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Abstract 

This paper focuses on the characterzzation of seabed vegetation, an tntereytrng problem in a lot of 
Mediterranean sea coastal sites since water quality and pollution degree can be efficc~ciously solved by 
investigating the sea flora extents. The acquisition of the data about marine vegetation is accomplished by 
using a high frequency imaging sonar scanning the seabed. The proposed approach is based on a statistical 
feature-based description of the raw sonar data. A simple classifier attempts f o  characterize the acquired 
samples. 

1. Introduction 

1.1 The Shallow Water Surveying 
The character~zat~on of the sea bottom from acoustlc data is an Important problem w ~ t h  many appl~ca t~ons  In 
geophysics, biology, oceanography, geology and se~smology. Acoust~c character~zat~on 1s made poss~ble slnce 
the sea bottom material composltlon (e~ther In or out of the bottom ~tse l t ,  e g sed~ments and vegetatlon) 
supports the excltatlon and propagation of acoustlc waves [ I ] .  

Acoustic waves (or plngs) energy lmplnges the sea floor (or whatever mater~al lying between the transmlttlng 
device and the sea floor) and ~t is scattered In all dlrect~ons by all the Interfaces between two med~ums In 
general, echoes from the Interface between the water and the sea bottom, from the volume ot the sea bottom and 
from the volume lylng close to  the bottom can be detected In the scattered s ~ g n a l  [2][3] Retlect~ons due to 
particular interfaces can be In some way emphasized, desp~te  of other interface contrlbut~ons, by uslng particular 
range of frequencies. For example, In order to Investigate the subbottom geological composltlon, low 
frequencies must be used (i.e , 100 Hz - 10 KHz), w h ~ l e  high frequenc~es must be employed ( I  e., 70 KHz - 2 
MHz) in order to detect fish-bank. 

Then, the returned echo pulses carry the information about the seabed characteristics from which the pulses 
have been reflected: for this reason, by analyzing the scattered intensity, it is feasible to develop appropriate 
techniques in order to extract measures from the echo signals and to detect and classify different areas 
responsible of scattering. 

1.2 Posidonia Oceanica 
The survey of the seabed 1s comlng more and more important in several coastal sltes slnce marlne vegetatlon 
makes up a natural and specially meaningful sea state of health gauge [4] Several specles ot plants and algae, 
each w ~ t h  d~fferent  b~ologlcal and morphological characterlstlcs, populate the seabed In t h ~ s  work, attention IS  
focused on the endem~c Phanerogam Pos~doma Ocean~ca whlch extents along the French and L~gurlan coasts and 
In several other Med~terranean sea continental shelf sltes, play~ng a lead~ng role In the global Med~terranean 
coastal ecosystem. T h ~ s  marine plant forms underwater meadows In httoral areas creatlng an irreplaceable 
environment for several flsh specles, marlne mammals and other species of plants and algae [5] Moreover, 
Posidonla Oceanlca leaves contributes to llmit the energy of the sea swells and current, and create natural 
barriers, thus strongly reduclng the coastal eroslon, Furthermore, through the photosynthes~s process, ~ t s  
meadows produce b ~ g  amounts of oxygen, belng really a green lung for the submersed world Unfortunately, 
Posidonia Oceanica 1s very sensi t~ve to both natural (temperature rlse, tu rb~d water, strong competltlon w ~ t h  
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algae [6], etc.) and man-made changes (dikes, excavation, discharge of sewage and industrial waste, trawling): 
these factors often give rise to regression or quite disappearance of Posidonia beds. Nowadays, the survival of 
this plant depends not only on the pollution agents (chemical, biological, and physical) but also on the 
competitive growth of other species such as the tropical green alga Caulerpa Taxifolia. Therefore, the analysis 
of marine vegetation, and especially of this plant, assumes a scientific interest and also a prclctical importance to 
preserve the coastal water delicate ecosystems. 

