preliminary investigations suggest that a knowledge-based automated scene 
description system approach may be appropriate. A neural-network-based automated 
ocean-feature-detection system [ 5 ]  to facilitate detection of hard targets is described and 
compared with other pattern recognition algorithms. The original image can be 
represented as a series of features. with every feature having a corresponding probability 
of occurrence. as well as certainty or belief factors explained by evidential reasoning 
theory [6]. Another novelty of the present work is the availability of sea-truth and aircraft 
surveys, often unavailable in purely theoretical studies. 

In Section 2, we discuss the methodologies for ship hard target and wake detection in 
SAR imagery. The results of applications of the techniques and discussions are given in 
Section 3. Conclusions are given in Section 4. 
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Methods 

Detection of ships and wakes is essentially a pattern recognition problem. Speckle noise 
and false targets resulting from natural surface features complicate the detection problem. 
The principal factor limiting shipltarget detectability in SAR imagery is the sea-clutter. 
The sea-clutter or mean radar back-scattering cross-section from the ocean is a function 
of radar frequency, polarization, wind speed, incident angle. azimuth angle and resolution 
cell. Clutter is the collection of return echoes from scatterers within the resolution cell of 
the antenna. Fluctuations occur because of motion and changes in the amplitude and 
phase of the scatterers during the imaging process. Hence, for estimating the radar 
performance it is essential not only to quantify the mean backscattering signal, but also to 
characterize the statistical characteristics of the signal. We discuss the influence of the 
mean radar cross-section on ship detectability, then examine radar fluctuation statistics in 
the context of probability density functions (PDF). For automatic hard target detection, 
two techniques are presented: the Neural-Network-Dempster-Shafer hereinafter referred 
to as NNDS? and a mathematical morphology (MM) algorithm. The NNDS technique 
relies on the amplitude of the signal-to-clutter ratio using a Gaussian-shaped kernel. MM 
uses neighboring pixel information for 2-D shape detection. We end the section with a 
method for wake detection using the modified Hough transform which was initially 
developed and tested on ERS-2 SAR imagery. 

2.1 Influence of sea clutter on ship detection 
Only a limited amount of information exists in the unclassified literature [3] on the 
relationship between a ship's size and type. and its radar cross-section: 

where o , ~ , ~  is the radar cross-section of the ship in square meters, L is the ship length and 
8 is incidence angle. The minimum detectable ship-radar-cross-section can be written as 
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where pr and pa are respectively the range and azimuth resolutions of the radar, oo is the 
background sea clutter (normalized radar cross-section for either VV or HH polarization), 
and T is a threshold above the mean background. 

The most widely used model for describing the mean background clutter at C-band has 
been the CMOD4 algorithm [7]. This algorithm has been extensively applied and tested 
using the SAR and scatterometer data from the ERS-112 satellites that operate in the 
vertically polarized transmitlreceive (VV) configuration. For RADARSAT SAR, 
however, because of its horizontally polarized transmitlreceive (HH) configuration, a 
modified version of CMOD4 algorithm has been suggested [8]: 

In equation 3, U,  8, 4 are respectively, the wind speed. incidence angle, and azimuth 
angle of the radar with respect to the wind direction, and o , , ~  and oOV are the HH and VV 
radar cross-sections, and a is a parameter that has been empirically estimated [S]. 

With the aid of Equation (3) in (2) and using nominal values for the range and azimuth 
resolution. we arrive at vessel sizes that are detectable (Table 1) in RADARSAT imagery 
under varying wind speeds, incidence angles and azimuth angles. The plot of background 
clutter at C-band (Fig. I) reveals several qualitative observations: 1)  for a constant wind 
speed and incidence angle, ship detection performance improves (because of the lower 
clutter) if the radar is perpendicular to the wind direction (cross-wind) versus parallel to 
the wind (upwindldownwind) direction: 2) at a fixed incidence angle. ship detection 
performance degrades (because of the increase of the clutter) with increasing wind speed; 
3) for a fixed wind speed. ship detection performance is enhanced when the ships are 
positioned within the far-range (steeper incidence angles) versus the near-range (shallow 
incidence angles) of the image swath. 

