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A plane-wave decomposition method for modeling scattering 
from objects and bathymetry in a waveguide 

John A. Fawcett 

Executive Summary: A better understanding of how energy is scattered in the 
ocean will lead to a significant improvement in our ability to detect and classify 
scattering objects such as mines. The energy incident upon and scattered from an 
object will also interact with the sea surface and sea bottom and hence, i t  is 
important to include the effects of the oceanic boundaries in the scattering model. 
This memorandum describes a computational approach which allows the scattering 
characteristics of surfaces and objects to be computed independently and then 
combined in a straightforward fashion to yield the scattered pressure for a given 
source/receiver geometry. This method provides a flexible, modular approach to 
solving scattering problems in oceanic waveguides. The numerical examples 
presented are for a scattering object located in the water, but the theory can be easily 
modified for the case of, for example, a buried mine. 

This memorandum describes the theory and computer implementation of an 
objectfsurface scattering model. Computational results of low frequency scattering 
from a cylinder are presented. The cases of the cylinder in a waveguide with a flat and 
with a sloping bottom are considered. For some of the examples, it is also possible 
to compute the solutions using other, standard techniques. In these cases, the 
agreement between the method of this memorandum and the other methods is 
excellent, thus validating our technique. In the future, we hope to utilize the concepts 
of this paper to investigate other scattering problems of interest such as scattering 
from a buried cylinder below a rough interface. 

..- 
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A plane-wave decomposition method for modeling scattering 
from objects and bathymetry in a waveguide 

John A. Fawcett 

Abstract: In this paper a straightforward plane-wave decomposition method which 
can be used for solving object andlor interface scattering problems in a waveguide is 
described. The method utilizes the free-space scattering matrix of an object in 
conjunction with the medium's interface and layer matrices in order to solve the 
waveguide scattering problem. 
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A plane-wave decomposition method for modeling scattering 
from objects and bathymetry in a waveguide 

John A. Fawcett 
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In this paper a straightforward plane-wave decomposition method which can be used for solving 
object and/or interface scattering problems in a waveguide is described. The method utilizes the 
free-space scattering matrix of an object in conjunction with the medium's interface and layer 
matrices in order to solve the waveguide scattering problem. O 1996 Acoustical Society of 
America. 

PACS numbers: 43.30.Dr, 43.30.Gv, 43.20.M~ [JHM] 

INTRODUCTION 

There has been much interest over the last several years 
in modeling the wave field scattered by compact objects 
and/or bathymetry in a geoacoustic waveguide. The ap- 
proaches to this problem have been many and varied. One 
approach, which is appropriate for both bathymetric and ob- 
ject scattering problems, is to use boundary integral equation 
methods (BIEM)'-2 with the waveguide's Green's function. 
Using this Green's function rather than, for example, a free- 
space Green's function means that the integral equation(s) 
for the unknown field quantities can be reduced to just the 
surface of the scattering object or a compact area of nonflat 
bathymetry. The disadvantage of this approach is that for 
general stratified, elastic media the computation of the re- 
quired Green's function for the kernel of the integral equa- 
tion(~) can become quite time consuming. 

Other authors have considered the scattering problem for 
objects in a waveguide as essentially a free-space problem 
and have then modified the T-matrix technique to account for 
the wave field interactions with the waveguide 

Besides integral equation methods of solution, 
finite differen~e,~ finite element? and coupled mode8 meth- 
ods can be employed to solve waveguide scattering prob- 
lems. The first two methods have the advantage that they can 
handle very general range-dependent problems; they have 
the disadvantage that the numerical grids become very large 
for many problems of interest. Coupled mode methods are a 
promising approach to waveguide scattering problems. How- 
ever, when the waveguide is deep or the frequency high, the 
required number of modes and the amount of computation 
for this method becomes large. Recently, though, ICnobles9 
has proposed a technique which may partially alleviate this 
problem. 

In Ref. 10 a matched asymptotic solution method is pre- 
sented which uses a parabolic equation method to describe 
the incident and scattered fields in the region away from the 
scatterer. An inner asymptotic solution is computed near the 
scatterer. Other techniques of solution have been discussed 
(e.g., Refs. 11 and 12) in which the incident field and the 
scattered field away from the scatterer is taken to be modal in 
nature but free-space T-matrix techniques are used to com- 
pute the scattered field close to the object. Parabolic equation 

methods which internally model the effects of scattering 
have also been implemented (e.g., Ref. 13). 