Posidonia Oceanica typically shows a great extent within a deep gradient from I to about 40 meters. It is 
organized in roots, a stem termed rhizome, and leaves (Fig. I). The rhizomes can develop horizontally and 
vertically and act as  anchors for the plant to the substrates by means of the roots in the lower part. The bright 
green leaves grow from the vertical rhizomes and are ribbon-like with rounded apices. They have a mean width 
of 1 centimeter and can be up to 1.5 meter long. Plants are arranged in six or seven number groups, organized in 
a fan-like structure. Older plant leaves, of greater length, are on the outside of the plant, whereas the smaller, 
younger leaves are on the inside of the sheaf-like arrangement. Posidonia leaves grow extremely slowly, up to 
10 centimeters per year at the most, hence existing Posidonia meadows maintenance is essential. 

F~gure  1 :  (a) Dense Pos~donia Ocean~ca meadow; (b) draw~ng of the plant 

1.3 The  Acoustic Survey 
The only means to czrefully analyse such small targets as represented by plant leaves consists in a high 
resolution acquisition of measures near to the seabed, and this operation can be performed by a high frecluency 
acoustic device able to detect the response of low strength plant reflections and to perform a dense and accurate 
sampling of the sea bottom where the plants live. 

Sector-scanning sonars carried by autonomous [7] or remotely operated vehicles are usually considered as 
one of th'e most efficient methods for object detection, identification and recognition in marine environment, 
where optical visibility is often limited and underwater cameras cannot be employed even at low ranges [8][9]. 
They generally provide noisy 2D range-vs.-bearing images of the insonified 3D scenes. The signals received by 
the sonar transducer are related to the insonified objects surfaces presented to the sonar head: hence. sonar 
acquisitions supply a distorted representation on a 2D space of the volunie under inspection. Moreover, 
troublesome effects, such as clutter between the seabed and the surface, noise, reverberation and multipath, are 
generally present in sonar images, making them difficult to interpret [10]. 

If the purpose of our research had simply been the detection of vegetation presence, a side-scan sonar could 
hsve been sufficient [ I  I]. In side-scan sonar images, vegetation is often I-ecognizable by Inrge dark areas, and 
meadows upper and lower limits are easily detectable. But, by using this type of sensors, only the detection and 
sometimes a macro-characterization is possible since spatial resolution is generally very poor 1121. Instead, our 
target is somehow more complex and ambitious, being to detect marine plants and trying to characterize them by 
'supplying both quantitative and qualitative characteristics. Hence a high resolution survey is necessary. It is 
accomplished by a mechanically scanned, 2 MHz narrow pencil beam monostatic sonar, scanning a vertical 
sector towards the sea bottom: this sensor is used for insonifying the seabed, acquiring the backscattered signals 
and for the imaging process. The high frequency acoustic device assures a suitable resolution capability and a 
high sensitivity to low strength targets present upon the sea bottom. 



2. The Technical Approach 

2.1 Methodology 
An autonomous or a remotely operated vehicle carrying the sonar head navigates at a very low speed with an 
almost constant distance from the sea bottom: while traveling, the head rotates around its axis of a variable 
sector, thus acquiring data about a strip-like area of the seabed. Hence, data referring to a strip-like area can be 
acquired and stored on the vehicle on-board digital memory or on a remote computer connected to the sonar by a 
standard serial link. The received echoes can be considered either as a sequence of raw scanline signals and 
processed in a one-dimensional space, or as correlated series of scanlines. In this second instance, a kind of 
image can be generated by placing side by side the sequence of scanlines. 

The vegetation analysis is considered as a problem of pattern recognition 1131 by using a statistical classifier. 
The basic concept at the basis of every classification sonar-based system is that the backscattered signals are in 
some way highly correlated with the characteristics of the area or the volume which return the signals. 
Therefore, the received echoes can be processed in order to extract significant features [ 14][15] and to identify 
different seabed areas in terms of vegetation presence and characteristics. The high frequency employed in our 
survey does not let penetration of the sonar signal in the subbottom, while allowing the backscattered echoes to 
be essentially referred to the low-strength vegetation leaves and to the water-bottom interface. This 
consideration shows the effectiveness of the chosen acoustic sensor. 