2.2 Clutter statistics 
The easiest way to search for targets in an image is to examine the intensity of 

each pixel and decide whether or not it belongs to a target. However. for reliable detection 
the statistical properties of the pixel intensity of the clutter and the target must be known. 
The radar clutter distribution from the ocean is frequently described by a Rayleigh 
distribution [3]. However, Non-Rayleigh statistics can occur with the addition of small 
number of large scatterers such as sea spikes or deletion of a large number of small 
scatterers (shadowing mechanism) from the resolution cell. Increases in the spatial 
resolution of the radar can also contribute to non-Rayleigh statistics. When high 
reflectivity scatterers such as sea spikes or targets appear within the radar resolution cell, 
the distribution tail is elongated. To fit such long-tailed clutter data, the Weibull or the K 
distributions have been used [3.9]. as they are mathematically tractable. The "K- 
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distribution" is specified by the mean and normalized variance. The former shows the 
average signal strength. the latter deviations from an exponential distribution. 

2.3 Hard target detection 
The hard target radar return from a ship is governed by several mechanisms including: 
direct reflection from areas perpendicular to the radar beam. comer retlections and 
scattering from ship, and multiple reflection from the ship and the sea surface [lo].  Other 
parameters also affect the radar return such as material make-up of the ship, the 3-D 
infrastructure. incidence and aspect angles, and radar frequency and polarization. Motion 
effects (speed, roll. heave) will also reduce the coherence of radar signal backscattered 
from a ship. resulting in smearing and reduction in peak pixel intensity. Studies involving 
ship detection using multiple frequencies showed enhancements for shorter wavelength 
(higher frequency) SARs. Azimuthal ship track orientation relative to satellite ground 
track yields superior results [ 101. 

Automatic hard target detection involves extracting bright point-like targets (relative to 
the background) from the SAR image plane. With SAR spatial resolution of 25 m, ship 
signatures often appear blob-like rather than point-like targets. A standard indicator of 
ship structure is the length-to-width ratio (L/W)[10]. Merchant ships have L/W of the 
order of 6-7, whereas military vessels (destroyers, camers) have L/W greater than 10. For 
pointJblob-like target detection we use idealized Gaussian-shaped 1-D profiles. As 
described in [S] a 2-D image is first processed by sub-dividing it into series of sub- 
blocks. Four separate I-D profiles with different orientations are extracted from each 
sub-block and the results are processed through a bank of neural networks (Fig. 2). For 
each 1-D profile, the network produces an independent decision and belief that the 
detected profile belongs to a predefined shape, in this case a Gaussian-shaped profile 
(Fig. 3). The individual opinions are fused using the DS rules to derive the final 
classification. 

The neural network architecture used relies on radial basis functions (RBF) for training 
and pattern classification [S]. The neural network consists of three layers: input nodes. 
basis function (BF) nodes. and the output nodes. The connections between the input 
nodes and second layers have unit weights. The second layer is made of a number of 
multi-dimensional Gaussian BF defined by a mean vector and covariance matrix. The 
mean vectors are computed from the training set by a fuzzy c-means clustering algorithm 
[I  I]. where the number of clusters is equal to the number of BF needed by the network. 
The network output nodes are activated using a linear combination of the BF node the 
weights of which is determined using a matrix pseudo-inverse approach. The RBF 
classifier is essentially a function mapping interpolation method that partitions the n- 
dimensional measurement space into hyper-volumes or regions belonging to the separate 
classes. The outputs of the RBF for each 1-D profile are fused by the Dempster-Shafer 
(DS) process for obtaining final probabilities of occurrences of hard targets. The DS 
method developed in [S] for ocean feature detection is modified to recognize hard targets. 
As a hard target signature can be approximated by a nearly isotropic profile. the DS- 
combination-rule [S] can be forced to look for a Gaussian-shape on every 1-D profile. 
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The NNDS technique described above relies on signal-to-clutter-ratios or grey-level 
information which extends over a wide dynamic range. The two other approaches 
considered (the statistical K-distribution and the MM algorithm) operate on binary or 
thresholded images. The 2-D MM algorithm method involves a two-stage process. First, 
the image is transformed into a binary image by setting all pixel values below 255 level 
to zero. The second stage involves convolving the image with the erosion algorithm. The 
performance of this algorithm is contingent on choosing an optimum kernel size that 
depends on the spatial coherence of the data. The erosion operation in morphological 
processing is described in [12]. The last step in the analysis is the pixel connection 
process, which is also known as connected component analysis. Here we use four 
adjacent pixels to merge the connected pixels into a single cluster. 