In this paper we discuss a method which is based upon 
the work of  enn nett,'^ ~ohketsu," and Kennett et a1.16 on 
generalized reflection operators for laterally varying media. 
Frazer and M C C O ~ ' ~  have utilized the concepts of invariant 
embedding to model laterally varying media using pseudod- 
ifferential operators. Our approach is also similar in spirit to 
that of Schuster and smith.18 The exact T-matrix work of 
Refs. 3-5 also uses the idea of reflection and transition ma- 
trices in order to incorporate the effects of surrounding 
boundaries. Thus it is also related to the present work. We 
feel that the power of the approach outlined in this paper lies 
in its modular, flexible approach to possibly complicated 
scattering problems. Objects and interfaces are characterized 
by scattering matrices which are determined individually and 
by any means which the user feels is appropriate. Using the 
methodology outlined in this paper, it is then possible to 
combine these matrices in a straightforward fashion to com- 
pute the overall waveguidelobject scattering response. The 
accurate determination of the individual scattering matrices 
may be nontrivial and is, of course, fundamental to the ac- 
curacy of the overall waveguide scattering problem. How- 
ever, the formulae described in Sec. I for the combination of 
these matrices do not depend upon the methods used for their 
computation. 

In the numerical examples at the end of the paper, we 
use the methodology of this paper to compute the pressure 
field scattered by a cylinder in a waveguide. We then give an 
example of the flexibility of the method by using the meth- 
od's formalism to approximately solve wave propagation in 
a wedge-shaped (the ASA benchmark wedgeI9) waveguide. 
Finally, combining the scattering matrices for the wedge- 
shaped waveguide and the cylinder, it is straightforward to 
compute the scattering from a cylinder in a wedge-shaped 
waveguide. These particular examples were chosen because 
the scattering matrices for the cylinder and for the wedge 
waveguide can be determined semianalytically. However, it 
is important to note that the same methodology used in these 
examples can be applied to any object(s) and/or interface(s) 
for which the scattering matrix can be determined analyti- 
cally, numerically (perhaps by using BIEM or T-matrix 
methods), by approximations (e.g., ~ i r cho f f~ '  small-slope 
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approximation2'), by direct measurements or by any other 
means. The problems solved in the numerical examples, al- 
though interesting in themselves, are meant only as a simple 
illustration of the method's applicability. 

I. THEORY 

The approach we take in this paper is motivated by the 
fact that in a stratified waveguide the acoustic or elastic fields 
in homogeneous layers are naturally and simply described in 
terms of up- and downgoing plane waves. If we allow some 
layers to contain objects or nonflat interfaces, then the fields 
within these layers may no longer be simply described in 
terms of up- and downgoing waves. However, if the vertical 
extent to the layer is larger than the extent of the object itself, 
then at the bottom and top of the layer the field can be simply 
split into up- and downgoing plane-wave components. Thus 
this layer can still be characterized in terms of the object 
scattering of an incident plane-wave (from above or below) 
into up- and downgoing components. In such a manner, a 
fairly general waveguide can be characterized by scattering 
operators describing the layering of the medium, objects, and 
nonflat interfaces. The approach we take for building up the 
overall waveguide scattering solution follows the invariant 
embedding approach used by e en nett" in his work on 
propagation in stratified media. This is a method by which 
one recursively builds up the plane-wave scattering response 
of a composite medium. For example, suppose we have com- 
puted the response of a half-space (perhaps, layered) to 
downgoing incident plane waves. We now ask: what is the 
response of a medium consisting of the half-space with an 
additional object above it? We can build up the new scatter- 
ing solution in terms of object and objectlhalf-space interac- 
tions. For a downward incident wave, the object, in general, 
scatters a continuum of upgoing waves. It also scatters a 
continuum of downgoing waves, which then interact with the 
lower half-space. However, the response of the half-space to 
these waves is already known. Some energy is then reflected 
back toward object where it interacts and is rescattered into 
upgoing and downgoing components. Thus there is a se- 
quence of objectlhalf-space interactions, all of which can be 
computed in terms of the object's scattering operator and the 
half-space scattering operator which is assumed to have been 
computed. In practice, it may be that only a few of the mul- 
tiple interactions are needed for the accurate computation of 
the new system scattering operator. However, as is discussed 
below, we can, in fact, analytically sum this operator series. 
Once the new scattering operator has been computed for in- 
cident plane waves, one can add a new object, interface, etc., 
to the problem and repeat the process, recursively computing 
the waveguide plane-wave response. 

