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Executive Summary: High frequency, shallow water swath bathymetry 
systems have significant potential in mine countermeasures. The method de- 
scribed represents a necessary first step towards the realization of a digital 
terrain model. 

During the last twenty years, many multibeam bathymetric sonars have been 
produced. The instrumentation is usually accompanied by a system able to 
produce a seafloor map from the sonar data. There are also several public 
domain systems, which can be used to obtain a map from the data. All these 
systems produce a gridded map that must be filtered in order to reproduce 
the original seafloor surface because of noise on the bathymetric data. Both 
the gridding and the filtering algorithms introduce a source of error that is not 
easily controlled. Moreover, gridded maps may use significant storage space for 
a small amount of information. Finally, at  present no systematic solution with 
realistic run-time requirements has been given to the problem of identification 
and elimination of bad data (outliers). 

We present here an algorithm able to fit bathymetric data and to automatically 
deal with outliers. The most important characteristics of the algorithm are: 
production of a triangulated map of uniform accuracy irrespective of seafloor 
features; a map resolution which depends on the local data noise amplitude; 
automatic elimination of outliers and low computing cost even on large data 
files. 

The algorithm can be used to reduce the operator intervention during bathy- 
metric data mapping. Raw bathymetric data are directly analyzed by the 
algorithm which automatically and robustly eliminates outliers and'produces a 
map the parameters of which can be finely tuned by the user (number of nodes, 
smoothing, level of data cleaning, etc.). The algorithm has been implemented, 
exhaustively tested on synthetic and real data and fully documented. 
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Abstract: During the last twenty years, many multibeam bathymetric 
sonars have been produced. The instrumentation is usually accompanied by 
a system able to produce a seafloor map from the sonar data. There are also 
several public domain systems, which can be used to obtain a map from the 
data. All these systems produce a gridded map that must be filtered in order 
t o  reproduce the original seafloor surface because of noise on the bathymetric 
data. Both the gridding and the filtering algorithms introduce a source of error 
that is not easily controlled. Moreover, gridded maps may use significant stor- 
age space for a small amount of information. Finally, at  present no systematic 
solution with realistic run-time requirements has been given to the problem of 
identification and elimination of bad data (outliers). 

We present here an algorithm able to  fit bathymetric data and to automatically 
deal with outliers. The most important characteristics of the algorithm are: 
production of a triangulated map of uniform accuracy irrespective of seafloor 
features; a map resolution which depends on the local data noise amplitude; 
automatic elimination of outliers and low computing cost even on large data 
files. 

The algorithm can be used to reduce the operator intervention during bathy- 
metric data mapping. Raw bathymetric data are directly analyzed by the 
algorithm which automatically and robustly eliminates outliers and produces a 
map the parameters of which can be finely tuned by the user (number of nodes, 
smoothing, level of data cleaning, etc . ) .  The algorithm has been implemented, 
exhaustively tested on synthetic and real data and fully documented. 
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Introduction 

Background 

The purpose of the algorithm presented here is to create an accurate map from 
multibeam bathymetric data. The same algorithm can also be applied to other fields 
when a high number of measurements is present which contain corrupted samples 
in the data. In the geological field, for example, it could be applied to petroleum 
exploration (map of layers of sandstone, shale, limestone, etc.), and geological maps 
(Schumaker 1976). 

Data for seabed mapping are mainly obtained using a multibeam echo sounder. 
These data are usually corrected for sound speed variation in the water column, 
tide, etc. The result fits in a table of three columns containing latitude, longitude 
and depth of a set of seafloor points. These data are affected by a certain amount of 
nearly white noise (due to uncertainty in the determination of the seafloor depth). 
This type of noise can be optimally treated using a Least Squares algorithm, as 
will be seen in Section 3. In the same Section it will also be shown that a normal 
low-pass filter is not adequate for the seafloor mapping problem, because it do not 
preserve the vertical and horizontal dimensions of the seafloor features. 

Moreover, some points may be corrupted because an anomalous bottom detection 
was performed. In such a case, the datum or the set of data must be rejected either 
manually or using an adequate rejection algorithm. 

Finally, the mapping problem is complicated because of the amount of data: it 
may consist of more than one million points and any available mapping algorithm 
is unrealistically time consuming on such a data set. 

Problem overview 

The problem of building a map can be stated in a general form as follows: 

Definition 1 Let D be a domain in the R ~ ,  and suppose F is a real-valued function 
defined on D. Suppose the values Fi = F(x,, y,) are given, with a certain error, in 
a set of points P = {pi = (xi, y,) E D i = 1, - - -  , N). Find a function f defined on 
D that reasonably approximates F .  
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When noise affects data the map cannot be simply an interpolation of the data 
points: data fitting is required. 

During or before the data fitting it is necessary to perform an outlier elimination 
step that consists of the elimination of the points that have a low probability to be 
"correct". These may be generated during the acquisition phase (Du 1995, Du et 
al. 1996). 

Once the outliers are rejected, the scattered noisy data must be analyzed in order 
to obtain a map. The currently available software tools (for example GMT-System, 
Appendix A) are only able to triangulate, contour, and plot all data without fitting, 
or (for example MB System, Appendix A) are only able to interpolate data on a 
regular grid basis. As a consequence, the dimensions of the map for a large area can 
be too high for practical purposes. Other packages (such as TRISMUS, Appendix A) 
are able to work on bathymetric data, integrating both the MB-System and GMT- 
System functionality, but still work on regularly gridded maps. Siscat (Appendix A), 
can be used to model data using maps that optimize storage space. However, it works 
on a predefined "correctly" gridded map or on scattered data that are supposed to 
be exact. More information on other software toolkits for mapping of scattered data 
can be found in Appendix A and in (Mayer et al. 1997, Tyce et  al. 1997). 

Outlier elimination 

Two approaches exist in bathymetric data mapping to detect outliers: interactive 
outlier elimination, by means of a computer aided graphical tool, or software auto- 
matic elimination. Most commercial software uses a hybrid approach consisting of a 

. software detection of "possible outliers" followed by an interactive session to confirm 
the elimination (Ware et al. 1992). These "outlier eliminationn sessions are boring 
and time consuming, but also introduce a variable that is not always negligible: 
the researcher bias. Within the software for automatic outlier detection different 
approaches exist: 

Ware et al. (1990) divide the data set in cells: for each cell they estimate 4 
statistical values; then, they use these values to classify the data as valid or 
outliers. This algorithm can work efficiently only if the number of bathymetric 
data points is three times higher than usual (Ware et al. 1990). 

Guenther and Green (1982), Grim (1988), and Wells et al. (1989) proposed 
a method for outlier elimination (COP) based on the comparison of the data 
set with the nearest neighbours. They reported that a certain number of 
outliers were still present in the data after the algorithm was applied to the 
data. Greenburg (1987) proposed a method that worked better but which is 
unrealistically time consuming. 
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Du et al. (Du 1995, Du et al. 1996) proposed a method based on the statistical 
analysis of the data in a working window, the dimension of which starts from 
the whole data set and shrinks or increases during data analysis. The outlier 
elimination on the working windows is based on data clustering given the 
assumption that the noise in the data follow the Uniform distribution. 

Of the above methods, only the last could be reasonably considered for automatic 
outlier detection because the data analysis can be realized in realistic time even 
though the algorithm elaborated by Du (1997) "may be far away from practical 
applications". 

Our algorithm 

The algorithm presented here, named NR-COMPRESS, attempts to address two prob- 
lems that are not solved in the above cited packages: outlier elimination and storage 
space minimization. The characteristics of this algorithm are: 

it produces a map that optimizes the storage space; 

it is able to robustly deal with outliers; 

it can be used to interpolate data produced by any echosounder that can 
produce a simple data set consisting of coordinates and depths; 

it is reasonably fast even when extremely large data files must be mapped. 

The fitting (mapping) algorithm described here is based on a triangulated grid: 
as it is shown in the following sections, such a choice minimizes the number of 
nodes necessaiy to describe the map and minimize the loss of information due to 
the gridding algorithm. The map that is produced is more dense where the second 
derivatives of the seafloor are higher and the resolution depends on the noise level 
on the data. 

The basic idea behind the outlier detection method described here is derived from 
the Du et al. method. The most important change being that the outlier elimination 
phase (OEP) is carried out during the mapping phase. The OEP consists of choosing 
a cell the center of which could be a node of the seafloor map. For the data points 
included in the cell, a first robust outlier elimination phase, only used to eliminate 
far outliers, is carried out. Then, a second phase of quasCrobust outlier elimination 
is carried out, based on a statistically robust fitting criterion. The complete method 
is robust and efficient in the sense that it is not sensible to the presence of an even 
great number of outliers, and that it eliminates only a minimum amount of outliers 
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from the data, without appreciably changing the variance of the noise of the cleaned 
data. 

Organization of  the report 

The report is organized as follow: in the first section a description of the bathy- 
metric data sets is given; in the second section a comparison between triangulated 
and uniformly gridded map is given; in the third section the basic concepts of the 
fitting algorithm are given; in the fourth section the outlier elimination algorithm is 
described; in the fifth section the results of the algorithm on a series of interesting 
cases are presented and discussed. Some conclusions follow. 
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Data characteristics 

The data characteristics are fundamental for the choice of a fitting algorithm. Bathy- 
metric data have a series of characteristics which render harder the definition of the 
fitting (mapping) function. 

The first of these characteristics is that the number of (x,y,z) data points in a 
bathymetric set may be higher than 1 million. This high number of points implies 
that each calculation of the cost function, or data selection on the complete data set 
is very time consuming. 