2.5 Wake detection 
According to the hydrodynamic Kelvin wave theory [13] developed in 1887 several wave 
patterns result from the motion of a ship in the water: the Kelvin or bow wave envelope, 
the cusp waves which form the Kelvin envelope, the stem waves, the turbulent wave, and 
internal waves. Depending on the spatial resolution, radar frequency, wake orientation 
with respect to the antenna look direction and the background sea-clutter, some or all of 
these wake structures can be delineated in spaceborne SAR imagery. Often the most 
visible signature is the turbulence-induced dark streak that can trail the ship for several 
km. The other dominant signature is the "V"-shaped pattern, which can have opening 
angles varying between 6" and 52". Radar imaging theories explaining the formation of 
narrow angle "VW-shaped patterns have been developed in [14-161. A detailed simulation 
study of radar imaging of Kelvin arms of ship wakes is given in [17]. Simulations show 
that signatures of Kelvin arms are strongest at low wind speeds and are not particularly 
sensitive to wind direction. The signatures. however, are much sensitive to radar look 
direction and wake orientation. Furthermore, the signatures are more clearly visible on L- 
band than on C-band SAR imagery [17]. 

Several methods for line detection in SAR images have been reported in the literature 
[18-191. The Radon transform works in the Fourier domain, while Hough transform (HT) 
works in the original image plane. On the basis of working with ERS-2 SAR imagery we 
developed a procedure which relies on the HT for automatic detection of wakes in SAR 
imagery (Fig. 4). Straight-line HTs are classified in terms of parameters used to 
formulate the Hough space. The most popular parameterization is given by 

p is the distance from the line to the origin 
and, 

8 is the angle between the line and the abscissa 

Equation (4) maps a point in the image space into a curve in the Hough space. After the 
HT is performed, the Hough space is searched for a number of maxima points, each of 

Report no. changed (Mar 2006): SR-338-UU



SACLANTCEN SR-338 

which corresponds to a straight line in the image space. Here the HT is modified to deal 
with line segments. The HT is run to determine the equation for a line from the maxima 
in the Hough space, then for extracting the starting and ending points of the line segment. 
Line segments are not directly sought, as the HT would become computationally 
inefficient. 
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Results and Discussions 

3.1 RADARSA T imagery 
In this section we analyze the RADARSAT images collected during SACLANTCEN's 
MAPEX-2000 and Boundary-2000 experiments. The SAR images were acquired over the 
southeastern coast of Sicily near the Malta Plateau between 21 February and 16 March, 
and 29 April to 4 May 2000 during two separate cruises. Two types of images were 
acquired for assessing the ship detection capabilities of the various beam modes (Fig. 5): 
SCANSAR and STANDARD [la] .  The first four images were collected in the 
SCANSAR - Narrow imaging mode (Table 2). In this mode, between two 
(SNA:Wl+W2) to three (SNB:W2+S5+S6) single beams are employed during data 
collection, providing maximum spatial coverage (300 km). The beams are selected 
sequentially, thereby creating a wider swath than is possible from a single beam. The 
increased swath coverage, however, comes at the expense of reduced spatial resolution 
over a single beam. The nominal range and azimuth resolutions are 50x50 m respectively. 
The incidence angles for March 3,10, and 12 cover the range of 3 1 to 46'. and 20 to 39" 
for March 2. 