Let us now consider a waveguide with an upper inter- 
face at z  = Z A  and a lower interface at z  = z ,  (see Fig. 1).  For 
simplicity, we take the medium to be homogeneous with 
sound speed c and unit density. A scattering object is located 
within the waveguide and the origin of the coordinate system 
is taken within the object. Conceptually, it is easiest to con- 
sider the waveguide divided into three layers; a layer above 
the scatterer, a layer containing the scattering object and a 
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FIG. 1.  Schematic drawing of a simple waveguide with a scattering object. 

layer below. Within these layers, the wave fields consist of 
up- and downgoing waves. For example, in the upper layer 
we can write for the upgoing wave field, 

= I ce ikx  sin deitz cos 4 a + ( 4 ) d 4  

and for the downgoing wave field, 

- = I C e i k x  sin me - ikz cos q5 a - ( 9 ) d d 9  

where a + and a - are the coefficients of the up- and down- 
going plane-wave components. In these equations k= o / c ,  4 
represents an angle of incidence measured off the vertical 
axis [mathematically, @tan-' (kxllk,l) where kx ,kz are the 
horizontal and vertical wave numbers of the plane-wave 
components] and C is a possible contour in the complex-k 
plane which can be used for the plane-wave representation of 
the Hankel function (see Fig. 2 for a schematic of a possible 
contour). Another possible parametrization of the integrals of 
Eqs. (1) and (2) would be in terms of k,=k sin 9 .  

We now follow the work of Kennett for stratified 
media22 and previously mentioned authors14-l6 for laterally 
inhomogeneous media. At the top surface of the waveguide, 
z  = zA  , the up- and downgoing waves are related by the gen- 
eralized scattering operator SA . The phase advancement of 

FIG. 2. Complex q5 plane with a possible integration contour. 
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the wave components from z, to zA and back again are also 
included in this operator. We use the notation that the super- 
script + refers to an upward propagating wave and the su- 
perscript -, a downward propagating wave. For a flat pres- 
sure release surface, this operator is diagonal (due to the fact 
that the interface is flat) and has entries -exp(2ik cos 4Azl). 
We define an operator RdU which expresses the reflection of 
waves incident upon the scatterer from above with reference 
to z = z,  , and an operator Tdd which expresses the transmis- 
sion of waves from z = z1  to z = z2; similarly there are the 
operators RUd and TuU for the wave field in the bottom layer 
incident upon the object. There is also a scattering operator 
for the bottom boundary, S,. For a flat surface this is a 
diagonal operator with elements R(4)exp(2ik cos 4Az2), 
where R(4)  is the reflection coefficient for the interface. 

For simplicity, let us first consider the case of no upper 
boundary and consider the amplitudes of the plane-wave 
components of the incident field to be specified by the func- 
tions p+(4) and p-(+), respectively. We have used vector 
notation here, because we will later consider a discrete set of 
angular values. In this case, functions of angle will become 
vectors and operators, matrices. In the following analysis we 
will consider the source to be above the scatterer and the 
receiver above the source. Using the logic outlined below, it 
is straightforward to derive the operator expressions for the 
other possible source/scatterer/receiver geometries. The co- 
efficients of the wave numbers (all upgoing for the layer 
above the source) in the upper layer is given by 

The operator Q accounts for the scattering of the downward 
incident field by the object and the interactions of the scat- 
terer and the bottom boundary. Writing these interactions out 
in systematic order, it can be seen that the operator Q is 
given by 

In order to derive Eq. (4b) we have used the operator identity 

We have derived the above expressions assuming an infinite 
lower half-space. However, the lower interface operator S, 
can easily be the reflection operator for a lower half-space 
with layers. In this case, the computation of S, can be done 
using an approach similar to that described above; the overall 
scattering operator for the composite half-space is con- 
structed recursively from the scattering operators of the un- 
derlying layers. 

We now introduce an upper surface to the waveguide. 
We write 

and 

P ~ = S A P +  + S ~ Q 2 ( ~ - + S ~ ~ + ) .  
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For the receiver below the source, we can write 

and 

The quantity p- +SAp+ is the effective field incident 
upon the scattering region from above. The operator Q2 re- 
lates the upgoing energy from the scatterer to the initial 
downgoing energy and is the result of multiple interactions 
between the operator Q and the top surface operator SA , 

The downgoing components of Eq. (6b) are simply related to 
the upgoing components of Eq. (6a) by an additional surface 
reflection. The expressions of Eqs. (6c) and (6d) differ from 
those of Eqs. (6a) and (6b) only by the expression for the 
incident field. 

For a source above the scatterer and the region below 
the scatterer we can derive the relations 

pf: = Tddp: 

and 
u d - 1  B p;=(1-SBR S B P ~ ?  

where the superscript B denotes below the scattering region 
and U refers to the upper region components determined by 
Eq. (6). 

Once the functions p, and pd (either above or below 
scattering region) have been computed with respect to some 
horizontal line (usually, z=0) then the pressure field can be 
computed at a receiver location (x, ,z,) using the formula 

+ fceikrr sin 4 e - i h r  cos + Pd( 4 ) d 4 .  

