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A neural-network-fusion architecture for automatic extraction of oceanographic features from 
satellite remote sensing imagery. 

Farid Askari and Benoit Zerr 

Executive Summary: Satellite remote sensing imagery provides the ASWIMW 
operational community with a synoptic view of the prevailing environmental conditions 
and the capability to extract information on oceanic features/processes affecting 
acoustic propagation conditions. The high data volumes and throughputs generated by 
earth observing satellites call for the implementation of advanced information systems 
including automatic pattern recognition that can aid the analyst in filtering, 
synthesizing, monitoring fast changing environments, and locating high-interest targets 
and features more efficiently. The work reported here focuses on automatic detection of 
oceanographic features in satellite imagery, using artificial intelligence techniques. The 
proposed architecture lays the foundation for multi-sensor data fusion and extraction of 
information for rapid environmental assessment (REA) applications. Future work 
involves the expansion of the number of signatures and decision rules in the knowledge 
bank for a more complete representation and classification of tactically relevant features 
in satellite imagery. 

- iii - 
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A neural-network-fusion architecture for automatic extraction of oceanographic features from 
satellite remote sensing imagery. 

Farid Askari and Benoit Zerr 

Abstract: This report describes an approach for automatic feature detection from fusion 
of remote sensing imagery using a combination of neural network architecture and the 
Dempster-Shafer (DS) theory of evidence. Deterministic or idealized shapes are used 
to characterize surface signatures of oceanic and atmospheric fronts manifested in 
satellite remote sensing imagery. Raw satellite images are processed by a bank of radial 
basis function (RBF) neural networks trained on idealized shapes. The final 
classification results from the fusion of the outputs of the separate RBF. The fusion 
mechanism is based on DS evidential reasoning theory. The approach is initially tested 
for detecting different features on a single sensor and extended to classifying features 
observed by multiple sensors. 

Keywords: automatic detection, remote sensing, neural networks, sensor fusion. 
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Introduction 

Today, the remote sensing community is faced with two critical problems. First 
is the problem of the management of high data volumes generated by the earth- 
observing satellites, and second is, the integration of multipararneter measurements 
from different satellites and sensors. On both fronts the magnitudes of the problems 
are expected to grow at an accelerated pace. By the end of the decade there will be a 
dozen dedicated ocean monitoring satellites in orbit equipped with advanced sensors 
which are capable of recording several hundred spectral and polarimetric channels 
simultaneously over a single resolution cell and with data rates of over 100 Mbps. AS 
such a phenomenon on the ocean surface may produce numerous different sets of 
responses from different sensors. There is therefore a pressing need for more 
advanced information systems which in addition to high-speed networking systems 
and high processing capacity incorporate intelligent and automatic pattern 
recognition. New quantitative decision making tools must be developed for fusing 
and assimilating large volume multidimensional data into usable products. Hence, the 
objectives of the research presented in this paper are twofold: 1) Develop a 
methodology for automatic oceanographic feature detection and extraction in satellite 
remote sensing imagery, 2) Develop a system architecture for information and sensor 
fusion. The role of automatic pattern recognition and feature extraction systems is to 
assist the resource analyst in filtering and synthesizing vast volumes of data more 
rapidly, optimizing decisions, and monitoring fast changing environments more 
quickly. 