2.2 Data Acquisition 
A Tritech ST2000 2 MHz narrow pencil beam sonar, scanning a vertical sector towards the sea bottom was 
employed for the data collection. The sonar measurements result from the combination of a sequence of 
individual measurements made while it sweeps its nominal sensor axis through a defined sector spanning an area 
of interest. The sensor can generate scans containing 800 individual measurements at equally spaced intervals of 
0.45" over a full 360" panorama. The sonar operates by transmitting an outgoing pulse (i.e.. ping) of duration 
depending on the range of the target to be insonified, by listening the received signal up to the time 
corresponding to the selected range, and finally, by reorienting the transducer for the next ping cycle. 

In order to better visualize the acquired data, the image of the observed underwater scene is build by placing 
side by side, in a vertical arrangement, each received scanline without any kind of pre-processing or 
compensation operation. The raw sonar signal can be mapped into a 8-bit image with standard range 0-255 
corresponding to the head dynamic range 0 4 0  dB. 

Figure 2 shows a sonar image acquired in a laboratory acoustical tank at 1 meter distance from the bottom. 
All the images presented in this paper were acquired in a tank where both real Posidonia Oceanica and flat plant 
leaves were fixed over a synthetic lawn, while the sonar scans variable sectors always at the best angular (0.45") 
and spatial (1 sample every 6.4 ps in time, 4.8 mm in range) resolution. Low contrast and a preferred vertical 
direction are relevant factors that must be taken into account for the selection of suitable processing algorithms. 

Figure 2: Sonar image of real plant leaves on a nearly flat bottom. 

Vertical and horizontal resolutions are not a-priori fixed and this kind of image representation is effective 
only when a sufficiently high spatial resolution on the sea bottom really exists. The vertical resolution is 
influenced by the transmitted pulse length and the ratio between the selected range and the number of acquired 
samples: by sampling the backscattered echoes at the highest possible rate, a nominal range resolution of 4.8 
mm is assured. However, the AD converter inside the sonar head can handle only 1500 samples per each 
scanline at the most and this characteristic involve a limitation about the maximum available range in order to 
maintain the best resolution. This limit is fixed at about 7 meters from the targets. But, the highest is the number 
of acquired samples and the vertical resolution, the longer is the time spent to acquire the scanline data and the 
worst is the horizontal resolution on the bottom, since while the head keeps silent to transfer the backscattered 
echoes to the processing unit, the vehicle moves forward along its path. The result is an image in which each 
columns is poorly related to its adjacent ones. Therefore, a balance between the desired vertical resolution and 
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the sampling interval on the seabed has to be reached, otherwise only n ID ana ly \~ \  can be carried out. 

2.3 Data Preprocessing 
Before analyz~ng the acqu~red s~gnals  to extract features and to 'Ittempt the \eabed c l a s s ~ t ~ c a t ~ o n ,  a 
preprocesslng phase IS appl~ed  In the 2D doma~n by using essent~ally lmdge ploce\\lng algo!~thm\ They aim at 
f i l ter~ng the rece~ved nolsy s~gnals  and at focuslng the attent~on on \~gn~tlc'lnt p x t \  ot edch scanl~ne,  that 
correspond at ~ s o l a t ~ n g  lnterestlng areas w~thln the correspond~ng image Thl\ 9econcl oblect~ve I \  part~cularly 
Important slnce most of the feature extraction algor~thms to be \ucceas~vely appl~ed,  'ire tllne Lonsumlng and 
great Improvement In computat~onal burden can be drawn by cons~der~ng a \mall p o ~ t ~ o n  ot the s~gn'll Instead ot 
~ t s  wholeness 