For points which are not above or below the vertical extent 
of the scatterer, the simple up and downgoing plane-wave 
representation may not be valid. If it is desired to compute 
the field within the vertical extent of the scatterer, then it 
may be necessary to use another representation of the scat- 
tered field. This representation will likely be dependent upon 
the actual method used to solve the individual scattering 
problem. For example, a simple BIEM may be used to de- 
termine the scattering matrices for an object in a homoge- 
neous free-space. The plane-wave representation method of 
this paper then gives the effective (i.e., including all the 
boundary interaction effects) incident plane-wave compo- 
nents on the scatterer; the boundary integral relations at the 
scatterer can then be used to generate the scattered pressure 
field within the section of the waveguide surrounding it (ei- 
ther just within the vertical extent of the scatterer or in an 
entire homogeneous section of the waveguide). 

In practice, the operators described above become finite 
matrices, the integrals become finite sums, and the function- 
als p + ,  etc. become vectors when a discrete set of angles 
(some may be complex) is considered. The derivation of Eqs. 
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(4)-(7) provide the basic framework for combining the vari- 
ous objectlinterface scattering matrices. As mentioned in the 
introduction, the individual matrices SA , S, , RUd, R ~ ~ ,  etc., 
can be determined by a variety of methods. If the interfaces 
of the waveguide are flat then SA and S, are diagonal with 
the values of the reflection coefficients for the discrete set of 
angles. Thus it is straightforward to include the effects of 
acoustic or elastic interfaces. If the interfaces are range- 
dependent then the scattering matrices are, in general, full 
and may be determined either numerically (e.g., BIEM) or 
by some approximation (e.g., small slope approximation2'). 
The object scattering matrices may also be determined in a 
variety of ways. As we will consider a cylinder in the nu- 
merical examples, we outline the semianalytical computation 
of the scattering matrices for this case. 

First, we consider the origin to be located at the center 
of the cylinder; then a plane wave with angle of incidence 6 
can be expressed in the formz3 

where r and p are the polar coordinates with respect to the 
cylinder center. For a pressure release cylinder, the scattered 
field from the cylinder is then given by 

where 

and a is the radius of the cylinder. Other types of cylinders 
are easily considered by changing the expression for an. 

We now wish to express the scattered field in terms of 
plane-wave components. In order to do this, we replace 
H;(kr)einP in Eq. (1 1) by its plane-wave expansion?3 

In fact, we use a discrete version of Eq. (13) 

In this discretization of the integral of Eq. (13), M panels 
have been used with weightings 8,. We will consider the 
angle of incidence B=4k to be from the same set of discrete 
angles as used in Eq. (14). Then we have from Eq. (1 1) 

Recognizing the factor elkr """(h-P) as a plane-wave compo- 
nent with an angle of propagation q5,, we can write that 
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This represents the discrete amplitude of plane-wave compo- 
I 

nent 4, caused by the scattering of the incident wave com- 
ponent c$k from the cylinder. 

We partition the scattering matrix, Sm,k ,  into smaller 
matrices R ~ " ,  T ~ ~ ,  Rud, and Tuu representing energy incident 1 

from above the cylinder and backscattered, downward trans- 
mitted energy, etc. It should be noted that the transmission 
matrices for objects have the form I+ T as the transmitted 
field consists of the scattered field summed with the incident 
plane wave. 

II. NUMERICAL IMPLEMENTATION 

In Fig. 2 we showed a sketch of a possible integration 
contour, C, in the complex plane which could be used for the 
integral plane-wave representation of a wave field. However, 
by applying Cauchy's Theorem of complex analysis, it is 
possible to deform that particular contour into other contours 
which yield the same integral result. In particular, we choose 
as our integration contour with respect to 4, 

This contour yields only approximately the correct integral 
results as it does not account for all the evanescent energy. 
The contour of Eq. (17) is now discretized with respect to t 1 
according to some quadrature scheme; in particular we use 
the trapezoidal rule. Because we have changed the variable 
of integration from q5 to t, the weighting function 

must be included in the integrand. The parameter u controls 
the offset of the contour from the real-axis; it is the absolute 
value of the imaginary offsets of the contour at 4=+7~/2 .  
The offset as defined by -u sin(t) is positive for 4 having a 
negative real part and negative for q5 having a positive real 
part. The contour passes through $=(0,0). For some of the 
numerical examples, we will also include some additional 
points along the lines 4= T d 2  starting at the terminating 
points of the contour specified in Eq. (17). In these cases, 
more of the evanescent spectrum is included in the modeling. 