Much published material exists on the general problems of automatic pattern 
recognition, feature extraction, and combining multiple classifiers. For automatic 
pattern recognition several classification algorithms are available including the 
Baysian classifier, k-nearest neighbor (k-NN), distance classifiers [I] and a family of 
neural-network (NNT) based classifiers [2]. Feature extraction schemes make use of 
spatial information and shape descriptors for detection and classification. The 
distinctive characteristics of each feature may be derived from Fourier descriptors, 
moments, texture analysis, the Hough transform [3] and the two-dimensional wavelet 
transform [4]. For improving the overall classification accuracy or increasing the 
efficiency of the system, several schemes are used for combining classifiers [5,6] 
including majority voting, sum rule, product rule, fuzzy integral [7], and the 
Dempster-Shafer (DS) formalism [8,9]. The primary focus of the studies cited above, 
however, has been on speech, handwriting and character recognition applications. 
With the exception of the wavelet transform [4], little has been published on the 
applications of such techniques to satellite oceanography. 
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Our work introduces a new approach to automatic feature detection and sensor 
fusion in remote sensing imagery which relies on a combination of neural network 
architecture and the DS theory of evidence. The use of neural networks for 
classification purposes is of course not new. The approach reported here, however, 
differs from previous investigations. Most investigations using neural-networks for 
classification rely solely on the outputs of the networks as the discriminator. That is, 
after the network is trained and a generalized relationship between input-output is 
derived, new data is classified as belonging to a certain class by choosing the 
maximum network output. Here, the network outputs are used as inputs to a classifier, 
which uses the information in the framework of DS formalism to arrive at 
classification results. In other words the neural network outputs are treated as 
posteriori probabilities, with each network supplying independent evidence to the 
classifier. Our approach also provides for more flexibility in fusing information from 
multi-source images when the sensors have different spatial resolutions. Each image 
is classified independently and the final classification results are transferred to a 
geographic map in the form of symbols or contours. Moreover our approach differs 
from traditional image processing schemes in the manner in which 2-D information is 
processed. Here, we use a template consisting of four 1-D profiles taken at different 
orientations over the image. As such, the classification system is capable of dealing 
with shape information and features containing 2-D spatial variability, without 
complex and time consuming processing such as 2-D texture analysis. 

The article is organized as follows. In Section 2, we show the various types of 
signatures for the oceanographic features and the rational for selecting the shape- 
kernels which form the basis for automatic detection. We then formulate the neural 
network and fusion architectures. The results of applying the technique to image 
classification and feature detection are shown in Section 3. It is shown that the system 
is capable of detecting oceanic frontal features in satellite imagery on the basis of 
training on idealized shapes. Using sensor fusion and a set of predefined rules we 
develop a methodology for discriminating between wind-induced versus sea surface 
temperatude-induced roughness fronts. Also a strategy for automatic detection of 
salinity fronts is proposed by fusing signatures from the roughness and color fields. 
The conclusions are given in Section 4. The approach presented is well suited to 
rapid, accurate and systematic search of features in a single image or multi-sensor 
data. 
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Materials md Methods 

This section describes the overall automatic detection system. First, we show 
examples of oceanographic features and their corresponding signatures that provide 
the basis for the automatic detection problem. Descriptions of the neural network and 
fusion architectures and a demonstration of the technique in classifying idealized 
patterns and features follow. 

2.1 Oceanographic Features and Signatures 

When interpreting satellite imagery, the human eye uses a combination of 
tonal, spatial structures and textural features as visual indicators for recognizing or 
distinguishing features from their backgrounds. In order for a machine to learn and 
recognize features automatically, low-level and high-level information must be 
furnished to the pattern recognition system. The low-level information consists of 
feature attributes such as edges or intensity changes, lines or regions. The high-level 
information consist of knowledge representations and inference mechanisms which 
describe the feature's physical attributes. Tonal or intensity modulations as well as the 
shapes are utilized as the basic low-level information for feature extraction. 
Modulation is defined as the change in local image intensity with respect to the mean 
background intensity. 

In describing high-level information, knowledge can be represented as 
declarative or procedural [lo]. In declarative representation, knowledge is assembled 
through historical evidence. In procedural representation a set of predefined rules 
govern the flow of information and decisions. The following discussion and examples 
illustrate the manner in which we utilize declarative knowledge in formulating the 
pattern recognition system. Numerous studies have reported the relationships between 
intensity modulations in the roughness, color and the temperature fields to physical 
processes on the ocean. Among processes contributing to variations in the water 
"color" in coastal regions are river discharge of dissolved organic matter and 
suspended sediment, re-suspension of bottom material due to tidal currents, storms 
and wave action, algal blooms and nutrient loading [ll]. For small-scale roughness, 
the primary geophysical processes that modulate the backscattered radar cross-section 
are temperature fronts, discontinuities in the wind field, interactions between long- 
waves and short-waves, interactions between waves and currents and surfactants and 
surface films [12]. Processes contributing to sea surface temperature anomalies 
include diurnal heating and cooling, upwelling, diffusion or advection by currents, 
filaments and eddies [13]. 
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Consider the variations in sea surface roughness as shown in an ERS-2 SAR 
image (Fig. 1). The I-D vertical profile (Fig. Ib) across feature A shows a distinct 
steplike (bright-to-dark) change in surface roughness with a smoother surface on the 
upper portion of the image. Historical evidence suggests that in SAR imagery, two 
primary physical mechanisms contribute to step-like changes in sea surface roughness 
[14, 151: wind stress changes induced by the thermal stability variations near a SST 
front and wind stress changes induced by an impulsive atmospheric windgust front 
1161. Examples of similar features and patterns appear in [16]. A I-D horizontal 
profile across feature B (Fig. Ic) shows a bright signature with enhanced roughness 
concentrated over a narrow region. It is widely accepted that narrow-banded 
modulations are associated with regions of strong wave current interactions, ie, 
convergent fronts [16], when the modulation is positive (bright) and with the 
accumulation of surfactants, when modulations are negative (dark) [12]. 