The last three images were acquired in the STANDARD beam mode. In this mode there 
are seven beam positions labeled S 1- S7. Each beam covers a minimum ground swath of 
100 km. The azimuth resolution is the same for all beam positions. 27 m, whereas the 
range resolution (25 m nominally) changes from beam to beam. The principal advantage 
of STANDARD beam over the SCANSAR mode is its radiometric image quality. where 
pixels are represented as 16-bit gray levels. The STANDARD beam mode also offers 
more flexibility in the choice of incidence angles. The final images are re-sampled to 25 
m per pixel in both directions for SCANSAR mode, with intensity values ranging 
between 0 to 255 digital counts @-bit), and 12.5 m for STANDARD mode with intensity 
values ranging between 0 to 65536 digital counts (16-bit). 

Figures 6-12 show RADARSAT images for the March and April-May experiments. The 
March 2 and 3 images were acquired under high-wind and high sea-state conditions, 
while for March 10 and 12 conditions were moderate. The conditions for the April-May 
experiment were high to moderate (Table 3) 
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3.2 Detection results 
As a pattern recognition system the human eye is superior to any numerical scheme for 
detecting objects in satellite imagery. The major obstacles for visual detection, however. 
are excessively high data volumes and time involved in image interpretation. As a typical 
RADARSAT image covers an area of 96000 km2 and consists of 11000x14000 pixels, 
automatic detection offers clear advantages. Nevertheless some situations call for 
verification that can only be delivered through visual inspection. In fact, in support of the 
satellite-ship detection and validation experiments, three MPA flights were conducted out 
of Sigonella. Sicily during March 2. 3. and 10 with the aim of providing ground-truth 
information namely: ship positions, speeds. lengths. and headings in the operating area 
during the satellite overpasses. The MPA surveys. however. did not provide fruitful 
results and we resorted to visual inspection of SAR imagery for verification of satellite 
results. As an example the March 10 (Fig. 8)  scene is shown where the spatial correlation 
between the MPA-observed ship positions versus the SAR-derived ship positions is less 
than 25 percent. We attribute the poor agreement to several factors. First. the ship 
positions (reported by the aircraft's inertial navigation system (INS)) were recorded only 
to the nearest minute of latitude/longitude. This round-off factor alone can contribute to 
localization errors of about 1.8 km (equivalent to 30-40 SAR-pixels). Second. the ship 
speed and heading estimates were somewhat subjective. The MPA navigator used visual 
clues for judging the parameters. Also, given that there was as much as three hours time- 
delay between the MPA-survey and satellite overpass (three-hours for March 10). 
misjudging the ship speed for example by one-knot. could accrue a 4.8km localization 
error. Hence. we use the results of the visual detection for ground-truth and quantifying 
the performance of the various algorithms. 