The second characteristic of the bathymetric data is that they are not gridded (see 
Figure 1). This fact implies that the data cannot be placed on a regular grid without 
a loss of information (see subsection 3.2). Again, data that are not regularly gridded, 
cannot be scanned using fast algorithms. 

The last, very important characteristic of bathymetric data is that they are noisy. 
The noise is made of two components: a nearly white component (due to error in the 
determination of the depth and to the knowledge of the position that is not perfect), 
and a noteworthy amount of outliers due to multiple paths, and reflection from fish 
shoals, sub-bottom layers, or abnormal water columns (Du et al. 1996, Du 1995). 
The nearly white component can vary across the data set due to depth changes 
or to changes in the characteristic of the seafloor (presence of sea grass, change of 
bottom type, etc.). A fitting algorithm should use more nodes in low-noise areas 
(where a higher accuracy can be obtained because the noise variance does not hide 
the seafloor features) and fewer nodes in high-noise areas. 

The chronic presence of outliers requires two possible strategies: to pre-filter the 
data for outlier elimination or to implement a robust fitting algorithm (possibly 
with outlier elimination). The outlier elimination algorithm can be much more 
robust and efficient if it is realized taking into account the seafloor shape. As a 
consequence, the outlier elimination algorithm is implemented here in connection to 
the seafloor fitting algorithm (see Subsection 4). 
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Figure 2 Example of at sea data analysis from an area oflSestre' Levante acquired 
using a ~ t l a @  Hydrosweep MD" multibeam sonar (80 beams) from NRV Alliance. 
a shows the results of applying a mean filter, while b and c show the application of 
a central moving average filter with decreasing low-pass spatial frequency. 
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Figure 3 The three graphs show the result of the application of the NR-COMPRESS 
algorithm to the data f m m  Sestre' Levante area. a shows the application of the 
algorithm wing a small number of points for the approximation and a low number 
of nodes for the map; b and c show two map calculated using the same smoothing 
parameter but using more b and less c nodes for the map (see Section 5 for a better 
explanation.) 
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ii) 

Figure 4 Plot a) shows the results of a cut at constant latitude of the three surfaces 
shown in Fig 2: the dotted trace comes fmm surface a,  the dashed trace from surface 
b, and the continuous trace fmm surface c. Plot ii) are the traces from the three 
surfaces of Fig. 3: the dotted trace comes from surface a ,  the dashed trace from 
surface b, and the continuous trace from surface c. Plot iii) shows the traces from 
surface 2.b (dotted trace), from surface 2.c (dashed trace), and from surface 3.b 
(contanuous trace) 
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Figure 3 shows the results of applying the NR-COMPRESS algorithm to the same data, 
with an increasing low-pass effect. The results are shown calculating the value of 
the triangulated map on the usual grid. From these figures it seems that the results 
of the two fitting methods are similar, but a more detailed look shows that there are 
differences (Fig. 4). Here, the surfaces shown in Figs. 2 and 3 have been cut at  a 
fixed relative latitude (0.00661") and the resulting traces are shown. Plot 4.i, shows 
the three traces of the surfaces of Fig. 2. Plot 4.ii shows the traces to the surfaces 
of Fig. 3. Plot 4.iii shows the traces to the surface in 2.b, in 2.c, and in Fig. 3.b. 
It is now clearly visible, that the effect of the filtering procedure is to decrease the 
seafloor local depth variations and to enlarge the seafloor features. 

It must be pointed out that the NR-COMPRESS algorithm is not sensitive to outlier 
but the mean and moving average filter is very sensitive. The filtering characteristics 
of NR-COMPRESS are similar to the moving average filter with a relatively low cut-off 
spatial frequency. It  will be shown in Section 5, that the NR-COMPRESS algorithm 
produces accurate results also in the presence of discontinuity and in the presence 
of narrow seafloor features, while the application of the mean and central average 
filter to these causes an enlargement of the features and a reduction of their height 
(see Subsection 3.2). 

The number of nodes of the maps produced by NR-COMPRESS (Fig. 3) is 454 for map 
a, 281 for map b, and 230 for map c, while the regularly gridded maps consist of 
2,601 nodes (Fig. 3). The data set and the analysis shown in Fig 3 are explained 
more extensively in Subsection 5.4. 
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Data mapping: gridded versus triangulated maps 

2.1 Introduction 

An important aspect of the fitting algorithm is the decision as to the kind of map 
we intend to realize: regularly gridded or triangulated map. 

The question is related to map storage space and data information content conser- 
vation. The bathymetric data are not gridded: as a consequence any data gridding 
algorithm implies a data pre-elaboration that can destroy some data information 
(Subsection 3.2). When a regular grid is considered, the spatial gridding interval is 
an important parameter that must be carefully taken into account: if the grid is too 
dense, storage becomes an important factor; on the other side, some maps (e.9. map 
of flat region) can be described with a very coarse grid. While most of the sea maps 
are of flat sites, the most important maps are those of transition zones, in which a 
flat region abruptly meets an underwater sink or canyon. In such a case, a regular 
grid map shows all its limits (Fremming et al. 1997). 

A triangulated map can be built without loss of information and can be realized 
in such a way that regions where canyons or sinks are present are described by a 
higher number of points. This objective can be obtained using a number of nodes 
significantly lower than the one necessary for a gridded map. For these reasons, the 
mapping algorithm described here realizes a triangulated map. 

2.2 Formal definitions 

A triangulation T is defined by the following (Dyn et al. 1990): 

Definition 2 Let 52 > V be a region with a polygonal boundary aS2 with all vertices 
in V .  A set T of non degenerate open triangles TI is a triangulation of 52 if the 
following conditions hold: 

1. V is the set of ail vertices of triangles in T; 

2. Every edge of a triangle in T contains only two points from V ,  name18 its 
endpoints; 
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3. fi = u:=~ (t is the number of triangles in  T ) ;  

4. Ti n Tj = 0 for all i # j ;  

In other words, a triangulation consists of dividing a given plane with triangles 
the vertexes of which are in a set of points. A particular kind of triangulation is 
suitable for seafloor mapping: the Delaunay triangulation. It must be built taking 
into account the local variations of the data. Where the seafloor changes are more 
important (where the surface second derivatives are higher), the number of trian- 
gles is higher, in order to obtain a better description of the seafloor. A Delaunay 
triangulation is defined by the following: 

Definition 3 For each triangle Ti E T a value ai, which is the minimum of the three 
interior angles of Ti, is assigned. The vector NT is a vector of length t containing 
the ai values. Furthermore, suppose that NT is ordered i n  a non-decreasing manner. 
The Delaunay criterion (or maxmin angle criterion) imposes the following ordering 
of triangulation: T' < T means that N T ~  is lexicographically larger than NT. A 
Delaunay triangulation is the maximum T according to the Delaunay criterion. 

This definition means that a Delaunay triangulation is a triangulation that has the 
triangles with the largest internal angle (ideally equilateral). 

2.3 Examples 

Figure 5.a shows an example of a possible seafloor f (x, y) = ( tdob(9x~Oy)+1) .  If this 
seafloor is mapped using a 10x10 regular grid (100 nodes) (Fig. 5.b) the maximum 
error (E,,) between the map and the real surface is 1.72 m, the mean of the absolute 
value of the errors ('E) is 0.096 m, and the standard deviation (u) is 0.172 m. If a 
triangulated map is used, (Fig. 5.c and 5.d), only 16 nodes are necessary to obtain a 
smaller E,, (1.65 m) even if 'Z and a are higher (0.276 m and 0.401 m, respectively). 
Incrementing the number of nodes of the map the mean error decreases: Figure 5.e 
and 5.f show the seafloor surface described using a triangulation of 46 points: in this 
case E,, = 0.618m, F=0.093m, and a = 0.124m. 

Figure 6 shows a map realized using a fitting algorithm that follows all the rec- 
ommendation described here. At the top, the rendered sea surface is shown. At 
the bottom, the triangulation used to describe the map is shown: of interest is the 
difference in resolution between zones that are approximatively flat and the edge 
regions. 

Some remark to take into consideration: 
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Figure 5 An example of a how a triangulated map improves storage eficiency. 

The choice of a triangulated map implies that some of the most popular fitting 
and filtering algorithms cannot be used, because they are only defined for 
regularly gridded data points. 

An advantage of a gridded map is that the access to the map data is fast. The 
triangulation algorithm must include a localization algorithm able to localize 
a point in the map in a realistic (short) time interval. 
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Figure 6 An example of a map from an area o f  Sestri Levante: at the top, the 
rendered sea surface, at the bottom, the triangulation used to describe the map. Of 
interest is the diference in resolution between zones that are nearly flat and the edge 
regions. 

2.4 Data driven triangulation 

In Subsection 3.2 we point out that, to obtain a map that optimizes the storage 
space, it is necessary to avoid the use of regular gridded maps. A triangulated map 
is able to optimize the information content if some condition are verified. If, for 
example, the map has a higher resolution where the second derivatives are higher 
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and lower elsewhere (see Fig. 5 and 6), the triangulated map will produce a result 
that, using the same number of points, is more informative than a regular grid map 
(Dyn et al. 1990, Rippa 1992). The criteria for a more informative triangulation are 
based on the characteristics of the data and are called: data driven triangulation. 
For example, in (Rippa 1992) the approximation of a surface is described, based 
on the triangulation on a subset of scattered data; the author defines an algorithm 
called COMPRESS that can be simplified to the following basic scheme: 

1. Let R be a region with a polygonal boundary Xl consisting of M vertices from 
V, where V = {vi = (xi, yi) E R ~ ,  i = 1, . . . , N) are the point where the values 
of the function F(xi, yi) = Fi are known. Be v ( ~ )  the set of M vertices of 
a M .  Construct an initial v ( ~ )  triangulation T of R. 