In a declarative knowledge base containing step-like and Gaussian-shaped 
features the modulations are as follows. For a step-like feature a distinct boundary 
separates two regions with different mean image intensities, whereas for the 
Gaussian-shaped feature, a pulse of finite width stands above or below a mean 
background. The idealized shapes provide an adequate description of certain types of 
oceanic fronts in remote sensing imagery. The first type is often associated with 
boundaries of large-scale currents and eddies observed in advanced very high 
resolution (AVHRR) or Sea-viewing Wide Field-of-view Sensor (SeaWIFS) imagery, 
and wind and sea surface temperature (SST) fronts in SAR imagery. And the second 
type is often associated with river and estuarine plumes, current filaments and jets in 
AVHRR or SeaWIFS imagery and velocity fronts and slicks in SAR imagery. To 
further generalize the problem and account for the various sensor resolutions, feature 
length-scales and sensor look-angle dependencies, we construct patternffeature 
functions with a broad range of adjustable parameter. The step-like modulations are 
further divided into two subclasses: steps with intensities increasing from left-to- 
right, and steps with intensities decreasing from right-to-left. In addition to the 
vertical steps, the steps are permitted to contain ramps with varying slopes. For the 
Gaussian-shaped pulses, which can be either positive or negative, the pulse widths are 
varied (Fig. 2). 

Recent research has shown that many ocean features produce anomalous 
signatures in more than one field. Sometimes a surface feature may produce 
signature anomalies in all three fields, while in others only two of the fields may be 
expressed. When the fields do appear concurrently the question is whether the fields 
are collocated or is there horizontal dislocation. There are situations for example with 
roughness and SST fronts, where one field can lag or lead the other depending on the 
structure of the atmospheric boundary layer or the wind direction [14]. It is also likely 
that when observing a frontal system, anomalous signals may emerge from different 
positions within the front because of the differences in the penetration depths of the 
electromagnetic waves into the surface. The IR and microwave energies are due to 
surface processes, whereas the color field results from light upwelled from below the 
surface. 
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The ultimate goal of fusion of the various sensors and features is, however, to 
arrive at a knowledge base that has a higher information content than the individual 
parts. Next, we demonstrate how the shapes can be incorporated in a neural network 
for automatic feature detection. 

2.2 Neural network architecture 

Artificial neural networks are well suited to a variety of problems in signal 
and image processing in which competing hypotheses are pursued simultaneously and 
rapidly [2]. The behavior and practical characteristics in terms of error rates, training 
time, classification time, and memory requirement of several different networks and 
classifiers are compared in [17]. A review of neural networks for classification of 
multi-spectral remotely sensed imagery is given in [18]. 

The neural network architecture used here relies on radial basis functions 
(RBF) [2, 191 for training and pattern classification. The RBF network belongs to the 
family of multilayer feedforward neural networks. In network design, one of the 
important considerations in choosing the classifiers is how the classifier partitions the 
feature-space and the shapes of its decision boundaries. How well a classifier can 
generalize and discriminate, new unseen data depends on the structure of its decision 
regions. The RBF classifiers have relatively smooth decision boundaries, and are thus 
able to generalize well to unseen data [17]. 