The back-scattered signal from the R/V Alliunce provides an opportunity for extracting 
ship size and ship heading from SAR imagery in the highly varying ocean environment. 
Out of the seven SAR images examined the RNAlliance was visible in five scenes. The 
March 2 and 12 images were not considered for analysis. because in the first case the 
ship's hard-target return was below the background clutter, and in the second, the ship 
was docked in port during the satellite overpass. For March 2, the ocean back-scattering 
strength appears to be stronger than back-scattering from land. The most probable cause 
of this was perhaps the improper setting of the automatic gain control (AGC) on the 
receiver. Problems with the AGC are not uncommon with RADARSAT and have been 
reported elsewhere. The RN Alliance hard target signal-to-clutter-ratio varies from 2.6 to 
10.8 dB as a function of background environment as seen graphically (Fig. 13). For 
March 2, with wind speeds of 11 m/s and 4 m wave heights, the hard target return is 
submerged below the ocean clutter. The highest signal-to-clutter-ratio is associated with 
May 4 which has the lowest wind and sea state conditions. Except for March 10, and May 
4 images the back-scattering returns from the ship do not exhibit any particular structure 
and appear as white blobs in the imagery. For May 4 the ship return has more backscatter 
in the front and back than in the middle. The Alliunce vessel length is estimated from the 
number of bright pixels from March 3, 10, April 29, 30  and May 4 to be respectively. 
246. 127. 125. 137 and 125 m. The dimensions of the Alliance are 92 m in length and 
15.2 m in width. Furthermore. we can estimate ship heading (with 180" ambiguity) using 
the largest dimension of the hard-target-return (length) if the ship has no visible wake 
signature. For 3 March and 4 May. the SAR-derived headings are respectively, 298" and 
76" as compared to 292" and 8 1 "  in situ-measured headings. 
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An inherent problem that arises in matching navigation data from satellite and ship 
records is localization error. With satellite ground speeds of 7 kmls. small differences in 
clock-settings on either platform can contribute to sizable localization errors. In this case 
the localization errors between the INS-derived ship positions versus SAR-derived ship 
positions vary from (Table 2) about one to five ship lengths (90 to 428 m). 

We now compare PDF's and higher moment statistics obtained from different sub- 
regions. The results reveal several notable characteristics (Fig. 14). Regions containing 
low scatterers in SCANSAR (8-bit) imagery show typical Rayleigh-distribution (Fig. 
14a-b). For regions containing high-intensity scatterers. however. the distributions are 
atypical. Here the distributions are long-tailed. but are somewhat skewed toward the low- 
intensity values. Also the distributions are peaked at the highest value (255 level) 
suggesting that the data was clipped during post processing. This operation essentially 
groups all intensity values associated with ships and sea spikes that are equal to or greater 
than 255 into the same intensity bin. 

For the STANDARD beam (16-bit) imagery. clutter regions containing high-intensity 
scatterers are characterized by right-skewed-long-tailed distributions that are well suited 
to the K-distribution (Fig. 14c-d). Moreover. whenever a ship appears within a sub- 
region. the tail of the distribution becomes longer. As such with a fitted PDF at hand. it is 
possible to determine if a particular intensity value is due to a target. by comparing the 
intensity value to a critical intensity which can be set u priori by choosing an acceptable 
false alarm rate. The problem associated with a statistical target detector. however. is one 
of choosing the appropriate window size for detection. The window must be large enough 
to produce sufficient statistics, while i t  must be small enough for target localization. 
Using several iterations (and a false alarm rate of 5 percent) we arrive at a window size of 
20 x 20 pixels for identifying the most probable sub-regions containing hard targets. 

Next we apply the NNDS algorithm to a sub-region of a SCANSAR image containing the 
Rn/ Alliance. In this case the classifier generates an unacceptably high number of false 
targets (Fig. 15a). As the NNDS algorithm operates on a range of gray scale intensities 
instead of a set threshold image. the high false alarm rate is attributed to the artificial 
clipping of high intensity values. or improper selection of the most significant data bits. 
Given that the hard target signatures only occupy the highest intensity levels (255), a 
binary image is therefore a more ideal representation for the SCANSAR data. As seen in 
Figure (15b). applying the MM algorithm to the same sub-region improves detection 
performance significantly and reduces the false alarm rates. Through the use of 
neighbouring information, the MM algorithm is able to eliminate many of the "salt- 
pepper" patterns in the imagery that is often associated with individual sea spikes or 
speckle noise. 

We now show the results of the application of the NNDS algorithm to the STANDARD 
imagery (Fig. 10-12). Because of the data's high radiometric fidelity (16-bit), the hard 
target signatures appear at least 5 dB above the background clutter in this type of 
imagery. Among the April 29. 30 and May 4, the lowest signal-to-clutter ratio is 
associated with April 30, when the SAR imaging geometry is such that the spacecraft 
antenna is pointing into the wind (upwind), hence observing a higher contribution from 
the background clutter. The NNDS detection performance exceeds 97 percent accuracy 
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for all three STANDARD scenes. The basis for quantifying the performance is through 
comparisons with visual observations. 