The discretization of the integral defines the set of dis- 
crete 4, values we use for our operators. The discretization 
size of 4 ,  A4, determines how far out in x one can compute 
(see, for example, Ref. 24 for a discussion of this type of 
issue). In order to construct a line source at a particular depth 
z , ,  we use the plane-wave representation of the Hankel 
function,2" 
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This representation is then discretized (for z above z, and for 
z below z,) along the computational contour and the result- 
ing amplitudes of thc discrete plane-wave components (de- 
fined by the set of angles 4,) yields the incident up- and 
downgoing plane-wave amplitudes. 

In many scattering problems, the object scattering and 
interface scattering matrices may have some special struc- 
ture. For example, for flat interfaces the interface matrices 
are diagonal. The plane-wave scattering matrices for a cylin- 
der are structured, as it is only the angle between the incom- 
ing and outgoing plane-wave vectors which is important. 
However, we have numerically implemented our algorithm 
assuming full matrices and have made no attempt to exploit 
any particular structure of the matrices involved. In this way 
the algorithm can handle very general interfacelobject scat- 
tering problems; however, it is, of course, slower than an 
implementation which exploits the special structure of the 
matrices for a particular problem. The computational speed 
also depends upon the required number of discrete wave 
number points. This factor depends upon the frequency of 
interest and the maximum desired range of computation. 

We consider four basic examples below; a flat wave- 
guide with no scatterer, a wedge-shaped waveguide with no 
scatterer, a flat waveguide with a cylindrical scatterer and a 
wedge-shaped waveguide with a cylindrical scatterer. The 
frequency of interest is 25 Hz and we consider a horizontal 
window of 8 km. In all examples, the wave-number integrals 
along the real axis are discretized with 253 points. This num- 
ber of points was chosen because the resultant angular spac- 
ing is very close to $ the apex angle of the ASA wedge 
which, as shall be seen, allows us to construct rather simple 
matrix operators for this case. This same angular spacing was 
then used for all the examples. For flat waveguide examples, 
we augment this contour with 24 additional points with vary- 
ing imaginary parts along each of the vertical lines at + 
= + d 2 .  The spacing between these points, in terms of their 
imaginary part, is the same as the spacing At  used for the 
discretization of t in Eq. (17). 

These additional components are weighted by a taper (a 
sine function going from one to zero) which goes to zero 
away from the real axis. This is done in order to minimize 
any spectral ringing effects. The choice of the integration 
contour for problems is somewhat ad hoe and in general we 
recomputed problems with different parameters such as off- 
set from real axis, number of points along the vertical axis, 
etc. until a stable result was achieved. 

Using Eq. (6) it is possible to compute the amplitude of 
the up- and downgoing plane-wave components. In the ex- 
amples below we will plot the amplitude of the upgoing 
plane-wave components along the line z =O. The location of 
the line z = 0  is arbitrary for a problem and may be chosen to 
correspond to some convenient location; the source depth, an 
interface, etc. However, the amplitudes of the nonevanescent 
plane-wave components will not depend upon the location of 
this line. The field can be computed anywhere in the wave- 
guide by using the discretized version of Eq. (9) above and 
below the scattering region, with the plane-wave components 
as given in Eq. (6). When the scatterer is a cylinder we can, 
in fact, extend the definitions of the upgoing and downgoing 
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plane waves right to the horizontal line passing through the 
center of the cylinder. Alternatively, we can use the effective 
incident plane waves upon the cylinder as computed by the 
plane-wave method to generate the coefficients for the 
Fourier-Bessel representation of the scattered field-this 
representation is valid in the scattering region and, in fact, in 
the entire homogeneous waveguide. We will use this ap- 
proach for the whole waveguide in two-dimensional pressure 
amplitude computations-we compute the effective incident 
field in terms of plane waves and scattered field in terms of 
the resulting Fourier-Bessel series. For the cylinder scatter- 
ing problem in a wedge we use the Fourier-Bessel represen- 
tation of the scattered field everywhere in the waveguide. 
However at the bottom interface we use the plane-wave rep- 
resentation to allow us to easily transmit the field into the 
bottom half-space. 

To compute the scattering matrix from a cylinder we use 
eleven terms in the Fourier-Bessel series expression of the 
field scattered from a cylinder. By numerical experimenta- 
tion we determined that the series had converged sufficiently 
with this number of terms (for the cylinder in the perfect 
waveguide example, the upgoing wave components com- 
puted using six terms and eleven terms in the Fourier-Bessel 
series had an average difference of 2.6X dB over an 
8-km window) From the NAG library25 we used a general 
purpose complex matrix inversion routine and routines for 
computing sequences of Bessel and Hankel functions (se- 
quences of the form [J, +,(x) , n = 1 ,. . . , N] and [H: + ,(x) , 
n = 1 ,. . . , N], for input values of u ,x, and N. It took approxi- 
mately 8 min of CPU time on a VAX 6000/610 computer in 
order to compute all the plane-wave coefficients for the cyl- 
inder in the wedge example. As mentioned above, it is prob- 
ably possible to significantly reduce the computation times 
for these specific examples. The computation of the field in 
the waveguide, using the plane-wave or Fourier-Bessel co- 
efficients takes additional time. 