2. Construct ~ T , v ,  the approximating surface, and compute the errors Ei(fTlv) = 
IFi - fT,v(xi, ~ i ) l  and let Ef,,, = maxl<i<N Ei- 

3. If Ef,,, <_ e ,  end the procedure else go to the next step. 

4. Select a point vk = (xk,yk) E v \ v ( ~ )  for which Ek(fT,v) is maximal and add 
it to ~ ( ~ 1 :  v ( ~ + ~ )  = u {vk). 

5. Update the triangulation T to include the new point, set M = M + 1 and go 
to step 2. 

This procedure chooses the nodes of the triangulation using the available data: it is 
therefore a data driven triangulation. This procedure is able to produce a good map 
using a smaller number of nodes than a regular grid map (see Fig. 5). For example, 
when V is the regular gridded map, the number of points used to define T is always 
much smaller in the case of a reasonably smooth function. This method could be 
applied to a regular grid map generated by bathymetric data using programs such 
as MB-System. This method is fast but cannot deal with the outliers: in fact, MB- 
system will not generate a good map if outliers are present. Moreover, information 
is lost during the gridding phase. The COMPRESS scheme, however, cannot be 
applied directly to data acquired at sea because of the presence of noise (in the 
COMPRESS algorithm Fi are supposed to be error free samples). A modification 
of the COMPRESS algorithm is therefore proposed (Noise Resistant COMPRESS, 
NR-COMPRESS) to enable it to deal with outliers and noise (see next Sections). 
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Mapping multibeam bathymetric data 

3.1 Introduction 

Scattered noisy data fitting in D C R2 consists of constructing a function (which will 
be called map in the following) f = f (x, y) such that, given E(i, f ) = 1 f (xi, yi) - Fi 1, 
it minimizes a given cost function C(E(i, f ) )  for i = 1, . -  , N. In the preceding 
definition Fi is the noisy value associated with the coordinate (xi, yi), and P = {pi = 
(xi, pi) E D, i = 1,. . . , N), is the set of noisy data coordinates. An important class 
of schemes for noisy data fitting is based on a regular grid of the map: here, an effort 
is made to compress the final map storage space and em~hasis is placed on fitting 
with a triangulation scheme. This means finding a set of points V E D, define on 
those nodes a triangulation T and define on the triangulation a map fT,"(x, y). 

Two important points to take into account are the node choice and the stopping 
criteria of the fitting algorithm: many criteria are available depending on the par- 
ticular application. One of the criteria, that fits well with the seafloor data mapping, 
depends on the local data noise (LDNC): the triangulation produced using this cri- 
terion is more dense where the data noise is lower and coarse where the noise is 
higher. The triangulation produced using the LDNC is also more dense where the 
second derivatives of the seafloor are high, that is where the surface "changes more." 

Global fitting of the seafloor surface can be very time consuming. For each step of the 
optimizatil )n, tihe error between the data points and the actual approximating sur-ace 
must be computed. Considering that the number of data points easily exceeds 1 
million, it is easy to understand that the cost function can be excessively time 
consuming. It will be more efficient to divide the problem into a number of smaller 
problems in which the global solution can be efficiently found and then assemble 
the local solutions to generate a global one. Considering that the approximating 
surface described here is based on triangulation, the local solution can be found on 
triangular subdomains: the union of such subdomain generates the global map. 

There are a number of possible ways to construct a map. Four choices have to be 
made: 

1. The analytical expression of the approximating surface: for example, a piece- 
wise linear approximating function, a radial basis function, a cubic or quintic 
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spline function, etc. 

2. The choice of global versus local algorithm. 

3. The cost function (error criterion) to optimize to find the best among the 
infinite possible approximating surfaces. 

4. The algorithm used to optimize the cost function. 

These four choices are related and must also take into account computer memory 
space and computing speed. 

Most fitting algorithms (for example Magestic, Appendix A) work on functions of 
a single variable. When they can work on function defined on a R2 domain, they 
usually can deal with a limited number of parameters (<loo), using a Least Squares 
method, extremely sensitive to outliers. A problem of normal data fitting software 
is that the calculation time of the error function can easily overwhelm any normal 
fitting algorithm based on a nonlinear optimization algorithm. As a consequence, 
even good software solutions, such as the multidimensional data fitting algorithm 
based on Radial Basis Function implemented in RBFpack (Appendix A), cannot 
work on the global seafloor fitting problem (the complete map). 

Analytical expression of the approximating surface 

The fitting of the seafloor must have realistic time and memory requirements. In 
some applications it is necessary to prepare a printout of the map in real-time. As a 
consequence of this consideration, a piecewise linear approximating surface is chosen 
here: the simplest C0 (continuous) function. In fact, any other fitting function will 
increase the computational time of the fitting algorithm. 

Global versus local algorithm 

The number of data points is very high: as a consequence, the calculation of a global 
cost function is excessively time consuming. Moreover, the calculation time of the 
global cost function increases as the number of nodes of the map increases. Finally, 
the global optimization algorithm will require more time when the number of nodes 
of the map increases (e.g. the optimization of a function of 500 variables). Some 
tests performed using global fitting algorithms confirmed that they are excessively 
time consuming (Subsection 5.5). As a consequence, the possibility of using a global 
fitting algorithm must be rejected. Once the global fitting algorithm choice is dis- 
carded, it is necessary to determine the characteristics of the local fitting algorithm. 
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It must use only a part of the total data points for the surface fitting and must be, 
at least, C O  extendable to the global map. 

To obtain a fitting algorithm that uses only a part of the bathymetric data is simple: 
the complete map region is divided into a certain number of smaller triangular sub- 
maps, each with a number of points that can be dealt with in a reasonable computing 
time. Then, the mapping algorithm is applied to each submap. The algorithm for 
the division of the map into such smaller domains is as follows: 

1. The algorithm starts making a triangulation of the vertex which are the points 
that delimit the map region (contour points, Subsection 3.3). 

2. A test is performed to check if a triangle exists, in the triangulation, where 
more than a given number of data points (np)  is present. If not, the map 
subdivision is complete. 

3. A point must be added to the triangulation in the middle of the longest side 
of the triangle in which the highest number of data points lies. A new triangu- 
lation is performed on the new points set. Then, the algorithm restarts from 
point 2. 

The local fitting algorithm must also be @ extendable to the global map: this is 
possible only if the values at the boundary of two adjacent submaps are the same 
(Figure 7 shows an example of local fitting function that cannot be fl extended to 
global fitting). 

3.2 Surface fitting: smoothing 

The realization of a seafloor map is connected with the problem of filtering 2D 
scattered data. In particular, it is interesting to study the smoothing properties 
that are required to produce a map in the case of a seafloor. We are interested 
in finding a technique able to produce a triangulated smooth surface using all the 
available data information and including as much as possible of the data information 
in the resulting smooth map. It is also necessary to define filter parameters which 
determine the information the smoothed map must contain. 

The first important characteristic of bathymetric data filtering is that the usual filter 
algorithms cannot be easily applied because they are not gridded and, as  already 
remarked, gridding bathymetric data will always cause information loss. Moreover, 
even if a filter is able to analyze scattered data (for example the median and the 
Gaussian algorithm of the mbsmooth routine in the MB-System package, Subsec- 
tion 1.1)) it usually produces a gridded result or a value for each data point: the 
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Figure 7 A 2D example of local fitting functions that are not 0 eztendable to 
global fitting. 

last option produces too much information for the seafloor approximation. Finally, 
the analysis of each datum requires a computing time that is impractical. 

The way in which a smoothing filter deals with seafloor features is an important char- 
acteristic to consider when a filter procedure for bathymetric data must be selected. 
The effect of normal low pass filters (which are usually used in smoothing of bathy- 
metric data) is that of diminishing the height and enlarging the horizontal extension 
of the seafloor features (see Fig. 8). For example, a moving average filter actually al- 
ways reduces the amplitude of a local maximum of the surface. This is also the case, 
for a simple gridding technique based on the average or the median of the points 
nearest to the grid node. Such effects are not advisable when mapping a seafloor: 
the edge position and the depth of each seafloor feature should be conserved by 
smoothing. Some filtering techniques exist that are able to maintain such character- 
istics although losing some smoothing power. They are low-pass filters, well-adapted 
for data smoothing, and termed variously least-squares, DISPO (Digital Smoothing 
Polynomial), and Savitzky-Golay filters (Press et al. 1992). A least-square filters is 
able to preserve height and edge position of functions with non-zero second deriva- 
tive. The idea is to approximate the underlying function within the moving window 
not by a constant (the estimate of which is the average), but by a polynomial of 
higher order, typically quadratic or quartic. For each point p, = (xi, y,, z,) , the 
least-square polynomial fit Ppi,Nf (x, y) to the Nf points in the neighbourhood of pj 
is performed and the smooth value (SV) of the function z,t = Ppi,Nf (xi, 9,) is taken 
as the value of the polynomial fit at (xi, y,): g, = (xi, y,, zt). Then, the filter is 
moved to the next point until all the smoothing function points are calculated (see 
Fig 9). This kind of filtering can be performed using fast algorithms on gridded 
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Figure 8 An example of the result of the application of a normal low-pass filter to 
seafloor features. 

data, while it is very slow if they are not. As a consequence, it is not possible to 
filter all the bathymetric data using this powerful technique. 

3.3 Surface fitting: the algorithm in one dimension 

Before formally describing the seafloor fitting algorithm that takes into account 
preceding discussions, a less formal description of the algorithm, on a simple one 
dimensional case will be given. 