The first operation appl~ed  to the raw scanl~ne s~gnals  I S  a compen\dtlon to1 the loc,d bottom \lope the 
~nformat~on about the d~stance between the acoustlc recelver and the bottom I \  \uppo\ed 'I\ ,I known var~able. 
b e ~ n g  e ~ t h e r  dlrectly measurable from the raw data ( ~ f  the acoustlc pul\e 1s not dbborbed by the overhang~np 
plant leaves) or prov~ded by an external sensor such as an ecosounder 

Image processing technrques bas~cally cons~st  In a comb~nat~on  ot non-l~near [ 161 and Inolpholog~cal t~ l te rs  
[I71 F ~ g u r e  3 shows an acqulred sonar Image and the result obta~ned at the end ot the preploce\slng phase The 
bottom lower l ~ m ~ t  and the upper bound of targets are clearly obsetvable 

Figure 3: (a) An original sonar image and (b) the focused sonar image as it appears after the image 
preprocessing. 

2.4 Feature Extraction 
The first step of the proposed statistical classification consists in the extraction of feature vectors from the 
acquired and preprocessed data. This is a fundamental operation since only by considering features suitable for 
separation of different vegetation types, the successive classification phase can guarantee satisfying 
performances. In fact, the classifier's capability to discriminate between different information classes relies on 
how well the different classes are separated in the feature space [13]. 

We have d~rect ly access to the sampled backscattered data, hence methods examlnlnp echoes shape and 
strength appears su~table.  Thus, several features based on backscattered \trength, texture content and bcanl~ne 
shape analys~s are extracted on the barn of the ment~oned 2D representat~on Each feature 15 ext~acted from the 
selected part of the o r ~ g ~ n a l  scanllne s~gnal  tnls corresponds to compute the texture value only w ~ t h ~ n  the 
port~on of the s ~ g n a l  that was preserved durlng the Image preprocesslng Th15 techn~que allows to  educe the 
requ~red operations by savlng tlme. 

The following features were extracted from the focused data: mean value, standard dev~ation, mean 
deviation, skewness, kurtosis, distance between the bottom and the upper bound of the plants, number of maxima 
and minima of the signal, and several quantiles (from 0.1 up to 0.9) [14]. 

Most of the above mentioned features are related to the distribution of a random variable. Especially the 
quantiles can be useful to describe a distribution, being the pth quantile of a set of values defined as the mean 
value Q, of the subset {xi )  of values satisfying the following condition P(x, < Q,,) 51, and P ( x ,  2 Q,,) I I - p .  

Moreover, also the texture content was quantified in terms of energy, entropy, contrast and homogeneity, by 
supposing that variations in acoustic reflectivity may correspond to different structures (i.e., plant types) present 



over the seabed Texture features were calculated by d e f ~ n ~ n g  the pray-level \patla1 co-occurrence matrlx 
(GLCM) for small strlp-like subsets of the whole Image compo\ed by 10, 15, and 20 successlve plngs 
(correspondlng to angular sectors 4.5O, 6 75O, and 9.0" w ~ d e )  The GLCM I \  ,I \ymmetrlc matrlx of relat~ve 
frequencies P,, w ~ t h  whlch two nelghbor~ng plxels separated by a f ~ x e d  d~\ tance  t l  along '1 fixed d l ~ e c t ~ o n  B occur 
In the Image, one with gray level i and the other wlth gray level J W ~ t h ~ n  the de t~ned  are& \everal tests of the 
dlstance parameter value d were performed for all the four p r ~ n c ~ p a l  d ~ r e c t ~ o n  0 (0°, 45". 90". 1 '+So) 

F ~ g u r e  4 shows four d~fferent normallzed tralnlng teatures (standard d e v ~ a t ~ o n ,  skewnes\, lower and upper 
quart~les) der~ved  from the Images above correspond~ng to the three cla\\e\ t o  be tdentltled \eabed w~thout  any 
plant (left), and bottom w ~ t h  dense (center) and sparse (r~ght)  vegetation meadow\ 

Flgure 4. Some normalized feature values related to the correspond~ng scanl~nes trom wh~ch they were 
extracted. 

