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Abstract 
Ofren focused beamforming systems use the Fresnel approximation to compute the required delays. Unfortunately, such an 
approximation has a validity region that is very narrow around the broadside direction. To investrgate wider areas, in this 
paper, a novel approximation composed of the weighted terms of the conventional Fresnel approximation is presented. 
The attractive results (in terms of mean square error and enlargement of the valrdrty region) obtained by applying the 
proposed approximation to a planar array are presented. 

1.  Introduction 
Beamforming is a linear technique aimed at processing array signals in order to enhance incoming signals from a selected 
steering direction and to abate incoming signals from any other direction [I]. Thanks to its tlexibility, beamforming can be 
successfully employed in many application fields (e.g., sonar, radar, medical imaging, non-destructive testing, etc.) with 
different objectives. In any case, if the array works under far-field conditions, the delays required by the beamforming 
operation can be easily computed in an exact way, whereas, if the array works under near-field conditions, the focalization 
of beamforming is required to take into account the curvature of waves [I]. In the latter case, due to the presence of a 
square root operation, a fast computation of the exact delays is often prohibitive and an approximate version is preferred: 
generally, the Fresnel approximation (obtained by the expansion of the time-independent free-space Green's function 
[2][3]) is adopted [I] .  Moreover, the Fresnel approximation makes it possible to apply the Fast Fourier Transform (FFT) in 
the implementation of beamforming even when focalization is necessary [4], thus resulting in a great computational profit. 

These issues are particularly important in three-dimensional (3D) sonar imaging systems, where: the focalization is 
required, the enormous number of different delays to be used disallows an off-line computation of them, and the FFT 
implementation of the beamforming is highly demanded. In this case, the Fresnel approximation allows one to compute on- 
line the delays and to apply the FFT implementation, thus achieving a 3D real-time imaging [4]. Despite its simplicity and 
advantages, the Fresnel approximation has a well defined region of validity [2] that forces potential steering directions to 
be contained inside a narrow scanning region around the broadside direction. This constraint is heavy in applications like 
acoustic imaging that require a wide region of view, for both medical and underwater investigations. To avoid this 
drawback, some imaging techniques that do not need the Fresnel approximation have been devised [5][6] but, 
unfortunately, they increase the computational load andlor the system complexity. 

This paper presents a novel approximation (not too different from the Fresnel one) based on the minimization of the 
mean square error, so resulting in an acceptable precision inside wide scanning regions. In more detail, the same terms as 
used for the Fresnel expansion are weighted by coefficients whose values are fixed, given the array geometry, by a least- 
squares procedure on the basis of the desired scanning region. Thus, the new approximation keeps the low computational 
load and the low system complexity that characterize the Fresnel expansion and maintains the opportunity to be 
implemented in an F I T  focused beamformer, too. 

T h ~ s  paper IS organized as follows Sect~on 2 presents a background concerning the delay approxlmatlon and the related 
valld~ty reglon. In Sectton 3, the we~ghttng of the Fresnel approxlmatlon IS presented and ~ t s  appllcat~on to a planar array IS 
described In Sect~on 4 F~nally, results are discussed and some conclus~on~ are drawn In Sect~on 5 
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2. Background on Delay Approximation 
A beam signal (generated by a conventional delay and sum beamformer [I]) steered in the direction of the unit vector 
(versor) u is defined as: 

M 

where xi(t)  is the temporal signal received by the i-th sensor, 7(u, i) and w(i) are the delay and the weight applied to such a 
signal, respectively, and M is the number of array elements. 

Under the far-field hypothesis, the exact delay t(u, i) can be written as: 

where vi = [xi, yi, zi] is the position vector of the i-th sensor, + indicates the transposition operator (both u and vi are row 
vectors), and c is the carrier speed. This delay formulation is compatible with the FFT implementation of beamforming. 

If focalization is necessary, as the far-field hypothesis does not hold any more, then the exact delay is: 

zeX(u,i) = 
R-JW 

C 

where R is the focalization distance in the steering direction u and 1 1 , 1 1 2  is the Euclidean norm. These delays are heavy to 
compute on line (mainly due to the presence of a square root) and inhibit the implementation of focused beamforming by 
the FFT. 

For these reasons, one tries to approximate the exact delay by a formulation that allows an easy on line computation and 
the FFT implementation. This target is generally achieved thanks to the Fresnel expansion, which results in the following 
approximation [I]  to the exact delay: 

c 2Rc 
The first term of the addition depends on both v, and u, and represents the distance-independent delay equal to that defined 
in (2). The second term takes into account the wave curvature, depends on v, and does not depend on u. Thanks to the 
latter fact, one can show that the FTT implementation of focused beamforming is feasible [4]. 