Ill. EXAMPLES 

A. Flat Pekeris waveguide 

As a first example, we consider a waveguide 200 m deep 
with the parameters of the ASA benchmark wedge;19 namely 
in the water column, c = 1500 rnls, p= 1 kg/m3 and in the 
basement c = 1700 m/s, p= 1.5 kg/m3, and there is an attenu- 
ation X=0.5 dBIwavelength. The velocity ratio at the water/ 
basement interface corresponds to a critical angle of propa- 
gation in the water of 28.07". A 25-Hz source is located at a 
depth of 100 m and there is a receiver at 30 m. We have no 
scatterer in the waveguide so that the object's transmission 
matrices are the identity matrix and the object's reflection 
matrices are zero. The bottom surface matrix is defined with 
the appropriate plane-wave reflection coefficients for the 
angles of incidence. We use 253 values of 4 and set cr=0.15 
in Eq. (8). In Fig. 3(a) we show a plot comparing the pres- 
sure amplitude using this method (solid line) and using a 
discretelleaky mode code due to Zhang and ~ i n d l e ~ ~  
(dashed). The curve computed by the plane-wave method 
is shown for both negative and positive values of x .  
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FIG. 3. Pressure amplitude as a function of range for 25-Hz source at 100 m 
and receiver at 30 m for wave-number method (solid) and modal method 
(dashed) for flat (ASA) waveguide using (a) u=0.15 (b) or a=0.02. 

As can be seen the two methods are in excellent agreement. 
In Fig. 3(b) we show the pressure amplitude computed with 
a=0.02 (solid line) and the modal pressure amplitude 
(dashed). Once again, the agreement is excellent. In Fig. 4 
we show the amplitude of the upgoing wave components for 
the two values of a (along the z =0  line) as a function of the 
real part of the angle (the imaginary components along the 
the vertical lines 4= 2 d 2  in the complex plane are not 
shown). The spectrum for a=0.15 is significantly smoother 
than that for a=0.02. However, as expected from theory, the 
computed pressure fields in Fig. 3(a) and (b) are essentially 

3 
Leftgoing energy Rightgoing energy 

- 
o /  1 l , l l , l , ~ , , l T , T , T l  

-50 0 SO 
Real[Angle] (deg) 

FIG. 4. Spectral amplitudes (upgoing plane waves) along the integration 
contour for u=0.15 (solid line) and 0=0.02 (dashed line). 
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identical. In practice, however, one cannot take arbitrarily 
small values of a as it becomes increasingly difficult to ac- 
curately represent the wave number integrand. In this and the 
following examples, negative angles in the spectral plots cor- 
respond to plane waves propagating to the left and positive 
angles corresponds to plane waves propagating to the right. 
For a flat waveguide, the spectrum will be symmetric about 
the zero angle. 

B. The ASA wedge 
We now consider a waveguide with the same parameters 

as above but with a sloping bottom of 2.86". This is one of 
the ASA benchmark wedges.19 For the wedge, there are two 
Cartesian coordinate systems of interest, one which is paral- 
lel to the upper interface which we will define as z=0  and 
one parallel to the sloping interface. We relate the plane 
waves in the two systems by a sequence of matrices. First we 
define an operator R which relates the angles of the plane- 
wave components from the horizontal coordinate system to 
the sloping system. This matrix will have a particularly 
simple form if the angular discretization is a submultiple of 
the wedge angle. For the ASA benchmark wedge, the wedge 
angle of 2.86" corresponds approximately to the value d63 ,  
so that by using an 'angular stepsize that is an integer sub- 
multiple of ~ 1 6 3  the transformation operator R is a simple 
band matrix; e.g., Ri,, = 1 if j = i + k, where k corresponds to 
the closest number of discrete step sizes corresponding to a 
shift of -2.86". This procedure is certainly not perfect for 
this example; this shifting procedure is really only valid 
along a line of angular values parallel to the real axis. (For 
example, if a curved contour was used then a point on the 
contour shifted by 2.86" would no longer lie on the contour 
and our simple rotation matrix formulation could not be 
used). We used 253 points along the real axis which corre- 
sponds to k =4 in the discussion above. In order to describe 
the interaction of the plane waves with the bottom, the plane- 
wave components in the horizontal system are first converted 
to components in the wedge system using fl. Each compo- 
nent is then advanced in phase corresponding to the normal 
distance in the wedge system from the origin (source point) 
to the bottom. This phase advancement is accomplished by 
using a diagonal matrix. The bottom reflection operator is 
then applied and the waves are propagated up in the wedge 
and converted back to the horizontal system (the operator R 
can be used again). These upgoing wave components are 
reflected downward by the top pressure release surface and 
there is an iterative sequence of reverberations between the 
upper and lower surface. These interactions can all be ex- 
pressed in terms of the upper and lower reflection matrices, 
R, and the phase advancement matrix. The matrix series rep- 
resenting these multiple interactions can then be summed as 
in Sec. I. 