By carefully analyz~ng the plots conta~ned In f~gure  4, ~t IS ev~dent  how not even the most s ~ g n ~ t ~ c a n t  features 
are able to powerfully d~scr~mlna te  between d~fterent  plant types slnce a lowel d~tfelentlatlon I S  already present 
for dense and sparse plant arrangements. 

About 78 features were extracted from the tralnlng data set (X) organized lnto a MxN matrlx, belng M=78 the 
d~mensional~ty of the feature space and N=20000 the number of tralnlng scanl~nes, qulte equally d ~ v ~ d e d  lnto the 
three classes. bottom, sparse Pos~donla leaves and dense flat plant leaves The teature space dlmenslon IS surely 
too large to be envisaged, givlng rise to ~nsurmountable computational and vlsual~zat~on dlftlcult~es. 
Furthermore, only a f ~ n l t e  amount of ~ n f o r ~ n a t ~ o n  1s contained In the data, hence, many features are llkely to 
contr~bute no useful ~nformat~on,  b e ~ n g  nolse sensltlve, redundant or ~ntr lns~cally not \ ~ g n ~ t l c a n t  
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These are the main reasons to perform a feature space reduction consisting in mapping the full feature vector 
to a reduced feature vector with a very small dimension. This operation is performed by a principal component 
analysis (PCA) [18]. The statistics of the data are analyzed to determine a set of orthogonal axes in feature 
space along which the data varies at the most. Data principal components (PCs) are obtained by an eigen 
analysis of the data covariance matrix: the obtained eigenvectors provide the directions in which the data 
arrangement in the feature space is stretched most. Projections of data on the eigenvectors e,  ( i= 1 ,  2, ..., M) are 
the PCs. The corresponding eigenvalues A, give an indication of the amount of information the respective PCs 
represent: PCs corresponding to large eigenvalues represent much intormatron In the data set and must be 
preserved, while other PCs may be d~scarded carrying much less ~nfo~mat ion  

Table 1 shows the ergenvalues, the amount of variance associated to each e~genvalue 'tnd the cumulatrve 
variance: the corresponding first 7 ( P = 7 < M )  elgenvectors account for about 89.3 '% of the total varlance from 
the data set with 78 features. Hence, by reduclng the or~ginal data set from 78 features down to only 7 vectors, 
there has only been a loss of 10.7 % of the total variance. 

Table 1:  Eigenvalues amount of variance. 

i 

hi 

Var.0: 

Cum. 
Var. 

PCA provides with a set of reduced feature vectors containing most of the covariance energy. Since the 
covariance within the same class is expected to be less than the covariance between different classes, the 
reduced feature vectors should be clustered around location corresponding to a class in the reduced feature 
space. 

The clustering method is a k-means algorithm based on the minimization of a performance index which is 
defined as the sum of the squared distance from all the points in a cluster domain to the cluster center [13]. This 
method is extremely simple but it is not a refined technique, since it is necessary to specify the desired number 
of clusters and it is sensitive to the choice of initial cluster centers and to the order of the training samples. 

Figure 5 shows two views of the three clusters as obtained after several tests with different initial cluster 
centers by considering only the first three eigenvalues (corresponding to the 75.32 '% of the total variance): a 
really good separation between the classes cannot be observed. 

1 2 3 4 5 6 7 8 9 10 1 1  12 13 14 IS- 
78 

0.95 0.41 0.18 0.11 0.06 0.05 0.04 0.02 0.01 0.01 0.01 0.01 0.01 0.01 - 

3 5 4 7 9 6 4 2 9 7 5 4 2 1  
46.2 20.1 8.94 5.70 3.36 2.76 2.18 1.09 0.94 0.86 0.73 0.71 I 5 9  0.55 - 

4 4 
46.2 66.3 75.3 81.0 84.3 87.1 89.3 90.4 91.3 92.2 92.9 93.6 94.2 94.7 100. 

