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Fin i t e  Difference Modell ing of 
Sca t t e r i ng  by Ob jec t s  i n  t h e  Seabed  

John A. Fawcett and Joris L.T. Grimbergen 

Execut ive Summary: 

A better understanding of the scattering of acoustic energy from elastic objects 
on or under the seabed will lead to a significant improvement in our ability to 
detect and classify minelike objects. Modelling of such scattering should include 
the effects of the seabed itself since mines may be buried to some degree. The 
Finite Difference method, described in this report, allows acoustic scattering 
from mines in complex bathymetric conditions to be modelled. This gives 
insight into the physical mechanisms and environmental parameters which are 
important to the scattering of energy from mines and will act as a benchmark 
for faster, but more approximate, models. 

This report describes some of the theory and implementation issues concerned 
with Finite Difference modelling. For an illustration of the value of this method, 
the results of computations of scattering from buried and partially buried cylin- 
ders for smooth and rough seabed conditions are presented. Numerical exam- 
ples are also given, illustrating the accuracy of the method for problems, such 
as scattering from aluminum cylinders, where analytic solutions are known. It 
is clear many questions regarding the effects of burial and bathymetry on mine 
scattering are answered by the FD model. 
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Abstract:  In this report we describe the theory and some implementation 
issues of a finite difference code used at SACLANT Centre. In particular, we 
consider the modelling of attenuation and the excitation of a remote incident 
field by using Huygen's sources. A series of comparisons of finite difference 
results with analytical results is performed. The report concludes with a series 
of computations of scattering of a generalized plane wave from a buried cylinder 
where the transmitted portion of the generalized plane wave is evanescent. An 
example of time-reversed propagation of a scattered field is also given. 
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Introduction 

Finite Difference (FD) modelling can compute the time-domain solution to complex 
elastic scattering problems (for example, [I, 2, 3, 41 ). The FD solutions include 
all angles of energy propagation - both forward and backward propagating energy. 
The method is very general in terms of the environment and the scattering objects 
and surfaces. There is no need to make assumptions about range-independence, the 
shapes of objects, etc. The chief disadvantage of the method is that it becomes 
computationally intensive for grid sizes which are more than 100 wavelengths in a 
dimension (for three-dimensional modelling this problem is even more acute). Thus 
for problems where the source of incident energy is distant from the scattering region 
it is not possible to model the source region. In order to resolve this shortcoming, we 
have implemented a technique for bringing remote incident fields into the numerical 
grid. This means that in the case where a large portion of the waveguide is simple in 
structure, we can model the propagation of the incident field up to the boundary of 
the grid with a more efficient technique. Similarly, once the scattered field has been 
computed by the FD method, it should be possible to extrapolate the scattered field 
to remote receivers. 

In the Spring of 1995, SACLANTCEN obtained the visco-elastic finite difference 
code developed by J. Robertsson, J. Blanch, and W. Symes [5, 61. This method in- 
cludes additional variables and parameters which allow for the modelling of spatially- 
varying compressional and shear attenuations. We shall refer to this code as the 
RBS code for the remainder of this report. We implemented the basic code into a 
MATLAB [7] package for FD modelling. This package provides subroutines for the 
construction of the fields rcquired by the FD code. This includes the construction 
of stress and strain relaxation time grids for desired Q (the number of wavelengths 
over which the amplitude decays by e-") grids for the czmpressional and shear 
waves. It also includes a subroutine for the analytic computation of the generalized 
plane-wave incident field along a boundary of the finite difference grid for a 2 half- 
space environment. The incident field, in this case, consists of a coherent sum of 
direct, reflected, and transmitted components. This field is used to excite sources 
along this boundary in the FD computations, effectively bringing the incident field 
into the grid. The FD code is fourth-order accurate spat idy and uses a staggered 
grid formulation [4]. It is second order in time. Ln many instances, 20 grid points 
per wavelength give very good results with this code ( for a broadband source, this 
corresponds to fewer points per wavelength for frequencies higher than the centre 
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value). 