The samples of the function of a single variable f (x), shown in Figure lO.a, are 
given. The algorithms start determining the region where the map must be built: 
the boundary points xo and xl given by the user (Fig. 1O.a). Two fits, using the 
Nf points with the x coordinate nearer to xo and XI, are computed and the values 
of the fitting curves at the xo and xl points are taken as smoothed values (yo and 
yl). The first approximation of the seafloor map is given by the linear function 
joining po = (xo,yo) to pl = (xl,yl) (Fig. 1O.a). Then, the sample point with the 
maximum error to the first approximation of the map is chosen, with coordinate 22, 
a fitting function is built and its value at the abscissa 2 2  is taken (y2). Then the 
new seafloor map is taken as the linear function from po to p2 = (x2, yz) and from 
p2 to pl (Fig. 1O.b). The approximation proceeds (Fig. 1O.c) until the stop criterion 
is verified (Fig. 1O.d). 

3.4 The stop criterion 

A very important point in the fitting algorithm is the stop criterion. For bathymetric 
data mapping the attention is focused on a set of four stop criteria useful in different 
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Figure 9 An  example of how a least squares filter works. a the point i is wnsidered: 
the nenrest Nf points are wnsidered and a least-squares quadratic polynomial is 
calculated. Then, the value of the polynomial i n  i is wnsidered as the smoothed 
value. b The next point is corasidered. c The result of least-squares filtering all the 
function points. 
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Figure 10 An ID description of the fitting algorithm. 

situations: 

1. The maximum error criterion, that stops the algorithm when the maximum 
error between the data points and the fitted surface is lower than a given value. 

2. The mear error criterion, that stops the algorithm when the mean absolute 
error between the data points and the fitted surface is lower than a given value. 

3. The maximum number of nodes criterion, that stops the algorithm when the 
number of nodes in the map is higher than a given value. 

4. The local maximum criterion, that compares, locally, the maximum error be- 
tween the data points and the surface with an approximation of the local 
standard deviation. Local, means in the 2D case, that the standard deviation 
and the maximum error are calculated for each single map triangle (in the ID 
case, local means in each segment composing the fitting line). If the local max- 
imum error is less than a certain number of times the local standard deviation 
for each triangle of the map, the algorithm is stopped. 
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Criteria 1 and 2 can be applied only if the noise level on all the map region is known 
and constant in all the data set. In particular, criterion 1 can produce unwanted 
results: it can create a map made of a very high number of points. Criterion 2 can 
easily omit narrow but tall features that do not change appreciably the mean error 
on a large region. Criteria 1 and 2 also do not take into account the possibility that 
the data has different levels of noise in different parts of the seafloor. 

Criterion 4 is able to deal with these kind of situations. An example is given in 
Figure 10: the points on the left part of the figure are more affected by noise than 
the point on the right. The error bar over each SV point is a possible measure of 
the local standard deviation: it is the standard deviation of the residual from the 
polynomial fitting function, used to calculate the smoothed points. If g(x, y) is the 
fitting function, the residuals are defined as the values given by Ei = Zi - g(xi1 yi), 
where the (xi, yi, zi) are the Nf points used to determine the fitting surface. If the 
local maximum error is lower than k times the lower local standard deviation, that 
point is not added to the set of node of the map. If no more points can be considered, 
the algorithm stops. That is the reason why there is a greater number of point on 
the left than on the right of Figure 10.d. Criterion 4 cannot be deceived by tall but 
narrow features that do not appreciably change the mean error: the tall feature will 
have points the error of which is higher than k times the mean error and they will 
not be neglected. Moreover, changing the k value, it is also possible to change the 
number of nodes used for the map. The lower the value of k, the higher the number 
of nodes in the map. 

The value of k can be determined using an algorithm parameter called k,. k, is 
the probability (in percent) that a good point of a Gaussian distribution is farther 
than k times the approximated standard deviation ( , / (S~)I (N~ - 2)) of the data 
residuals from the approximated mean. The value of k is estimated using the student 
distribution, the number of points used to fit the SV (Nf) and the value of k,. 

The value of the, local standard deviation is calculated in the following way: let E,, 
~ b ,  and E, be the three standard deviation of the residual between the polynomial 
fitting functions, used to calculate triangle vertex smoothed points, and the Nf 
fitting points. The local standard deviation E is the median of E,, ~ b ,  and E,. 

The local standard deviations E should be quite resistant to the outliers, because it 
is calculated eliminating the outliers (Section 4). The median of the three values is 
chosen to enhance the resistance of the algorithm to the variations in the calculation 
of the standard deviations at the SV. 

Criterion 4 was tested in a number of synthetic and real situations: the results, 
always satisfactory even in the case of multiple mapping, are given in Section 5. An 
important feature of criterion 4 is that it is not necessary to know the data noise 
level. Moreover, if the noise level in a certain location is high, the number of nodes 
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Figure 11 Data points selection for data fitting. 

approximating the seafloor in that region will be sufficient to reduce to an acceptable 
level the maximum error between the data points and the fitting function. 

3.5 Polynomial fitting in 2 0  

The polynomial fit described in Subsection 3.3 was performed using the polynomial 
of a single variable (quadric). When mapping the seafloor, it is necessary to use a 
polynomial in two variables (conic) of the following form: 

f (x, y) = ao + a lx  + azy + asxy + adz2 + asy2 (1) 

Given a point, the fitting algorithm finds the Nf nearest points (see Fig. 11). Then, 
the fitting surface g(x, y) is found using a Singular Value Decomposition (SVD) algo- 
rithm (Press et al. 1992). This algorithm is both very stable, when the fitting prob- 
lem is ill-conditioned, and fast. Once the SVD procedure returns the coefficient of 
the fitting function, the smooth value z; = g(xk, yk) at the given point pk = (xk, yk) 

is calculated, together with the local standard deviation a k  = 

between the fitting function and the Nf fitting points. 

3.6 Definition of the bathymetric data fitting procedure 

The bathymetric fitting procedure is a kind of COMPRESS scheme modified in such 
a way that can be applied to noisy data. 
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1. Determine a convex polygonal contour dM) of M vertices, cj = (xj, yj) inside 
which the map must be realized. For each point in dM), find the SV using 
the nearest Nf fitting points, together with the associated standard deviation. 
Let R be a region with a polygonal boundary aR consisting of the CM vertices 
from V, where V = {vi = (xi, yi) E R ~ ,  i = 1,. . - , N )  are the points where the 
noisy values of the seafloor F(xi, yi) = Fi are known plus the contour vertex 
cj. Be v ( ~ )  = dM). Construct an initial v ( ~ )  triangulation T of R. 

2. Construct fT,v, the approximating linear piecewise surface, and compute the 
errors Ei(fT,v) = IFd - fT,V(xi,yi)l and let EfTVv = maxl<i<M E,. Also com- 
pute the global mean and maximum of the absolute errors-&d the local stan- 
dard deviation. 

3. If one of the stopping criterion is verified, end the procedure else go to the 
next step. 

4. Select a data point vk = (xk,yk) E V\V(M) for which E ~ ( ~ T , v )  is maximal 
and add it to ~ ( ~ 1 :  v ( ~ + ' )  = v ( ~ )  U {vk). 

5. Set M = M + 1, update the triangulation T to include the new point, and go 
to step 2. 

d M ) ,  the first v ( ~ )  set (that will be from now addressed as the initial contour) 
must be defined from the algorithm user. 

The data point p is selected only if the number of points in the triangle is a t  least 
Nt . 
This algorithm is useful if the number of data points is small, because it is a global 
method and the calculation of EfT,v can be very time consuming when the number 
of data points is large. In this case the whole contour region can be divided into 
triangular regions where no more than a given number of points are situated (Sub- 
section 3.1). Using each sub-map, the points in the complete data set are selected 
in such a way that only the data points that are in or near the given sub-map are 
used for the mapping. Then the global fitting algorithm is applied to each sub-map 
using the selected data points; the resulting sub-maps are added together eliminat- 
ing duplicate points. The resulting map is @ because the SV point on the sub-map 
contour, obtained using the least-squares procedure, are produced using the same 
fitting points thanks to the data set selection procedure. This algorithm has given 
very good results both for global and sub-mapping situations (Section 5). 
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Outlier elimination 

4.1 Introduction 

Outliers are considered in a different way depending on the scientific area in which 
they are encountered. In physics, experiments with a high level of outliers are rare, 
in other fields, such as economics and demography, the presence of outliers is normal. 
During bathymetric data analysis, outliers are frequent (Du et al. 1996): "outliers 
occur in multibeam echo sounding data due to the malfunction of electronic unit 
components, multiple paths, strong reflection from side lobes, and reflection from 
fish shoals, sub-bottom layers, or abnormal water columns." Du et al. (1996) re- 
ported the presence, in their bathymetric data, of 10 % outliers in EM1000 ~imrad@ 
echosounder data and of 10 to 15 % in seabat@ 9001 echosounder data. During the 
test of our algorithm, the number of reported outliers was, on average, 5 % on 
~ t l a s ~ ~  Hydrosweep MD@ system. 

A high level of outliers is a rule in bathymetric data: in such cases many authors 
prescribe (Launer and Wilkinson 1979, David 1979) that a better estimation of the 
surface location is obtained if an algorithm for outlier elimination is used. Every 
method for outlier elimination is based on a significance level, the probability that 
good data could be discarded assuming the data are distributed according to a given 
probability density function. For high levels of contamination (10 %), many authors 
in (Launer and Wilkinson 1979) prescribe the use of methods where the probability 
threshold is high: it is preferable to discard a certain percei~tage of good data rather 
than use outliers for the surface location estimation. In this case, the elimination of 
a small amount of good data permits a robust and eficient location of the surface. 
Robust means that the algorithm is able to find an approximation of the real location 
(with a limited error) even if a high number of outliers is placed far from the real 
location. Eficient means that if outliers are not  present, the location estimation has 
a variance that is near to the variance of the least-squares mean (average). 