According to Ziomek [2], there are three necessary conditions that define the validity region of the Fresnel 
approximation. The first imposes a small steering sector, the second condition stipulates the minimum focalization 
distance, and the third establishes the boundary between near-field and far-field regions: 

72'5 $ 5 108' ( 5 )  

where is the angle between u and vi, V is the maximum value of Ilvjl, and h is the wavelength of the carrier. These 
restrictive conditions (in particular, the one that limits the angular extension) are often not satisfied in imaging systems, 
with potential low performances in the lateral regions of images. 

3. Weighting the Fresnel Approximation 
In order to relax the constraint of (5). a possible solution is to weight the terms of the Fresnel approximation by two 
constants, k ,  and k2, computed on the basis of the desired steering region and of a fixed focalization distance. The 
importance of keeping unchanged the two terms of the Fresnel approximation lies in their computational simplicity and in 
the possibility of implementing focused beamforming by the FFT. One can write the novel delay approximation as follows: 



and try to fix the values of the two constants by mlnlmlzlng the sum of the square d~tferences between the delays provlded 
by the approxlmatlon and the exact delays Square errors can be measured over a two-dimens~onal g r ~ d  contalnlng all the 
poss~ble palrs (u, I). Denot~ng by e(u, I) the error between the approximate and exact delays, and by u l ,  u2. . UN the 
steering directions of interest, one can wrlte an overdetermined system of equat~ons by using a matrix tormulatlon 

The system in (9) can be written in a shortened form as: 

where d is the column vector (MN by I )  of the exact delays, k is the column vector (2 by I )  of the unknowns, e is the 
column vector (MN by 1) of the errors, and A is the matrix (MN by 2) containing the two terms of the approximation. 

By using a least-squares inverse [7], AL' (2 by MN), of the matrix A, one can compute a system solution k* that 
minimizes the mean sauare error: 

as follows: 

Once the solution, k*, has been computed off-line, one can begin the focused beamforming operation under the guarantee 
that the approximate delays z,, are optimum in the least-squares sense. One can ver~fy that, ~f one fixes a steering region 
perfectly overlapped with the validity region of the Fresnel approximation, the differences between the least-squares and 
Fresnel approximations are negligible, i.e., k ,  = 1 and k2 = -0.5. 

4. Results for a Planar Array 
The effect~veness of the proposed method has been assessed In the followlng cases equ~spaced h e a r  array (as descr~bed In 
[a]) and equ~spaced square array In the latter case, the steerlng faculty 1s extended to the 3D space, as shown In R g  1 
Therefore, supposing the array to be placed on the plane z = 0 and according to F I ~  I, the steerlng versor u,b can be 
defined as a funct~on of the angles a and j3, the vector v, and the least-squares delay z,, can be wrrtten as follows 

u,p = [s1na,s1np,cosacosj3] 
(13) 

(xi sina + yi sin p) ,xz + y2 
z ~ ~ ( % p i ) =  k~ c +k2- Rc (15) 

where i is an integer included between 1 and M. One can define an angle 0 as the angle between the steering versor and the 
z axis (see Fig. I), as a consequence, the relatron with a and P is: e = arcos[cos~a)cos(~)]. 

To test the accuracy of the delay approxlrnatlon, one can use the total mean square error (I e., MSE = ( ( e ( ( 2 ~ ~  plotted 
versus the focahzat~on distance, the MSE as a function of the steerlng d~rectron (computed at a fixed focallzatlon distance): 
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and the MSE as a function of the array element position (computed at a fixed focalization distance), 
I N  

~ s ~ ( ~ ~ . ~ , ) = ~ ~ e ( u , . i , '  
l=i 

where ul is one of the N steering directions. 

As an example, one can consider an array composed of 11x1 1 3h-spaced elements, working at 500 kHz, with a sound 
speed c = 1500 m/s (i.e., M = 121 and h = 3 mm). Such an array can be employed in a 3D imaging systems working under 
wide-band conditions to avoid grating lobes [9]. A collection of 25x25 steering directions with an angular spacing of 2.8" 
for both a and P has been considered for the computation of ( k , ,  k Z )  From these 625 steering directions, the pairs (a ,  P) 
for which the related 9 is higher than 30" has been disregarded; as a consequence, the final number of considered steering 
directions is N = 357. Finally, a range domain 0.25 m 5 R 1 5  m has been required. The angular extension of this scanning 
region is larger than that of the validity region of the Fresnel approximation (i.e., from (5) one can derive the constraint: 101 
< 18"), whereas the range extension is similar (i.e., the Fresnel approximation is valid for 0.09 m < R < 4.24 m). Figure 2 
shows the computed values of k, (panel a) and k2 (panel b) versus the focalization distance R, and the total MSE (panel c), 
measured in p2, for both the least-squares approximation T ~ ~ .  the Fresnel approximation T~,. and the far-field delay zff' 
Moreover, Fig. 3 compares the MSE(a,P) of the least-squares approximation with that of the Fresnel approximation, after 
fixing P = 0"; Fig. 4 shows the same comparison for the MSE(xi, yi). after fixing yi = 0.045 m. Both errors were computed 
after fixing R = 0.5 m and were measured in ps2. 