In order to have a smooth integrand it is preferable, as 
described previously, to deform the integration contour into 
the complex plane. However, as discussed above, our simple 
formulation is not strictly valid for a curved contour. As a 
compromise, we use a value of a=0.01 in Eq. (8). We found 
that the numerical agreement with F E P E ~ ~  became better as 
the contour came closer to the real axis. However for values 
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FIG. 5. Up and downslope pressure amplitude for 25-Hz source at 100 m 
and receiver at 30 m for wave-number method (solid) and FEPE (dashed) 
for ASA. wedge. 

of u less than 0.01 the computed pressure amplitude curve 
starts to become erratic in appearance. Although we have 
formally applied the theory of up- and downgoing wave 
fields, this theory is not always valid for the wedge geom- 
etry. For example, upgoing waves with angles of propagation 
less than 2.86" from the horizontal are downgoing in the 
coordinate system of the bottom. In this case, it is difficult to 
cleanly split the plane-wave components into up- and down- 
going components. Keeping mind of these theoretical diffi- 
culties, we employ the formulation described above. 

In Fig. 5 we show the wedge solution (forward and 
backward energy) as computed with the operator method 
(solid line) and as computed by FEPE (dashed) where we 
have removed the 6 spreading. One can see that the curve 
from the operator approach agrees very well with the FEPE 
curve. In Fig. 6 we show the spectral amplitude of the upgo- 
ing plane waves as a function of the real part of the angle of 
incidence. The features of the positive 8 portion of the spec- 
trum seem to be shifted to the left and "stretched" in the 
negative portion of the spectrum. 

This wedge example is an extreme case where the de- 
composition of the wave field into up- and downgoing plane 
waves is not exact. However, incorporating the scattering 
effects of the interface was trivial in this formulation. A 
similar but more rigorous approach to wedge propagation 

FIG. 7. Geometry of cylinder in waveguide for numerical example 3. 

has been de~cr ibed . '~-~~ For more general surfaces, the scat- 
tering matrix for the surface would have to be found numeri- 
cally or by employing some approximation such as perturba- 
tion theory, Kirchoff approximation, etc. 

C. A cylinder in a flat and a wedgeshaped waveguide 
In this example we consider a 200-m deep waveguide 

with two pressure release surfaces. Within the waveguide, an 
infinite cylinder of radius 10 m (see Fig. 7) is located 11 m 
above the bottom interface. The boundary condition on the 
cylinder is also pressure release. 

This same problem can also be solved by using a BIEM 
technique where we use the modal waveguide Green's 
functionls2 in order to restrict the integral equation to the 
surface of the cylinder. We now compute the total pressure 
field for a source 100 m to the left and above the object. The 
cylinder's lower edge is taken to be only 1 m above the 
bottom interface and the line of receivers is taken to be only 
1 m above the top of the cylinder (see Fig. 7). Thus this 
example should be a stringent test on the abilities of the 
operator method. As can be seen in Fig. 8, the fields as 
computed by the BIEM and the operator method are in ex- 
cellent agreement. There is some disagreement close to the 

FIG. 8. Pressure amplitude as a function of range (solid-wave number 
0o -50 0 50 method, dashed-modal BIEM) for a 25-Hz source located 100 m above 

and to the left of a 10-m radius cylinder with center 11 m above lower 
Rea[Anglel (deg) pressure release boundary. The receivers are to the left and right of the 

cylinder at 1 m above the upper limit of the cylinder. The perfect waveguide 
FIG. 6.  Spectral amplitudes (upgoing plane waves) for ASA wedge u=0.02. is 200 m deep. 
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-50 0 50 
Real[Angle] (deg) 

FIG 9 Spectral amplitudes (upgoing plane waves) for perfect waveguide 
with cylinder u=0.15. 

origin-the agreement in this region becomes better if we 
include more evanescent components in the plane-wave de- 
composition method, corresponding to more points along the 
lines += + d 2 .  However, for the longer ranges of Fig. 8 we 
wished to concentrate our wave-number coverage along the 
real axis and used only 24 points along each of the lines 
+ = ? d 2 .  Alternatively, if we compute the scattered field 
from the computed "effective" incident plane-wave field us- 
ing the Fourier-Bessel series we get better agreement in this 
very near-field region. This is probably due to the fact that 
the Hankel functions, in their plane-wave decomposition, 
contain much of the necessary evanescent components. 