The algorithm developed here, is intended as a robust and eficient algorithm for 
outlier elimination. The starting idea was the algorithm developed by Du et al. 
(1996) for outlier elimination: using this method "... the matches between the two 
classification" (automatic versus manual) "of the soundings data set are greater than 
0.95." They analyzed the data for outliers without extracting at the same time the 
seafloor surface: if the surface fit is known, the outlier elimination may be more 
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powerful, as it will be clear in the following. 

The outlier elimination algorithm presented here is based on the application of two 
algorithms: 

a robustness-inducing algorithm and 

a quasCrobust algorithm. 

A quaskrobust algorithm is an algorithm that cannot be applied when outliers lay 
indiscriminately far from the real location. Anyway, if outliers are reasonably near 
to the real location, a quasi-robust algorithm is able to estimate it and to identify 
the outliers. The presence of the robustness-inducing algorithm is clear: it is used 
to identify the presence of "far" outliers and of eventual seafloor discontinuities. In 
fact, the seafloor is one of the places, in nature, where a step can be encountered and 
a continuous fitting function cannot be always used: the presence of such discontinu- 
ities is taken into account in the robustness-inducang part of the outlier elimination 
algorithm. 

4.2 The quasi-robust algorithm 

The quaskrobust algorithm is based on a suggestion that can be found in the manual 
of the loess program (Cleveland et al. 1992): a program of local regression1. loess 
is an interesting program for data mapping when the number of data points is not as 
high as that of a bathymetric data file. With so many data points the loess method 
is too slow. The quaskrobust method is based on a so called M-estimator which 
minimizes functions of deviations of the observations from the estimates that are 
more general than the sum of squared deviation or the sum of absolute deviations. 
In this way the class of M-estimators includes the mean and the median as special 
cases. It is reasonable to expect that a suitably chosen M-estimator will have good 
robustness and efficiency on large samples. A simple reformulation of M-estimators 
yields to a weighted mean in which the weights depend on the data: the resulting 
estimators, called W-estimators, provide a straightforward way of modifying the 
familiar least-squares method, particularly in regression problems, where they are 
the basis for the technique of iteratively reweighted least-squares. 

The regression method used here is an iteratively reweighted least-squares method. 
It works on long-tailed distribution, but it has a high efficiency in the Gaussian 
case. It is applied in the mapping algorithm, when the Nf fitting points are already 
collected, during the fitting phase. A first estimation of the fitting surface is cal- 
culated B(z,y) using the Nf fitting points and the SVD algorithm. The residuals 

'A program in the dloss package, Appendix A. 
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ii = zi - g(xi, yi) for all Nj  fitting points (xi, yi, zi) are computed. Let 

B(u, b) = (1 - ( ~ / b ) ~ ) ~  for 0 5 lul < b 
for lul 2 b 

be the bisquare weight (also Tukey's biweight) function, and m = median()iil). The 
robustness weights are ri = B(Zi, km), where k is a parameter. An updated esti- 
mate, g(xi, yi), is computed using a scaled SVD algorithm using the multiplicative 
robustness weights; thus, points with large residuals receive reduced weight. Then 
new residuals are computed and the procedure is repeated. The final robust esti- 
mate (the "fitting surface") is the result of updating the initial estimate n, times. 
After n, cycles, the fitting surface is identified and the data points farther then km 
from the fitting surface are eliminated from the data set as outliers. Then, some 
neighbouring data points are added to the fitting points set, to reach again Nj, and 
the fitting procedure is repeated till all the fitting points are "good" points. 

The same weight system is suggested by Goodall (1983) as the Tbkey's biweight 
robust W-estimator, for robust data fitting. Using different values for k it is possible 
to obtain2 asymptotic variance near to 1: it is 2.102 for k = 3, 1.094 for k = 6, and 
1.018 for k = 9. An asymptotic variance near to  1 is an  indic-tion of an efficient 
estimator. As said before, in presence of a great number of outliers, it is better 
to discard more outliers (smaller k) even if the asymptotic variance is greater than 
the optimal one (with asymptotic variance 1). A value of k between 5 and 6 is 
usually appropriate. In the NR-CUIYPRESS algorithm the value is chosen starting 
from the significance level (in percentage), kMAD: given this probability, the Student 
distribution for Nf - 2 degree of freedom is used to find the wanted value for k. The 
6 degrees of freedom are the degree of freedom of the fitting surface. 

4.3 The robustness-inducing algorithm 

The iteratively Tukey's reweighted least-squares can have problems in two situations 
connected to  bathymetric data: very far outliers and seafloor discontinuities. To 
avoid such situations, a robustness-inducing algorithm is applied before applying 
the W-estimator. The algorithm is applied during the Nf fitting points selection 
phase. During that phase, a fitting of the surface is not available: as a consequence 
the points depth will not, in general, be Gaussian distributed. The idea is to use 
the fourth-spread range (based on an unknown Gaussian distribution, see Emerson 
(1983) for a description of the test), as a test to eliminate only the "far outliers": 
the complete elimination will be performed by the quas6robust algorithm. Du (Du 

 he asymptotic variance is defined as the limit, as n becomes infinite, of nvar(Tn) (if the limit 
exists); here, Tn is the location estimator. The asymptotic variance for the mean of observations with 
variance a2 is: nvar(Z) = w 2 / n  = a2. The asymptotic variance is usually referred to observation 
with unitary variance: therefore, the asymptotic variance of the mean is 1. 
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1995, Du et al. 1996) suggests the use of an outlier elimination criterion based on the 
Uniform distribution3. In our case the number of considered points (Nf)  is small 
and the region where these points lie is quite small. As a consequence, the statistics 
of the points is better approximated by a Gaussian distribution. Moreover, the use 
of the Gaussian distribution implies criteria that are more conservative with respect 
to the ones derived from the Uniform distribution. 

The fourth-spwad range test is based on the ordering of a stochastic variable such 
that Xo < XI < < XNf-I. The fourth-spread dF is defined as dF = Fu - FL 
where Fu and FL are the upper and lower fourth. The lower (upper) fourth is the 
point under (over) which approximately a quarter of the data lie. The depth (index) 
of the lower fourth is given by 

[depth of median] + 1 depth of fourth = 2 
and the depth of the median is given by 

number of samples + 1 
depth of median = 2 

where the brackets in [XI stand for the largest integer not exceeding x. So the rule for 
finding the depth of a fourth says, 'Drop any fraction from the depth of the median, 
add 1, and halve." If the depth of the lower fourth is an integer, say k, the value of 

+X[kl+' . It is clear that the the lower fourth is FL = Xk; else, the value is FL = [ 

fourths are robust statistical values, and that the fourth-spwad is a robust estimation 
of the scale of the data. Using FL, FU, dF, and a significance level it is possible to 
define the range of the valid data as [FL - KdFdF, FU + KdFdF]. The value of Kd, 
depends on the significance level and is chosen using conservative criteria, because 
only the far outliers must be identified using this technique. Kd, is determined 
using the Student distribution, taking into account Nf and the significance level. 

In the robustness-inducing algorithm, to avoid the elimination of a point that is on a 
seafloor steep edge, the point is considered an outlier only if it is the point that the 
fitting algorithm must smooth. Otherwise, the given point is only considered a quash 
outlier and it is removed from the Nf set of points and substituted with a neighbour 
point. This procedure is intuitive: the outliers, far from the seafloor surface, are 
the first points to be considered as possible nodes of the map. They are outlier 
only if near all the neighbour points have a different value. The robustness-inducing 
procedure is iterate until Nf 'good" points are find. Under normal conditions, such 
a set is always found. 

The fourth-spwad range test is also used for discontinuity detection. The largest 
interval between the ordered values Xo < XI < ... < XNf-l is calculated. If 

3 ~ e  claims that a Uniform distribution is more appropriate to describe the statistic of the data 
if this is dominated by the seafloor variation: this hypothesis could be correct only if the considered 
points come form a large region that shows significant height variation. 
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this interval is not inside the fourth-spread range a discontinuity is considered to be 
present. In such cases, all the points on the opposite side of the gap with respect 
to the point being smoothed are regarded as quasuoutliers and are removed from 
the Nf set. Neighbour points are then inserted into the set of fitting points and 
the procedure is iterated until1 Nj points are found. If a discontinuity is present in 
the data, the smoothing of a point is thus performed using only points that are "on 
the same side" of the discontinuity, enhancing in such a way the precision of the 
mapping algorithm. This procedure is applied only if the number of points on the 
same side is higher that Nof: this condition is added to avoid considering clusters 
of outliers as discontinuities which are included in the map. 

Both the outliers and the discontinuity test are used contemporarily in the robustness- 
inducing algorithm. During all the tests of the algorithm shown in Section 5, if the 
testing surface does not have discontinuity, the algorithm does not recognize any 
discontinuity. On real data, some abnormal condition can be caused by the pres- 
ence of a "compact cloud" of outliers that can produce two effects: it can block the 
algorithm (if the number of outliers in the cloud is smaller than Nf), or produce 
a mesa effect (if the number of outliers in the cloud is greater than or equal to 
Nf) that should be identified by the user when the map is produced. By changing 
some parameters of the algorithm it is possible to eliminate such problems when the 
presence of a cloud of outliers is identified by the user (Section 5). 

4.4 Final elimination step 

After the mapping algorithm stops, a last cleaning step for outlier elimination is 
performed. All points whose error is greater than K times the local standard devi- 
ation, are eliminated. The K value is calculated using the Student distribution and 
the significance level parameter ko,. 