The WVAlliunce's wake signature was only visible on April 30. During the overpass the 
ship was moving south at a speed of 12.6 knots. Using wake orientation as the basis for 
heading, the SAR-derived and in situ-measured headings are nearly identical. Figure 16 
shows the results of wake detection using the modified HT procedure. Here, the 
procedure outlined in the previous section was applied twice to the original image (Fig. 
16a). The red line corresponds to center-line turbulent wake, and the green line 
corresponds to a single arm of the Kelvin wake (Fig. 16b). Because the ship is travelling 
almost parallel (180) to the satellite flight track, we see no evidence for the "Doppler 
offset" or ship displacement from its wake signature. The "Doppler offset" is a well- 
known phenomenon which results from line-of-sight component of motion of scatterers 
during the aperture formation. However, because it is a cosine-dependent function, the 
maximum offset is observed for range-travelling targets. In our case the ship velocity 
cannot be extracted because the ship is moving in the azimuth direction. 
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Conclusions 

In this report we examined three approaches for ship detection: the combined NNDS 
architecture, a statistical approach utilizing the K-distribution. and mathematical 
morphology (MM). The three approaches differ in terms of complexity and 
computational efficiency. The first approach relies on signal-to-clutter-ratios or gray- 
scale which extends over 16-bit range of values, whereas the other two operate on binary 
or threshold images. We can draw several general conclusions from the work presented 
here: 

I .  The isotropic Gaussian-shaped kernel used in training the NN is well suited for 
detecting hard target radar returns from ships in SAR imagery. 

2. The MM algorithm, which is conceptually simple and computationally efficient, 
outperforms the NNDS algorithm in detecting hard targets in imagery which has been 
artificially clipped or thresholded. 

3. Of the three approaches considered here, the NNDS is the most computationally 
intensive. The training of the neural network is rather simple and straightforward, 
requiring little computation overhead. However, the computation overhead is in the 
Dempster-Shafer stage where different hypotheses must be tested. 

4. On the basis of comparisons with visual interpretations the NNDS shows over 97% 
success rate in ship detection. 

5.  The recommended approach for ship detection is scene-segmentation using the k- 
distribution for identifying regions having the highest probabilities for finding 
targets, followed by application of NNDS for more precise localization. 

The RADARSAT images were collected under a wide range of environmental conditions. 
The observations from this study have provided the following insights on the use of the 
two imaging modes for operational ship detection: 

1. While ships can be detected visually in SCANSAR imagery, in spite of its extended 
swath width (300 km), it is not the recommended mode for automatic ship detection 
due to the poor radiometric resolution. 

2. The 8-bit quantization scale provides insufficient dynamic range for discriminating 
between bright targets and sea clutter under high sea-state and high wind conditions. 
Because of problems with signal saturation and distorted statistics, application of 
automatic detection algorithms to SCANSAR imagery produce unacceptably high 
false alarm rates. 
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3. When using the SCANSAR imaging mode, the SNB is the preferred choice over 
SNA because of the coverage of the higher incidence angles where background 
clutter tends to be lower. 

4. The STANDARD beam S6 is perhaps the optimum imaging mode because of its high 
spatial-radiometric resolution and lower clutter levels at the higher incidence angles. 

5. Because of low signal-to-clutter ratios RADARSAT imagery does not appear to be 
well suited for wake detection. 

6. Using wake orientation as a basis for estimating ship heading, SAR-derived headings 
are nearly identical to in .situ measured headings. In the absence of a visible wake, it 
is still possible to assign a ship heading (with 180 ambiguity) based on the 
orientation of the ships largest dimension. This method yields headings that are 
within 5" of the in situ measured headings. 