The neural network (Fig. 3) used here consists of three layers: input layer 
containing the input nodes, hidden layer containing the basis function (BF) nodes, 
and the output layer containing the output nodes. In general, a network is trained or 
tuned to recognize patterns by being shown a given set of input-output pairs. The 
tunable parameters take the form of weights. 

The first step in training involves the specification of the number of basis 
functions (BF). For our particular problem we determined that five BF are sufficient 
to achieve the desired classification performance. Unit weights connect the input 
layer to the second layer. 

The second layer consists of a number of multi-dimensional Gaussian BF defined by: 
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where X = ( x,,x ,,... xp) is the input vector, and Y = ( y,, y,, ...y,) is the output vector, C, 
is mean vector and o, is the covariance matrix, n is the number of BF, and b, is a bias 
term which is used to threshold the output of the jth neuron in the output layer. The 
second step in training involves determining the BF centers and variances or widths 
of the BF. The RBF classifier is essentially a function mapping interpolation method 
that partitions the n-dimensional measurement space into hyper-volumes or regions 
belonging to the separate classes. The RBF centers and widths define the hyper- 
volumes. The mean vectors are computed from the training set by a fuzzy c-means 
clustering algorithm [19], where the number of clusters are equal to the number of BF 
needed by the network. The variance is computed using the nearest four neighbors. 

The output nodes z, are activated using a linear combination of the BF nodes: 

where z, is the output of the jth output node, yl is the activation of the ith BF node and 
wl, is the weight connecting the ith BF node to the jth output node, and w, is the bias 
of the jth output node. The third step of the training process involves computing the 
weights, which are determined using matrix pseudo-inverse approach. When 
classification is exclusively performed by RBF, an input vector is classified as 
belonging to the class associated with the output node with the largest response. 

2.3 Fusion Mechanism 

In the previous section we described the architectural details of the neural 
network. For many applications it is standard practice to use the network as a stand- 
alone classifier and choose the maximum output from a given node for selecting a 
particular class. Our goal here, however, is to extend the technique into a 
classification strategy for multiple information/sensor fusion. 

We first show the application of the technique for detecting features in a single 
imagdsensor. A 2-D image is classified using four 1-D profiles. For each 1-D profile, 
the network outputs an independent decision or belief that the detected profile 
belongs to one of the predefined classes. The individual opinions are then fused to 
derive the final classification results. The fusion mechanism is based on the DS 
theory of evidential reasoning [9,21]. The DS theory is a mathematical formalism for 
assigning beliefs to a set of hypothesis, and for combining belief in a consistent 
manner. First, we illustrate the DS techniques by a simple numerical example, and 
later show graphically the behavior the networkJclassifier using idealized features. 

The principal requirement for the application of the DS is the construction of 
the frame of discernment (FOD). The elements of the FOD are chosen as the possible 
features that might be encountered on a satellite image. We define the FOD by the set 
8 = {Fl, F2), where F1 and F2 are two separate features. Contrary to a probability 
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distribution, which assigns belief to the elements of FOD, the DS theory assigns 
belief to all possible subsets of the FOD, and actually distinguishes between 
uncertainty and ignorance. The degree of ignorance is introduced by assigning belief 
to the whole frame of 8. Here, we use the RBF outputs for assigning belief. 

For demonstration we extract a vertical and a horizontal profile over two 
hypothetical features. The RBF is trained to distinguish between the two features 
using only two elementary profiles, pl and p2. The output of the RBFs for the vertical 
and horizontal profiles respectively, are {pl,, p2,}, and {plh, p2h). We assume that 
F1 and F2 are isotropic features, such that the evidence from the horizontal and 
vertical profiles can be combined directly. The possible subsets of FOD are (F l ) ,  
{F2), {Fl, R ) ,  and (0).  