4 8 2 2 8 4 2 1 5 1 4 5 4 9 0  

-.. rlgure 5: Two views of the clustering of the reduced feature vectors with the first three principal components. 

2.5 Classification 
In the presented application, classification consists in labeling each new ping (i.e., each column in the image 
domain) in view of its characteristics as individuated through its feature values to a pre-defined class, being the 
employed method a supervised classifier. 

Three classrf~catron stages, wrth lncreaslng order of complex~ty, can be detlned the t ~ r s t  consrsts In the 
decls~on about the presence or the absence of vegetation on the seabed, the second concerns the r d e n t ~ f ~ c a t ~ o n  of 
dense or sparse plants on different bottom substrates, and the t h ~ r d ,  a c ~ o ~ d i n g  to the d e s c r ~ p t ~ v e  power of the 



acquired data, relates to a more precise ,e.g., by distinguishing between Posidonia Ocennica and Caulerpa 
Taxifolia plants. Currently available results refer to the first two classificiltion stages. 

Moreover, two different levels of information can be associated to these three classification stages: the first 
and the second steps may supply with a quantitative information while the last classification result may provide 
a qualitative description of the surveyed area. 

The employed classifier is the k-Nearest Neighbor (k-NN) classifier: it is a traditional non-parametric 
algorithm related to the Bayes decision rule: the mos: frequently represented class label among the k nearest 
training samples to the current samples x under examination is assigned to .r. The vote is based on the Euclidean 
distance between the samples. 

It is really impossible to provide precise performances for the classification algorithm on a ping-by-ping 
basis. Nevertheless, is it feasible to visually compare each acquired series of scanlines with the corresponding 
labels, by superimposing the labels on the scanlines image (Fig. 6). 

Figure 6: Classification results limited to the discrimination about sparse or dense settlements for a test 
sequence. 

50 

3. Conclusions and Future Perspectives 
In this paper we investigated a system aiming at characterizing marine vegetation on the seabed by means of a 
high frequency imaging sonar. The problem is considered as a pattern recognition application, hence, aquatic 
plants are characterized by extracting meaningful features based on signal shape, intensity and texture content 
from the acquired echoes. 
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Data about real Posidonia and common flat plant leaves were collected in a controlled environment and then 
used as training input to the developed system. Acquired data were organized as images and image processing 
techniques were employed for the first analysis phase consisting in the detection of plants upon the simulated 
sea bottom. The characterization process performed only on the meaningful portions of the acquired data series 
was detailed together with the feature selection methodology. A simple k-NN classifier was tested. 

Upper level: dense plant arrangements 
Middle level: sea bottom without any 
plant. 
Lower level: sparse plant arrangements. 

Preliminary results shown in the paper demonstrate the effectiveness of the selected approach for what 
concern the possibility of investigating marine vegetation with a high frequency sonar. Both the resolution of the 
analysis and the performances of the preliminary characterization final stage are in accordance with the desired 
and expected results. Good performances may be obtained if only a quantitative description of the data is 
requested: plant detection behaves satisfactory in almost all the acquired samples without being heavily 
infiuenced by changes of the acquisition parameters and discrimination about sparse and dense plant settlements 
is equally satisfactory. 

However, system performances make worse with respect to the increasing desired qualitative description 
degree: different plant types classification strongly depend on several factors especially due to the random plant 
arrangement and to the poor information contained in the backscattered data. Hence, for a more accurate and 
robust characterization in terms of distinction of different plant species, further research is required. Some 
changes in the sonar head characteristics parameters (i.e., transmission pulse duration, and head sensitivity) are 
necessary in order to increase the spatial resolution within each scanline, thus by detecting ~norphological 
differences between different plant types. Moreover, an intensive experimental activity at sea is going to be 
carried out along the Ligurian coast to collect more data about Posidonia Oceanica meadows. 
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