The outlier elimination piase can be applied to the mapping algorithm without 
substantial changes. The only changes are in how the "fitting points" are collected 
and on the substitution of the SVD algorithm with the quasurobust fitting algorithm. 
It is also clear that the points declared as outliers can be eliminated by the data set 
after the map is produced. 

Some tests on the outlier elimination algorithm are presented in Section 5: they all 
show good outlier elimination properties. 
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Algorithm testing 

The mapping procedure described in the preceding sections is tested here using both 
synthetic and real data. 

5.1 Parameters of the algorithm 

The values selected for the algorithm parameters during the test phase, shown in 
Table 1, are a good trade of different exigencies, but they can not be optimal to each 
problem. The best way to describe parameter choice is to show the effects of the 
parameters on various situations. A better description of some of the parameters 
can be found on Section 3; other parameters are explained in this section. 

k,  Approximate percentage of points used to build the map; the higher this number, 
the more the points of the map (Subsection 3.4). This parameter is used to 
vary the number of data points used to create the map. 

k,,, Approximate percentage of points eliminated as outlier after the map is built: 
the higher this number, the higher the number of points eliminated as outlier 
(Subsection 4.4). This parameter is used to determine the sensibility of the 
algorithm to the outliers. 

kMAD Approximate percentage of the points eliminated as outliers cluring the fit- 
ting phase: the higher this number, the higher the number of points eliminated 
as outliers (Subsection 4.2). This parameter is used to determine the sensibility 
to the outliers of the algorithm. 

kdf Approximate percentage of the points eliminated as far outliers during the col- 
lection of the fitting set: the higher this number, the higher the number of 
points eliminated as outliers (Subsection 4.3). This parameter is used to de- 
termine the sensibility to the far outliers of the algorithm. 

n, Number of iterative cycles in the fitting algorithm (Subsection 4.2). 
- Maximum mean error under which the algorithm is stopped (Subsection 3.4). 

Maximum error under which the algorithm is stopped (Subsection 3.4). 
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Table 1 Table of the selected values for the NR-COMPRESS algorithm. 

Table 2 Value of the fittang error for various N f :  data are 10,000 samples of F4 
wdth no noase added. 

Maximum standard deviation under which the algorithm is stopped (Subsec- 
tion 3.4). 

N f  
~f [m] 

N f  Number of fitting points: the higher this number the smoother the map (Sub- 
section 3.3 and 3.5). 

25 
.069 

Nof Number of points that can be considered as outliers in the fitting set (Subsec- 
tion 4.3). 

10 
.042 

Nt Minimum number of points in a map triangle: this parameter is used to reduce 
the number of nodes of the generated map when a discontinuous seafloor region 
is encountered '(Subsection 5.3). 

30 
.085 

np Maximum number of points lying in a sub-map (Subsection 3.1 and 3.6). 

15 
.045 

5.2 Fitting t?rror 

40 
.095 

20 
.058 

The fitting procedure acts as a low pass filtering procedure resulting in a smoothing 
of the surface that can be regarded as an error. Using the synthetic data without 
noise (samples from the F4 function, see the next subsection), a test was performed 
on the value of the maximum fitting error, ~ f ,  as the number N f  of the fitting 
points increases (the low-pass effect increase). Table 2 gives the result of the test 
when 10,000 "non noisy" samples of the F4 function were used. A smoother test 
function will produce a lower fitting error. Using the table it is possible to select 
(for synthetic data) the value of N f  . In fact, it is better to use the value of N f  for 
which the fitting error is lower than the noise on the data. When analyzing real 
data, the value of N f  must be selected by the user depending on data noise and on 
the required smoothing effect. 

50 
.I18 

60 
.I20 

100 
.I70 
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5.3 Test on synthetic data 

Test functions 

A set of nine test functions was chosen to conform to (Dyn et al. 1990, Franke 
1979, Lyche and Morken 1987, Rippa 1992). These functions are standard for testing 
interpolation and fitting algorithms. Only the following four functions were chosen to 
show the results as no additional information was given by the remaining functions: 
the results of the algorithm on the functions not in the table were comparable with 
the results on the four functions used. 

f3(x, y) = exp ((x - 0 .5)~  + (Y - 0.5)~) 

\ 0 otherwise 
1 

 here r( t ,y)  = ((t - $)2  + (y - i)2)5, and t = 2.11: - 0.1. 

A fifth function was added to the set to test the algorithm on a discontinuous surface: 

1 - 2.3(x - y)2 if 1.8(1 - y)2 < x - 0.3 and 1 - 2.3(x - y)2 > 0 f5'{0 otherwise (7) 

The first function fl is a polynomial surface of degree 12 (Fig 12.a and b); function 
f2 simulates a sharp rise running diagonally (Fig. 12.c and d); f3 is a Gaussian hill 
(Fig. 12.e and f )  and f4 represent a "mountain" on a plane and a ramp leading to 
another plane (Fig. 12.g and h). It is a function with discontinuous first derivatives. 
The last function, f5, represents a mountain on a plane with a cliff (Fig. 12.i and j). 
Equations (4) to (7) produce data in a small interval of depth; moreover, the x and 
y range are intended to be [0,1]. To obtain data files comparable with those of a 
multibeam echosounder, the functions f, have been normalized in such a way that 
their range of variation was equal to one (7,). The following transformation was 
applied to 7,: 

where: 
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lato is the starting latitude in UTM 

lono is the starting longitude in UTM 

rangelat = rangel,, = 200 are the range of variation of latitude and longitude 

d = 65m, is the depth 

ranged = 7m is the maximum depth variation of the data (with no noise) 

The value of lato and lono was used in order to compare the results with collected 
data the coordinates of which were given in UTM: using this transformation "natu- 
ral" variations of latitude and longitude result in "natural" variations of depth. The 
functions were sampled using a random Uniform sampling: the resulting sample dis- 
tribution is similar to the bathymetric data distribution, but the data are ordered 
differently. The order of the data does not affect the results of the mapping algo- 
rithm but does affect calculation time which is higher if the samples are randomly 
distributed in the map area. During the fitting phase, the error calculation is based 
on a search algorithm that is much faster if the point queried is near to the preceding 
point. 

Figures 12.b, d, f, h, j are contour plots obtained using 10,000 random samples of 
FI to F5: the number of samples used to  test the global algorithm when not specified 
differently. 

Synthetic noise 

Gaussian uncorrelated noise is added to all the synthetic data sets. To simulate 
different multibeam sonar two values of noise variance are used: a, = 0.5 m and 
on = 0.05 m. Figure 13 shows an example of the effect of the noise on data sampled 
by the F4 function. 

Some tests were also done using uniform noise. As the algorithm performed as in 
the Gaussian case, an example is not reported. 

To simulate real data, outliers are added, in some tests, to  the synthetic data. To 
simulate outliers, a fixed error ( f  Coo, where o is the Gaussian noise variance) is 
added to 5 % of the data. For example, in the case of the standard 10,000 points 
data set: 

to 9,500 data was added gaussian noise with variance o ,  

to 500 data was added the fixed error f koo. 
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Figure 12 The synthetic test functions. 
- 35 - 
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Figure 13 The eflect of the noise added to the F4 function: the variance of the 
noase applied to the data is, on the left, an and, on the right, am. 

Tests on synthetic data with Gaussian noise and no outliers 

The first test was performed on a synthetic data set: the map of these data (with no 
outliers) is produced using parameters which differ to the selected parameters for the 
algorithm (see Table 1). In fact, these parameters (intended for at  sea data) tend to 
eliminate a high percentage of points with.the philosophy that is better to eliminate 
some good points rather than fitting using bad points (David 1979). As in this case 
it is known that outliers are not present, conservative parameters are used which 
do not eliminate too many points and which produce maps from a small number of 
nodes (k ,  = 0.5 and kMAD = 0.01). The data are obtained from function F4 with 
superimposed Gaussian noise with variance am (see Fig. 13). Figure 14 shows the 
results in terms of reconstructed surface, triangulation, parameters and statistics. 
Considering the high level of noise, the surface is well reconstructed. Finally, it is 
interesting to note how the standard deviation and the mean of the absolute devia- 
tion of the data from the reconstructed surface are near to the respective quantities 
for the data with respect to the "real" synthetic surface (respectively UF = 0.5 m, 
and F = 0.4 m). In the the table in Fig. 14, and in the following tables, the columns 
labelled No and Nn give, respectively, the number of outliers in the data set lying 
in the map and the number of nodes of the map. The column labeled UF gives 
the value of the standard deviation of the noise added to the synthetic functions 
samples. 

When the algorithm is applied to a low noise data set (see Fig. 13) more points 
are necessary to obtain a result in which the map is sufficiently accurate to have a 
variance from the data of the same order of the variance of the noise on the data. 
For example, in Subsection 2.3 the minimum standard deviation obtained using a 
map of 46 triangles was 0.102 m. Using an as the level of noise (a  low level in a 
map) it will require a much higher number of points to obtain a standard deviation 
between the map and the data of the order of an. The Nf value was reduced to 
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Figure 14 The results of the fitting algorithm applied to data characterized by  a 
high level of noise. 

Figure 15 The results of the fitting algorithm applied to data characterized b y  a 
low level of noise. 

15, to reduce the fitting error (Subsection 5.2). Using 15 fitting points, kg = 0.5, 
kMAD = 0.01 and the selected values of the other parameters, the values of the 
statistics of the obtained map (see Figure 15) are higher than the values of Gaussian 
noise, but the number of nodes and outliers found by the algorithm are lower than 
those obtained using higher values for kg .  It is noteworthy, in Fig. 15, that the 
mapping algorithm uses a high resolution where the surface second derivative is 
high, and a low resolution where it is zero. 
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Table 3 Results of NR-COMPRESS on the first four test functions. The only param- 
eters of NR-COMPRESS different from the selected ones are k,, = 0.1, to reduce the 
number of generated points, and Nf = 15, when the noise level is a,. 