Now suppose that the RBF outputs result in the following set of beliefs: pl, = 
0.8, p2,= 0.2, pl, = 0.55, p2, = 0.45. Here both belief functions, (pl, > p2,) and (pl, 
> p2,), support the hypothesis that feature F1 is present, although the support from 
the horizontal profile is weaker than the vertical profile. Now if we submit the 
following set of beliefs: 

and, 

to the DS and use the orthogonal sum (m = ml @ m2) combination rule [21]: 

provided that 

The order in which mass functions are combined is irrelevant because the orthogonal 
sum is commutative, m, 63 m2 = m2 63 m, , and associative, 
m, @ (m, CI3 m,) = (m, @ m2 ) @ m, . Using 2.3-2.8 in 2.9 we obtain 
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We obtain a much stronger support for feature Fl, using the combined beliefs 
(m (F1}=0.6, m {F2)=0.0. In this situation, DS concentrates support when there is 
consent between beliefs and reduces it when there is not. Next we consider a situation 
of conflict ((p 1, > p2,) and (p 1 c p2h), ie, when the beliefs don't agree: 

m,((91) = 1-~2, = a, 
m,({F2)) = p2h-p1h = bh 

m2({F1,F2}) = pl, = c, 

Combing the above beliefs into DS and using (m = ml @ mz) we obtain: 

m({Fl}) = (bv ah + bv ch)l(l- bV bh) = 0.574 
m((F2)) = (a, bh + c, b,)/(l- b, b,,) = 0.043 

Here the conflict results in the reduction of support for both hypothesis. 

2.4 Pattern Classification Using Idealized Features 

Now we apply the technique to a uniform intensity image containing two 
idealized features, a narrow pulse and a square with intensities different from the 
background (Fig. 4). The 2-D image is processed by sub-dividing it into a series of 
square blocks. A template containing four 1-D profiles is used for extracting intensity 
values along the 0" to 180 ", 90" to 270 ", 45 " to 225 ", and 135 " to 3 15 " directions. In 
every block, the intensity values for each profile are processed through a bank of 
RBFs. The network outputs, which are regarded as a posteriori probabilities are 
transformed into beliefs belonging to the element of the FOD: 

( PULSE, STEP-LH-H, STEP-LH-V, STEP-LH-D 1 , STEP-LH-D2, 
STEP-HLH, STEP-HL-V, STEP-HL-D 1, STEP-HLD2) 
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Where the following notation applies: 

LH: low-high transition, 
HL: high-low transition, 
H: horizontal profile (0- 180), 
V: vertical profile (90-270), 
D 1: main diagonal (45-225), 
D2: second diagonal (135-3 15), 
PULSE: used the Gaussion profiles for the 4 profiles equivalently. 

STEPLH-H: uses mainly the low-high step from the horizontal profile but 
also the low-high step from main and second diagonals. 
STEP-XX-X are defined in the same way. 

Figures 5-8 show the system response when the template is placed in different 
positions within the 2-D image. The network output consists of a 3x4 matrix, where 
the first dimension corresponds to feature types (STEP-LH, STEP-HL, Pulse), and 
the second dimension is the profile orientation (H, V, Dl, D2). Figures 5 and 6 
illustrate the network response when the template is aligned respectively, with the 
square's horizontal and vertical edges. When positioned along the vertical edge, the 
network shows consent between the H and Dl-profiles, disagreement between the H 
or Dl with the D2 profile, and no opinion is given by the V-profile. On the other hand 
when the template is placed along the horizontal edge, there is consensus among the 
V, Dl, and D2 profiles, and no opinion is given by the H-profile. In the final analysis, 
in both cases the combined evidence supports the proposition that a step-like feature 
resides at the location. 

Next we consider the case where the template is placed on the pulse, and 
align Dl parallel to the pulse's main axis. Here, the network response (Fig. 7) 
shows consent among the H, V, and D2 profiles, with the Dl profile providing no 
opinion. The combined vote is in favor of the pulse (Fig 7c). Finally, we place the 
template over a region of uniform intensity (Fig. 8). Here all four profiles respond 
unanimously to the background noise, and no strong preference is given to either 
the pulse or to the step. These examples clearly show that a numerical description 
derived from one or even two profiles is not adequate for classification, but the 
fusion of information from four profiles do provide sufficient discriminatory 
power for classifying features with 2-D variability. 
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3 Results 

In this section we first demonstrate the automatic detection/classification 
capabilities of the system using individual images, and then show the multi-sensor 
fusion results. For testing the automatic classification three types of satellite imagery 
are considered: SARlERS2 image, AVHRRINOAA-14 image, and 
SeaWIFSIORBVIEW-2. 