Figure 1: Geometry of a square array and related notation. 

5. Discussion and Conclusions 
One can notlce that, for every delay approxlmatlon, the total MSE decreases as the focal~zat~on d~stance Increases 

W~thln the near-field reglon, the proposed approxlmatlon has a total MSE lower than that of the Frewel approxlmatlon 
Moreover, the we~ghts k l  and k2 tend to assume constant values for a focal~zat~on d~stance larger than few meters, so 
excluding the strlct necessity for computing them for each R (In part~cular, k l  tends to be equal to I ,  as In the Fresnel 
approximation). 

Concernrng the MSE versus the steerlng d~rect~on and the array elernent, one can notlce that the proposed 
approxlmatlon has the lowest error for whatever array element, whereas the sltuatlon 1s more complex for the error as a 
funct~on of the steerlng angles In the latter case (see F I ~  3), as P was fixed equal to 0" one can notlce that 9 = a and that 
the error of the Fresnel approxlmatlon Increases w~th la1 and ~ t s  value at the border of the val~dity leglon (I e , MSE(18", 
0')) 1s about 0 006 ps2 (at R = 0 5 m) Desp~te the error of the least-squares approxlmatlon 1s not null tor a = Oo, ~ t s  value 
does not exceed 0.006 p2 over the domaln la1 c 26" Therefore, as w~thln the val~d~ty reglon of the Fresnel approxlmatlon 
the loss of Image quallty IS negl~g~ble, one can deduce that, generally, movtng trom the Fre\nel approxlmatlon to the least- 
squares approxlmatlon, the safe scannlng reglon can be enlarged from 191 < 18' to 191 < 26", w~th a galn factor of about 
1 45. 

By repeating the same reasoning on the errors computed for R # 0 5 rn, the same conclusion (about the potentla1 
enlargement of the scannlng reg~on) will be reached Moreover, ~f a change of the deslred scannlng sector IS performed, 
one can ver~fy that the least-squares approxlmatlon provldes a sort of comprom~se between the approxlmatlon preclslon 
and the extension of the deslred scannlng reglon 



Figure 2: Behaviours of the weights k, (a) and k2 (b) of the least-squares approximation versus the focal~zation distance R 
in rn. (c)  Total MSE in ps2 versus R for the least-squares approximation (solid line), the Fresnel approxirnatlon (dashed 

I~ne), and the far-field hypothesis (dotted h e ) .  
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. . 

alpha [deg] 
Figure 3: Behaviours of MSE(a, P) versus a, after fixing P = 0°, computed at R = 0.5 m and measured in ks2, for the least- 

squares approximation (solid line) and the Fresnel approximation (dashed line). 
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Figure 4: Behaviours of MSE(xi, yi) versus xi, after fixing yi = 0.045 m, computed at R = 0.5 m and measured in p2, for the 
least-squares approximation (solid line) and the Fresnel approximation (dashed line). 

Finally, concerning the FFT implementation of focused beamforming, one can verify that for a large set of focalization 
distances, the value of k, can be set equal to 1 ,  without a notable loss of precinon. Then, the equations that l ~ n k  the spatial 
frequencies of the FFT to the steering angles can hold their conventional form [4][10]. Instead, ~f k ,  # 1, such equations 
should be slightly updated by an adequate scaling factor. 

In conclusion, an approximation for the delays required by focused beamformlng has been proposed that minlmlzes the 
MSE computed over the scanning region of interest. The minimization has been obtained by weight~ng the terms of the 
conventional Fresnel approximation through a least-squares solution of an overdetermined equation system. In general, one 
can observe that, if the desired scanning region is not too extended, the least-squares approximation yields an acceptable 
precision for many practical operations. At the same time, thanks to the similarity of the proposed approximation to the 
Fresnel one, the computational load and the system complexity do not notably increase, and the opportunity of 
implementing focused beamforming via the FFT can be easily kept. The application of such an approx~mation to a planar 
array has been analysed and the advantages have been described. 
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