Table 4 Relative error realized by NR-COMPRESS in the mapping of a constant 
depth synthetic seafloor data with a Gaussian noise of variance am. This is a value 
calculated using the result of a single realization, not a medium on more realizations. 

The triangulation from Fig. 14 is influenced only slightly by the shape of the surface. 
A stronger effect on the map structure is shown in Fig. 15 which shows a much higher 
number of triangles where the "mountain" is. This is an effect of the level of the 
noise on the data: when it is low, the algorithm attempts to find a much accurate 
solution. By changing the k,, parameter it is also possible to obtain a less accurate 
map. 

Table 3 shows the results of the application of M-COMPRESS to the sets of data 
obtained from the first four test functions (the parameters were k,, = 0.5 and 
k M ~ D  = 0.01). 

5.3.1 Limits to the map accuracy 

An interesting test was applied to a synthetic data set of noise with constant vari- 
ance am (i. e. constant depth). Table 4 reports the result of a single run of the 
M-COMPRESS in terms of error betweeen the reconstructed surface and the real one. 
It is easy to see that the error decreases when the number of fitting points increases 
(in the case of constant deep). When the number of fitting points is below or equal 
to 30 points, the error is quite high: this is a statistical limit for M-COMPRESS. 
Two seafloor surfaces realized from data from the same site could therefore have a 
difference equal to twice the error reported in Table 4. 
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The  triangulation 

It is interesting to see the maps (and the triangulations underlying the maps) pro- 
duced to realize Table 3. These maps are shown for aF = an and a~ = am in 
Fig. 16 and 17: the triangulation is more dense where the second derivatives of the 
functions are higher. The regularity of the contour levels even in presence of a high 
noise is also noteworthy (compare Figs. 16 and 17 with Fig. 12). 

Another interesting test is shown in Fig. 18, which is a map elaborated from a data 
set obtained from the F2 function using varying noise. The top part of the sedoor 
has low noise variance (an),  while the bottom part has high noise variance (a,). 
This simulates the change due to the presence of, for example, sea weed in a part of 
the map (sea weed can be present at  a given depth and not at  another one). The 
algorithm, using the local noise criterion, recognizes the variation of the data noise 
and produces a map that is more accurate where the noise is low, and coarser where 
the noise is high. Fig. 18 shows the maps produced when the data noise is low or 
high on all the data set, and the map produced when it changes depending on the 
site. 

Tests on synthetic data with Gaussian noise and outliers 

The test of the algorithm with outliers is realized using the synthetic data set with 
outliers previously described (the underlying function was F2). Table 6 shows the 
result of applying M-COMPRESS using conservative parameters (the selected pararn- 
eters): these settings do not remove many Ugood" data but, a t  the same time, they 
render the algorithm sensible to outliers only when ko is very high. When ko is equal 
to 4 the number of identified outliers (among the 500 added to the 9,500 noisy data 
points) is only the 57.8 % (see column No % of Table 6). No % is referred to the 
percentage of identified ou~liers among the 500. 

If less conservative parameters are used (the selected parameters and kMAD = 0.2 %), 
more Ugood data" are eliminated as outliers (Table 7) but a t  ko = 4 the number of 
identified outliers is already 97.2 % of the total outliers. When ko = 5 all outliers 
are recognized and eliminated. 

An explanation must be given about the dependence of a (and of the other statistical 
estimators) with ko. Data point error variance varies with ko. 9,500 data have a 
noise variance of 0.5 and 500 have varying noise amplitude. The column OF in the 
Tables 6-7 gives the real variance value as ko varies from 0 to 5. At the same time 
the variance of the result is calculated using all the data exept the part of data 
eliminated as outliers. The resulting dependence of a is the combination of both 
phenomena. 
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Figure 16 The triangulation and contour graph of the maps produced from the 
synthetic data with low noise level (a,) and no outliers. 
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Figure 17 The triangulation and contour gmph of the maps produced from the 
synthetic data with high noise level (om) and no outliers. 
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Figure 18 The results of the fitting algorithm applied to data chamcterized by 
a change i n  the noise characteristics on the seafloor. Plots a show the case with 
constant high level of noise, plots b show the case with constant low level of noise 
(Nf = 30). Finally, plots c shows the case of varing level of noise (low level at 5 5 m  
depth and high level at 6 6 4 .  The ensemble means (a  etc.) are not given because 
they do not make sense i n  this case. 

Nf 
30 

k, % 
0.5 

OF [m] 
0.5 & 0.05 

 MAD % 
0.01 

No 
414 

N, 
279 
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Table 5 Data variance changes with k,: the noise variance on the 95 % of the data 
was a,. 

Table 6 Results of NR-COMPRESS on data with outliers (the normal noise on data 
has variance a,). The total number of outliers is 500 out of 10,000 (selected pu- 
mmeters). 

If the data are affected by a lower noise (an), the algorithm (Table 8 )  tends to 
eliminate a much higher number of outliers (up to 17 %) to reach a good sensitivity 
at low value of ko (using the selected parameters with k, = 1). 

These two tests confirm the statement that, when data are affected by outliers it 
is better to eliminate an even high number of "good" data rather then to take into 
account too many outliers (see the difference between Table 6 and Table 7 ) .  In fact, 
the elimination of "good" data does not significantly affect the map reconstruction 
while to take into account "bad" data produce a big error in the resulting map. 

An important fact that can be extrapolated from Table 8 regards outlier elimination 
when data noise is low. If most of the data with a residual much higher than the 
data set variance must be eliminated, it is also necessary to eliminate a substantial 
amount of "good" data. As a consequence, it is difficult to discriminate between 
outliers and some "goodVdata. This is true for automatic algorithms as for human 
outlier elimination. This problem is less important when dealing with higher noise 
levels. 

Tests on discontinuous synthetic data 

NR-COMPRESS was also tested on the function F5 to verify it when in presence of a 
discontinuity of the seafloor. Figures 19 and 20 show the results of the algorithm 
using data with Gaussian noise variance an and a,. The algorithm produces maps 
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Table 7 Results of NR-COMPRESS on data with outliers. The total number of outliers 
is 500 out of 10,000 (the normal noise on data has variance a,). The parameter of 
NR-COMPRESS different from the selected ones is k M ~ ~  = 0.2. 

Table 8 Results ofNR-COMPRESS on data with outliers. The total number of outliers 
is 500 out of 10,000 (the normal noise on data has variance an). The parameter of 
NR-COMPRESS different from the selected ones is k M ~ ~  = 0.01. 

Figure 19 The results of the fitting algorithm applied to data obtained by a dis- 
continuous function and characterized by a low level of noise. 
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Figure 20 The results of the fitting algorithm applied to data obtained by a dis- 
wntinuous function and characterized by a high level of noise. 

that have many nodes around the discontinuity: this rea--It is not optimal. This is 
controlled by the parameter Nt as explained in Subsection 3.6. When the number 
of data points lying in a map triangle is below Nt, that triangle is not considered 
when NR-COMPRESS looks for a new map node. The selected value for Nt is zero: if 
its value is different, (e.9. 5 in Fig. 21), the number of triangles (nodes) along the 
discontinuity is lower, but a certain number of points is eliminated as outlier. This 
is usually not an important problem and it is possible to always put Nt to a number 
higher than zero. If Nt is different from zero, the level of a, 5, and Emax is, usually, 
slightly higher than for Nt = 0. 

Tests on synthetic data multiple maps 

After the tests of NR-COMPRESS as a global algorithm other tests were performed 
on synthetic data using the algorithm on submaps (Subsection 3.1). Two results 
on local application of the NR-COMPRESS algorithm are shown on Fig. 22 and 23. 
The data sets are made of 120,000 points and the algorithm was applied using the 
selected parameters but dividing the problem on maps with no more than 10,000 
points each (16 maps in this case). As for the global problem solution, the map 
with lower noise is reconstructed with a higher resolution and lower error than the 
map with higher noise. The figures show that when the NR-COMPRESS algorithm 
works using sub-maps it produces results very similar to the global application of 
the NR-COMPRESS algorithm. The only difference is a small increase in the number 
of nodes and in the noise between the data and the reconstructed map. 
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Figure 21 The results of the fitting algorithm applied to data obtained by a dis- 
wnt inuow function and characterized by a low level of noise (Nt = 5).  

Figure 22 The wsults of NR-COMPRESS multimap algorithm applied to synthetic 
data obtained by the F4 function and characterized by a low level of noise. 

5.4 Test on real data 

The data collected at  sea used to test the algorithm was obtained using an ~ t l a s ~ ~  
HYDROSWEEP MD@ multibeam echosounder (STN ATLAS Elektronik GmbH, Bre- 
men, Germany). 
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Figure 23 The results of NR-COMPRESS multimap algorithm applied to synthetic 
data obtained from the F4 function and characterized by a high level of noise. 

Small size data file 

The first test on real data was performed on a deep-water area off Sestri Levante 
(Italy). Two sets of tracks were available to test the algorithm: North-South and 
East-West tracks. The tracks were nearly completely overlapped and a part of the 
beams (the 5 outer beams on each side) was eliminated. The number of acquired 
data points was low (36482), so the map could be obtained with the subdivision of 
the NR-COMPRESS problem in only 7 sub-maps (np = 10,000). The map from the 
data of all tracks (North-South and the East-West) is shown in Fig. 24. 

Figure 25.a shows the fitting errors resulting from the algorithm when fitting the 
data to find the map nodes. This map is a kind of local noise map from which 
is possible to localize zones where the noise is anomalously high. The maximum 
noise variance in this map is approximately 16 m and is localized in some zones of 
the map. Considering the number of fitting points (Nf=30) the maximum error 
expected from the obtained map should be (from Table 4) 2 x 0.96 x 16 x 32. 