7. On the basis of hard target response obtained from the RN Alliunce. the ship-size 
tends to be overestimated by at least a factor of 2 and 1.4 respectively, using 
SCANSAR and STANDARD imagery. More observations are needed. however. 
because of the sensitivity of this parameter to azimuth viewing angle. 
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Figure 1 C-hand ( H H )  radar cross-section vs azimuth angle for diflcrent 
incidence angles and wind speeds. 
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Figre 2 Neural network architecture. I 
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Figure 3 Idealized shape used,for training the 
network. C I  is the clutter level. 
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Figure 4 Flowchan cfprocedure used in wake detection. 
WAKE EXTRACTION 

Figure 5 RADARSATSAR imaging geometiy and beam 
modes from / I 8 ]  The STANDARD and SCANSAR 
beam modes are pertinent to our study. 
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Figure 6 RADARSAT SCANSAR inzagefifi,r 12.lurc-h 2, 2000. 
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Figure 7 RADARSAT SCANSAR image for March 3, 2000. The red dots represent ship locations 
based on visual detection. The blue dot identijies the location of WV Alliance. 
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38 OON 38 OON 

Figure 8 RADARSAT SAR image for March 10, 2000. Red dots represent ship locations based on 
visual detection. The yellow dots represent ship locations based on MPAflight. The blue dot identijies 
the location of R N  Alliance. 
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Figure 9 RADARSAT SCANSAR image for March 12, 2000. The red dots represent ship locations 
based on visual detection. 
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Figure 10 RADARSAT STANDARD imagep for April 29, 2000. Red dots represent ship locations 
based on automatic detection. The blue dot identifies the location of RN Alliance. 
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Figure 11 RADARSAT STANDARD SAR image forApril 30,2000. Red dots represent ship locations 
based on automatic detection. The blue dot identijies the location of WVAlliance. 
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Figure 12 RADARSAT STANDARD imagery for May 04, 2000. Red dots represent ship locarions 
based on automatic detection. The blue dot identiJies the location of WV Alliance. 
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Figure 13 (a) 3-D plot of image inten.sity,fir region containing WVAll iance for March 2, the signal 
from Alliance is not di.scernihle from the background clutter; (h) same as (a )  except,for March 3, the 
Alliance signal-to-clutter ratio is 4.0 dB, the hard target return is 246 m wide; (c) .same as (a) 
except f o r  March 10, the Alliance signal-to-clutter ratio is 2.6 dB, the hard target return is 127 m 
wide. 
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Figure 13 (d )  .same a.s (a )  except,forApril29, the Alliance signal-to-clutter ratio is 8.8 dB, the hard 
target return i.s 125 m wide; e) .same as (a )  except,for Apri l  30, the Alliance .signal-to-clutter ratio is 
7.0 dB, the hard target return is 137 m wide; (f) same as (a)  except for  May 4 the Alliance signal-to- 
clutter ratio is 10. X dB, the hard target return i.s 125 m wide. 
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Figure 14 (a) Histograms for sub-regions in March 03 scene containing low and high intensity 
values, (b)  same as (a)  except for March 10 scene. 
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Figure 14 (c)  histogram.^ for  sub-regions in Apri l  29 scene containing low and high intensit?: 
values, (d) same as (c) except ,for Apri l  30 scene, (e) same as (c )  e.xcept ,for May 04 scene, this 
subregion contains hard target. 
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Figure 15 (a) Application of NNDS to SCANSAR imagery; (b)  
Application of MM algorithm to same region. The red-A 
corresponds to the detected signal from the RN Alliance. 
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Figure 16 (a) Original SAR image; (b)  Application of HT to the image 
showing the WV Alliance wake. 
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Table 1 Minimum detectable ship length (m)  based on HH scattering model. 

WIND 
W S  

INC ANG SHIP LEN SHIP LEN 
DEG CROSSWIND UPWIND 

Table 2 RADARSAT imaging parameters and environmental conditions. 

Table 3 Compai-ison ofship positions with SAR-d2rivedpositions. 
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