In Fig. 9 we show the spectrum of the upgoing plane- 
wave components. The spectrum has a significant component 
at a negative angle (measured off the vertical) of about 25". 
This angle corresponds to the last mode (mode 6) before 
cutoff propagating to the left in the waveguide. 

In Fig. 10(a) we show a two-dimensional gray-scale plot 
of the wave field in a 200-m square about the cylinder. As 
discussed above, there are a number of ways to generate this 
field once the plane-wave coefficients above and below the 
scattering object are known. We use the computed downgo- 
ing (upgoing) plane-wave coefficients above (below) the cyl- 
inder to specify the "incident" field and generate the "scat- 
tered'' field using Eq. (1 1). This is not the usual definition of 
the scattered field as our "incident" plane-wave coefficients 
also include the effect of the scattering object. To isolate the 
effect of the cylinder on the wave field we compute the wave 
field when there is no cylinder present and subtract this field 
from the field with the cylinder present. The resulting differ- 
ence is plotted in Fig. 10(b). 

It is very easy to now repeat the computations for a 
penetrable basement (we again use the geoacaoustic param- 
eters of the ASA wedge) by simply defining the reflection 
coefficients as a function of the angle of incidence. In Fig. 
1 l(a) and (b) we show the total and scattered fields for a 
200-m square about the cylinder. 

Finally, we consider the ASA wedge and place the 
pressure-release cylinder in this waveguide at a depth of 150 
m. The cylinder transmission and reflection matrices are 
combined with the rotation matrix 1R described in the previ- 
ous section in order to compute the resultant pressure field. 
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(a) 200 

FIG. 10. (a) Total wave field. (b) Wave field due to presence of cylinder for 
pressure release bottom. Gray-scale levels of 5-dB increment from below 
-40 dB (light) to above - 15 dB (dark). 

In Fig. 12(a) and (b) we show two-dimensional plots of the 
total and scattered fields from the cylinder in the wedge. In 
this example, however, the cylinder is located at a depth of 
150 m in the waveguide where the basement is at 200 m. The 
source is 50 m above and 100 m to the left of the cylinder 
center. We compute this field in the same manner as for the 
flat waveguide. In order to compute the field in the basement 
we used the downgoing plane-wave representation; each 
component is converted to the sloping coordinate system, 
multiplied by the appropriate transmission coefficient, and 
propagated in the basement. In Fig. 12(b) there are slight 
high-frequency oscillations in the computed scattered field in 
the left part of the grid. These may be partially due to small 
artifacts from the approximations of the method (in the 
wedge case) itself and the numerical discretizations used. It 
is important to note that we can easily use the above theory 
for a more complicated cylindrical structure in a waveguide. 
The solution of a more general cylinder scattering problem is , 
first determined in terms of its Hankel function expansion 
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FIG. I I .  (a) Total wave tield. (b) Wave field due to presence of cylinder for 
penetrable bottom. GI-ay-scale levels of 5-dB increment from below -40 dB 
(light) to ahovc - 15 dB (dark). 

which then defines the plane-wave scattering matrix through 
Eqs. (14)-(16). The rest of the computation proceeds as 
above. 

IV. SUMMARY AND DISCUSSION OF RESULTS 

A straightforward method of including the scattering 
matrices from objects and/or interfaces in waveguide model-- 
ling, following the work of Kennett and others"-l6 for inter- 
face scattering, has been presented. The melhodology of this 
paper is not dependent on how the individual scattering ma- 
trices are computed. The overall accuracy of the final result 
is, of course, very dependent on the accuracy of the indi- 
vidual scattering matrices. The complete waveguide solution 
is computed combining the object and interface scattering 
matrices in a manner analogous to standard modeling in a 
stratified medium. We chose simple examples but the inclu- 
sion of complicated stratitication, clastic parameters, etc. is 
straightforward. 
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FIG. 12. (a) Total wave field. (b) Wave tield due to presence of cylinder in 
a wedge. Gray-scale levels of 5-dB increment from below -50 dB (light) to 
above -25 dB (dark). Cylinder is indicated by lowest gray level and a "C." 

We considered the object within a homogeneous layer; 
however, a depth-varying sound speed can be easily handled 
as long as the layer about the object can be considered to be 
homogeneous. If this is not a valid assumption, then the free- 
space scattering problem to be solved for the object must be 
solved with a surrounding depth-dependent sound speed. 
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