Figure 25.b shows the difference between the maps obtained from the North-South 
and the East-West tracks. The maximum value of the difference is, as expected, 
around 32 m. It  is also very interesting to see that there is a direct correspondence 
between Fig. 25.a and Fig. 25.b. 

Figure 3.a is a replica of Fig. 24, while Figs 3.b and c are obtained from the same 
data of Fig. 24 using Nf = 100 and, respectively, k, = 0.8 and 0.5. Tables 9.a 
and b give the results of the two algorithms. Maps b and c in Fig. 3 are smoother 
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Figure 24 The results of the application of the NR-COMPRESS algorithm to data 
j%om a deep-water real sea bottom. A combination of North-South and West-East 
track was used. 
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Figure 25 a Plot of the local noise of the data set made of East- West and North- 
South tracks (deep water site o f  Sestri Levante); b plot of the difference between 
the maps obtained from the East- West and North-South tmcks in the same site. 
Considering Table 4 and plot a the mapping ewor in b should be distributed in the 
same way with a maximum error of about twice the error in a: this is what efectiwely 
happened. 
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Table 9 The results of the application of the NR-COMPRESS algorithm with an in- 
creased low pass eflect. 

than the map obtained with Nj  = 30 (Fig. 3.a) but, if the value of k, is not high 
enough, the error between the data point and the map increases. An example of 
what can happen in such a case is given in Fig. 26, where the map of the same sites 
are analyzed using a value of k, = 0.1 (Nj  = 30). The resulting values of a, F, 
and Emax show that the error increases dramatically. The number of nodes however 
becomes relatively low. It is possible to discern that a relatively flat zone visible in 
all preceding figures a t  the coordinate (0.013,0.0005), has almost disappeared. This 
is a clear indication that the value of k, was effectively too low. 

Medium size data file 

- 
E [m] 
4.63 

Nf 
100 

The second test on real data was performed on a flat shallow water area off Portofino 
(Italy) with a constant North-South slope of about 1 %. Two sets of tracks were 
available to test the algorithm: a set of five North-South tracks and a set of five 
East-West tracks. The tracks were overlapped of about 60 %, the mean water depth 
was 64 m and a part of the beams (the five outer beams on each side) was eliminated 
because their noise level were too high. Three results are shown from these data: 

k M A ~  % 
0.1 

k, % 
0.8 

the map resulting from the application of the algorithm using the combination 
of East-West and North-South tracks (Fig. 27): a low noise map is obtained 
without any hard filtering technique. The number of data points was 287,700 
and the complete map was the results of the subdivision of the problem in 
27 submaps. From Figure 27 it is possible to see that the NR-COMPRESS 
algorithm is trying to approximate the surface too accurately. Probably, fewer 
nodes should be used (lower value of k,). 

u [m] 
5.86 

Emax [m] 
26.4 

The error analysis (Fig. 28): 

- the plot of the local error calculated from map in Fig. 27 

No 
1271 

- the plot of difference between the maps resulting from the analysis of the 
North-South and the East- West runs 

The maximum difference is coherent with the level of noise in the data. On 
the contrary with the data of the small dimension data file, there appears a 

Nn 
281 

No % 
3.4 
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Figure 26 The results of the application of the NR-COMPRESS algorithm to the data 
from a deep-water sea bottom. A combination of North-South and West-East track 
was used. 

N j  
100 

kg% 
0.1 

k l c M * ~ %  
0.1 

a [m] 
6.81 

F [m] 
5.29 

Emax [m] 
31.5 

No 
601 

N, 
118 

No% 
1.6 
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constant and low value of noise resulting in a constant error between the two 
maps. 

Once it is known, from Fig. 27, that the sea at that site is flat, it is possible 
to obtain a map with a small amount of points (Fig. 29). In such a case it is 
correct to fix the value of k, to a low value (0.05), while the number of fitting 
points is raised to a high value to obtain a better estimation of any map node 
(compare Fig. 27). Looking at the value of the errors in Fig. 29 it is possible 
to say that the map in Fig. 29 approximates well the map in Fig. 27. 

The number of outliers (once the 5 most external beams were eliminated) was low 
(0.4-1.5 %). 

Large size data file 

The last test on real data was performed on a shallow to deep water area in the Black 
Sea. Only one direction tracks were available to test the algorithm, and they were 
slightly overlapped. No beams were eliminated from the acquired data. Because 
the number of data points was high (about 350,000), the map was obtained by 
subdividing the problem into 59 sub-maps. 

Figure 30 shows the seafloor surface obtained using Nf = 30. The number of nodes 
of the map is very high so another map was calculated using fewer nodes and a 
higher number of fitting points (Nf = 150 and k, = 0.1). The results are shown in 
Fig. 31: the number of nodes is halved and the error is not increased. 

Finally, Fig. 32 shows the local noise obtained producing the map of Fig. 30: the 
black spot is a flag of possible problems during the acquisition of the data. 

5.5 Run time examples 

Run time tests were carried out to check the influence of some parameters on the 
computing cost of the global algorithm. The data used for the test are synthetic 
samples from a flat seafloor to which Gaussian noise with a standard deviation of 
0.5 m was added. Figure 33 reports the result of the analysis. 

Figure 33.a shows the time necessary for the algorithm to compute a map of 100 
nodes from data sets consisting of an increasing number of samples. Figure 33.b 
gives the time necessary for the algorithm to compute a map with an increasing 
number of nodes using a data set of 10,000 samples. Figure 33.c and d gives the 
time necessary to compute a map of 100 nodes, using the data set. The varying 
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Figure 27 The results of the application of the NR-COMPRESS algorithm to data 
from a shallow water sea bottom. The combination of North-South and West-East 
tracks was used. 
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Figure 28 a Plot of the local noise of the data set made of East- West and North- 
South tracks (shallow water site o f  PortoJino); b plot of the diference between the 
maps obtained from the East- West and North-South tracks at the same site. 
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Figure 29 The result of the application of NR-COMPRESS algorithm to a pat bottom. 
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kg % 
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Figure 30 The results of the NR-COMPRESS algorithm applied to a very large data 
set. 
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Figure 31 The results of the NR-COMPRESS algorithm applied to a very large data 
set. 
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Figure 32 Plot of the local noise of the data set acquired in the Black Sea. 

parameters were the number of outliers flagged by the algorithm and the number of 
fitting points. 

In all the cases the time cost increases with the given parameter. In general, if the 
data set contains more samples, the map region will be described using more nodes 
and the number of outliers will be higher. In the best case, it will not be necessary 
to increase the number of nodes. As a consequence, it is possible to say that the 
computation time of the algorithm, as the number of data samples increases, is 
increased because the number of data samples is increased and because the number 
of outliers is increased. If the functions describing the time cost of the algorithm 
depending from the number of point of the data set (no outliers, 100 nodes in the 
map) were linear, the overall time cost should be at least quadratic. The function 
shown in Fig. 33.a indicates that the time cost increases more than linearly with the 
number of samples. To avoid the possibility of a quadratic (or even worse) time cost, 
the total map is divided in smaller sub-maps and the global algorithm is applied to 
the sub-maps using only a part of the complete data file. The results are added 
together to form a single map (Subsection 5.3.1): the efficiency of the algorithm is 
only minimally affected by this subdivision, but the possibility of a quadratic time 
consuming algorithm is avoided. 

The algorithm computing time depends also on the number of fitting points. When 
the number of fitting points increases, the time necessary to select the nearest points 
increases concomitantly (see Fig. 33.d). 
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Figure 33 Plot a shows the time necessary to the algorithm to compute a map of 50 
nodes using an increasing number of data points (Nf  = 30, Nn=lOO). Plot b gives 
the time necessary to the algorithm to compute a map with an increasing number 
of nodes using a fixed number of data points (Nf  = 30, np = 10,000). Plot c 
gives the time necessary to compute a map when the number of outliers increases 
(Nf  = 30, np = 10000, Nn=lOO). Finally, plot d give the time necessary to calculate 
a map when the number of fitting points increases (np = 10000, Nn=lOO). The 
times are calculated using a software implementation of NR-COMPRESS on a Digital 
Alphastation 600TM using WIN operating system. The scme execution times are 
obtained on a 133 MHz Pentium PC. 

The algorithm is slower on synthetic data point because the search time is higher 
due to the fact that the data are scattered. In a real bathymetric data file the data 
are placed in close proximity and the search algorithm finds the triangle where the 
point is in a faster time. 
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Conclusion 

The purpose of this work was to elaborate and test an algorithm able to produce 
accurate maps from bathymetric data. The main characteristics of the algorithm 
are: 

Production of a triangulated map of uniform accuracy irrespective of seafloor 
features 

A map resolution which depends on the local data noise amplitude 

Automatic elimination of outliers 

Small computing cost even on large data files (more than 1 million points) 

The algorithm was applied to synthetic data to understand its behaviour when 
parameters are changed. In particular, data mapping with and without outliers has 
been tested for both continuous and discontinuous synthetic seafloors. The algorithm 
has also been tested on real data. Some tests were performed on the triangulation 
engine behaviour, algorithm implementation speed, and fitting errors. 

NR-COMPRESS can be used to reduce operator intervention during bathymetric data 
mapping. Raw bathymetric data are directly analyzed by the algorithm which au- 
tomatically and robustly eliminates outliers and produces a map the parameters 
of which can be finely tuned by the user (number of nodes, smoothing, level of 
data cleaning, etc.). The algorithm has been implemented, exhaustively tested on 
synthetic and real data, and fully documented. 
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