In the classification stage, the pattern recognition system replaces the visual 
interpretation step with quantitative decision making. The outputs from the classifiers 
are essentially thematic maps, in which the pixels in the original imagery are classified 
into one of the several classes (or themes). The classes in this case are the predefined 
shapes (steps, pulses) and the outputs correspond to the probability of finding a class 
at that pixel location. The (0,l) interval in each image is mapped into to the grey scale. 

We next present the individual classification results. The SAR image (Fig. 9a) 
shows two dominant plateau regions where mean intensities (or roughness) change by 
about 1.6 dB in a step-like fashion. Also visible, are two prominent narrow-bright- 
curvilinear structures oriented northwest to southeast within the low-roughness region 
in the northern half of the image. These pulse-shaped features have modulation 
amplitudes of 1 and 1.6 dB. Figures 9b and 9c show respectively, the classification 
results when the SAR image is processed through the pattern recognition network for 
detection of steps, and Gaussian-shaped pulses. In addition to detecting the primary 
step that separated the plateau regions, the network detected (Fig. 9b) several 
secondary steps in the lower half of the image, although the amplitudes of these steps 
are much smaller than the main step. Concerning the detection of pulses, the network 
was able to identify the curvilinear structures, but in addition, it recognized numerous 
bright points not easily visible in the original image (Fig. 9c). 

Figures 10a-c and show respectively the SAR, AVHRR and SeaWIFS imagery. 
The SST field shows (Fig. lob) a distinct front separating cooler (by 1 to 1.5 C> 
coastal water from waters offshore. The SeaWIFS image (Fig. 10c) intensities shown 
here correspond to variations in k,,", where k,,, is the attenuation coefficient for green 
light. The important observation is the horizontal variability of the k,,,' parameter 
which shows several step-like signatures associated with different water masses in the 
region. 
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Next we classify the temperature and color fields using the same procedure 
applied to the SAR imagery and then proceed with the fusion problem. The task of 
fusing information over the same regiontfeature from three separate sensors raised two 
problems. The first problem resulted from the differences in repeat cycles of different 
satellites, as well as cloud cover which limited our data base to only two days, during 
which all three sensors imaged the same region near-simultaneously. The AVHRR 
image was taken almost seven hours prior to the ERS-2lSAR pass, while the SeaWIFS 
pass occurred approximately two hours after the ERS-2lSAR pass. The second 
problem was the registration of the various images having different spatial resolutions. 
Instead of registering the various images on a pixel-by-pixel basis, which would have 
resulted in loss of information for the high-resolution SAR image; we projected the 
coordinates of the classification labels from the low-resolution imagery onto the geo- 
referenced SAR image. In Fig. 11 yellow circles represent the positions of steplike 
features in the ocean-color field, and red circles representing the SST field. 

We now turn to the sensor-fusion problem and pose certain hypotheses using 
declarative and procedural knowledge. For example using a single sensor, ie, a SAR 
we are able to discriminate between roughness fronts the signatures of which are 
linked to hydrodynamic processes versus wind stress variations, ie, pulse-shaped or 
step-like signatures. There are situations, however, in which a single sensor will give 
ambiguous results due to the similarities of the feature signatures. Such a situation 
arises with the steplike front observed in Fig 1Oa. Given only the roughness 
signature, it is unclear whether the signature is of SST or wind origin and additional 
physical evidence is required. If we utilize the AVHRR sensor as supplementary 
evidence and the following set of elements: 

SST Front: SSTF = {p,, , p,,} and Wind Front: WF = {p,,, p,} 

Where: 

p,, : probability of having a step-type profile from SAR sensor. 
p, : probability of having a uniform profile from SAR sensor. 
p,, : probability of having a steptype profile from AVHRR sensor. 
p, : probability of having a uniform profile from AVHRR sensor. 

S, and S, are the SAR-roughness responses, and A, and A, are the AVHRR-SST 
responses respectively, for the two features, the pattern recognition system (Fig. 12) 
can form a hypothesis based on: 

Rule1 : the feature is a SSTF if S, and A, are both steps. 