Below, we will describe in more detail some of the features of the ED code; in 
particular, we will describe some of the details of the attenuation modelling, the 
boundary absorbing layer, and the incident field modelling. We will then present the 
results from a sequence of benchmark computations which test the attenuation and 
the elastic scattering capabilities of the code. In order to reduce computation time, 
the numerical examples of this report were run using a FORTRAN implementation 
of the code rather than the MATLAB package. 

NATO UNCLASSIFIED 

Report no.changed (Mar 2006): SR-256-UU

Rectangle

Rectangle



NATO UNCLASSIFIED 

Theory 

In this section we describe some of the theoretical and implementation issues con- 
nected with the visco-elastic finite difference modelling. 

2.1 The basic model 

The basic set of visco-elastic differential equations solved by the RBS code is 

where aij denotes the components of the symmetric stress tensor, vi is the velocity 
vector, p is the shear relaxation modulus, and q is the compressional relaxation 
modulus, corresponding to X + 2p in the standard elastic problem. The variables 
rjj are memory variables [8] which are introduced for the visco-elastic modelling in 
order to avoid the explicit computation of time-convolution terms. For the simple 
attenuation model considered in this report, three memory variables are required. 
Associated with the attenuation modelling are the parameters T:, the compressional 
strain relaxation time, r,S, the shear strain relaxation time, and T, the stress relax- 
ation time which for our model is the same for compressional and shear waves, In 
the limit of no attenuation, T[/T, and r,"/rC become unity and ~ ; j  becomes zero. 

NATO UNCLASSIFIED 

Report no.changed (Mar 2006): SR-256-UU

Rectangle

Rectangle



NATO UNCLASSIFIED 

The above equations then reduce to the standard equations of elasticity. In the 
following subsection, we discuss in more detail the modelling of attenuation. 

As with all FD codes the differential equations are discretized in both space and time 
to yield a set of discrete equations. The RBS code uses a discretization of Eq.(l) 
which is fourth order accurate in space and second order in time. In order to obtain 
accurate answers using the FD code we find in practice that we require 10-20 spatial 
grid points for the dominant wavelength of the problem. This criterion is dependent 
upon the frequency bandwidth of the source; if, for example, there is significant 
energy at frequencies twice the main frequency, these wavelengths must also be 
accurately modelled. The required spatial discretization of a wavelength indicates 
the problem which arises when dealing with low-velocity zones; the wavelengths are 
small in these regions and hence these zones require a small spatial step. The code 
of this report uses uniform spacing, so that, in fact, a small spacing must be used 
for the entire grid in this case. These low velocity cases may arise when we wish to 
model an object filled with air (cp = 340mls) or when we wish to accurately model 
the effects of shear. Shear velocities may often be only a few hundred m/s. 

The RBS is an explicit FD code and hence the time step At must satisfy a constraint 
of the form At 5 aAx/c,,, where Ax is the spatial step size if the solution is to 
be stable with respect to time. This has two main implications for the modelling; 
(1) if one decreases the spatial grid size, then it is necessary to decrease the time 
step accordingly (2) a zone of high velocity will require small time steps and since 
the time step is the same for the entire grid, this may force the time step to be 
inordinately small in other regions of the grid. For the RBS code the maximum 
value of a is approximately 0.606 [9]. 

2.2 Attenuation Modelling 

We will give a brief outline of the theory of visco-elastic modelling to give an under- 
standing of some of the parameters and implementation issues involved. Here, we 
follow the notation of the appendix in (61. The constitutive relation for a visco-elastic 
medium can be modelled as being time-dependent, 

where u,j is the stress tensor of Eqs.(l), e;j is the strain tensor, A and M correspond 
to the Lam6 constants X and p, and bij  denotes the Kronecker delta. Equation (2) 
can be rewritten in terms of compressional r and shear parameters M as 