Rule 2: the feature is a WF if S, is a step while A, is a constant. 
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In SAR imagery a step-type profile response occurs for both SSTF and WF. 
Thus with pls 2 p, support must be given to both fronts, and one cannot discriminate 
between the two fronts. So the FOD is 

m,((WINF, SSTFl) = p,, 
m,({el) = 1- PIS 

When p,, 2 pls support is given to "other" non-step phenomena (with uniform 
response) observed in SAR imagery: 

With the addition of the AVHRR sensor if p,, 2 p,, then support is given to 
SSTF: 

Whereas if p,, 1 p,, support is given to WF. However, since it is likely to have 
other types of phenomena (non-step) in AVHRR, support must also be given to 
"other": 

As before m, and m, can be combined using m = ml $ m, to arrive at 
individual mass probabilities using the fused results. The underlying assumption in 
rule 1 is that time-scales involved in generating SST changes by an atmospheric wind 
front which in turn would induce roughness changes are generally much longer 
(several hours) than generating purely wind-driven roughness changes (seconds). 
Given that there is good spatial correlation between the step-like roughness front and 
the AVHRR-derived SST front, we can conclude that the step-like roughness front is 
associated with a SST front. We attribute some of the dislocation in the northwest 
region of the image where the two fronts begin to diverge (Fig. 11) to advection 
during the seven hour period. 

The other remarkable outcome of the fusion result is (Fig. 11) the near-perfect 
co-registration of the bright-narrow radar bands (Gaussian-shaped pulse) and step-like 
changes in the color field, which we suspect to be associated with a salinity front. 
Similar behaviors have been noted for salinity fronts observed on the continental shelf 
of the eastern U.S. by [22, 231. The bright radar signatures are attributed to strong 
current convergence (driven by density anomalies), and small-scale wave breaking in 
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the frontal zone. Color anomalies are attributed to demarcation of water masses 
having different salinities and optical properties. If this behavior appears to be a 
general feature of salinity fronts, the combination of SAR and SeaWIFS would make 
a powerful detection tool. 
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Conclusions 

In this report we describe a neural-network-based classification system for 
automatic pattern recognition. The study has yielded the following conclusions: 

1. Based on training on idealized shapes, the system is capable of 
automatically detecting and locating frontal features in satellite remote sensing 
imagery. 

2. Utilizing a template consisting of a series of I-D profiles provides an 
efficient alternative to 2-D image-feature detection and processing. 

3. Use of declarative knowledge in conjunction with a set of predefined rules 
provides a means for discriminating between physical processes and ocean features. 

4. Working in the framework of geo-referenced data base with either 
symbolic information or image-derived contours makes the sensor fusion problem 
more manageable. 

The approach presented here is well suited to rapid, accurate and systematic 
search of features in multi-sensor data. The credibility of the methods, however, 
requires further testing with expanded data set involving multi-sensor signatures as 
well as simultaneous in situ observations. Future research should focus on expansion 
of the number of features/signatures in the knowledge bank, the multi-sensor fusion 
rules, and the relationships between the rules and real ocean processes. 
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Figure l a  C-band (5.4 GHz) SAWERS2 image wi th  200x200 pixels (50 m pixel 
spacing) .  
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Figure 2 Idealized training shapes. 

Figure 3 Neural network architecture. 

I 
CLASS1 FICXTION 

Figure 4 Idealized features (step and 
p u l s e )  and the  p lacement  of 
classif ication template a t  various 
locations. 
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Figure 6 Same as 

b.4 
6, except for placement of a template on a vertical edge. 
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Figure 7 Same as  6, except for placement of a template on a pulse. 
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Figure 8 Same as 6, except for placement of a template on a uniform region. 
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Figure 9b Original SAR image. 

Figure 9b Classification of step- 
like features. 

Figure 9c Classification of pulse- 
like features. 
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Figure lob AVHRRINOAA-14 image 
with I .  I krn pixel spacing taken over the 
Gulf of Cadiz, Spain at 4:01 UT. 14 
February 1998. 

SE.4WIFS 

i 

L 
t Figure 10c Sea WIFS/ORBVIEW-2 

image with 1.0 km pixel spacing taken C ' . over the Gulf of Cadiz, Spain at 1.3.4.2 
UT, 14 February 1998. 

I b 
I 
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Figure 11 nigh resolution SAR image with overlay of classification 
results from AVHRR and SEAWIFS imagery. 
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SALF: S h q  f i d  C: SEAWIFS 

Figure 12 Sensor fusion architecture. 

Report no. changed (Mar 2006): SR-306-UU



Document Data Sheet NATO UNCLASSIFIED 

I 
Document Serial No. Date of Issue Total Pages 

Security Classification 

UNCLASSIFIED 

SR-306 June 1999 32 PP. 

A uthor(s) 

Project No. 

014-1 

Askari, F., Zerr, B. 

Title 

A neural-network-fusion architecture for automatic extraction of oceanographic features from 
satellite remote sensing imagery 

Abstract 

This report describes an approach for automatic feature detection from fusion of remote sensing imagery 
using a combination of neural network architecture and the Dempster-Shafer (DS) theory of evidence. 
Deterministic or idealized shapes are used to characterize surface signatures of oceanic and atmospheric 
fronts manifested in satellite remote sensing imagery. Raw satellite images are processed by a bank of 
radial basis function (RBF) neural networks trained on idealized shapes. The final classification results 
from the fusion of the outputs of the separate RBF. The fusion mechanism is based on DS evidential 
reasoning theory. The approach is initially tested for detecting different features on a single sensor and 
extended to classifying features observed by multiple sensors. 

Keywords 

Malta Plateau - sequence strategy - sea level changes - Quaternary sediments - seismic reflection 

Issuing Organization 

North Atlantic Treaty Organization 
SACLANT Undersea Research Centre 
Viale San Bartolomeo 400, 19138 La Spezia, Italy 

[From N. America: SACLANTCEN 
(New York) APO AE 096131 

Tel: +39 01 87 527 361 
Fax:+39 0187 524 600 

E-mail: library@saclantc.nato.int 

NATO UNCLASSIFIED 

Report no. changed (Mar 2006): SR-306-UU



Initial Distribution for Unclassified SR-306 

Ministries of Defence 

DND Canada 
CHOD Denmark 
DGA France 
MOD Germany 
HNDGS Greece 
MARISTAT ltaly 
MOD (Navy) Netherlands 
NDRE Norway 
MOD Portugal 
MDN Spain 
TDKK and DNHO Turkey 
MOD UK 
ONR USA 

NATO Commands and Agencies 

NAMILCOM 
SACLANT 

CINCEASTLANTI 
COMNAVNORTHWEST 
CINCIBERLANT 
CINCWESTLANT 
COMASWSTRIKFOR 
COMSTRIKFLTANT 
COMSUBACLANT 
SACLANTREPEUR 

SACEUR 
CINCNORTHWEST 
CINCSOUTH 
COMEDCENT 
COMMARAIRMED 
COMNAVSOUTH 
COMSTRIKFORSOUTH 
COMSUBMED 

NC3A 
PAT 

Scientific Committee of National 
Representatives 

SCNR Belgium 
SCNR Canada 
SCNR Denmark 
SCNR Germany 
SCNR Greece 
SCNR ltaly 
SCNR Netherlands 
SCNR Norway 
SCNR Portugal 
SCNR Spain 
SCNR Turkey 
SCNR UK 
SCNR USA 
French Delegate 
SECGEN Rep. SCNR 
NAMILCOM Rep. SCNR 

National Liaison Officers 

NLO Canada 
NLO Denmark 
NLO Germany 
NLO ltaly 
NLO Netherlands 
NLO Spain 
NLO UK 
NLO USA 

Sub-total 199 

SACLANTCEN 3 0  

Total 229 

Report no. changed (Mar 2006): SR-306-UU


	SR-306-UU
	Executive Summary
	Abstract
	Contents
	1. Introduction
	2. Materials md Methods
	2.1 Oceanographic Features and Signatures
	2.2 Neural network architecture
	2.3 Fusion Mechanism
	2.4 Pattern Classification Using Idealized Features

	3. Results
	4. Conclusions
	Acknowledgments
	References