The form of Eqs.(2) and (3) is similar to the standard constitutive relations except 
that now the parameters A, r, and M are time-dependent and multiplications have 
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become time-convolutions. A useful model for the time history of r and M is 

and 

where U(t) is Heaviside's function, T; and T,~ are the compressional and shear strain 
relaxation times for the t ' th term in Eqs.(4-51, and rue are the corresponding stress 
relaxation times. Following [6] we have chosen the parameters rue to be the same for 
both the compressional and shear functions and hence we do not use a superscript 
for this parameter. In the frequency domain the complex compressional and shear 
moduli are given by 

where F denotes the Fourier Transform. In order to  simplify our analysis we will 
consider e = 1 in Eqs. (4-5) and will no longer use the subscript e in our notation. We 
will consider only the compressional term F(u). The analysis of the shear function 
proceeds along identical lines. Using Eq.(4) in Eq.(6) yields 

In terms of F(w) the quality factor Q can be written 

where 82 and 8 denote the real and imaginary parts of a complex number respectively. 
This factor is the number of wavelengths a harmonic plane-wave must propagate 
before its amplitude has been decreased by a factor of exp(-x). The phase velocity 
c(w) for each Fourier component of the wavefield can also be computed from F(w) 
and is given by 

2 C (w) = -- 1 
Tc MR{l+ P [$ - 11 +W2T.2}-1 

From Eq.(lO) it can be seen that there is frequency dispersion in this visco-elastic 
medium. In order to  have a causal system it is, in fact, necessary to  have some 
frequency dispersion[lO]. 

Introducing 
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into Eq.(9), we can write 

For reasonable values of Q,  T, < < 1 and hence 

In order to determine optimal values of ru and T, to approximate a constant Q over a 
given frequency band, [6] gives a simple, but effective algorithm based upon Eq.(13). 
Basically T, controls the amplitude of Q-'(w) and T, controls the frequency offset of 
the curve. The parameter T~ is set to 1/(27r f,) where f, is the centre frequency of the 
frequency interval of interest and T, is determined by a simple linear optimization 
algorithm. 

The same type of algorithm can also be used in the case of more than one (i.e., 
.t > 1 in Eq.(4)) attenuation mechanism: T,,! are set for specified frequencies over the 
bandwidth and a value of r, is determined to yield a good approximation to constant 
Q over the entire frequency band. By taking several attenuation mechanisms, it is 
possible to obtain an excellent approximation to a constant Q. In the numerical code 
of this report only one mechanism is used. Although this does not model a constant 
Q over the entire band of interest, we will see in the numerical examples that, in 
practice, it does a good job in modelling the attenuation and dispersion effects of 
visco-elasticity. 

In Fig. 1 we plot Eq.(9) as a function of frequency. We have determined the optimal 
values of T, for the frequency interval [100,3000] Hz for constant Q values of 20 
(which corresponds to 1.36 dB/A) and 50 (which corresponds to 0.54 dB/A). The Q 
for the single mechanism model is approximately constant in the interval [750,3000] 
Hz. For frequencies higher or lower than these values, the Q values produced by 
the model are too high. If the frequency content of the source is concentrated in 
the interval where the constant Q approximation is good, then we expect the single- 
mechanism Q model to be effective. 

In Fig. 2 we show the velocity/frequency curve computed from Eq.(lO) for the com- 
puted values of r, and r, for the Q = 20 (solid) and Q = 50 (dashed) cases. The 
phase velocity varies from about 1500 m/s a t  f=300 Hz to  1575 m/s a t  f =5000 Hz 
for the Q = 20 case and the variation is almost linear between 500 and 1500 Hz. 
The velocity variation is much less for the Q = 50 case; there is only a variation of 
30 m/s over the entire frequency range. 

Based on the theoretical analysis of Futterman [ l l ]  and the experimental work of 
Wuenschel [12], the following &/dispersion model for real visco-elastic materials has 
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Figure 1: Computed Q as a function of frequency, approximating Q=20 (solid line), 
Q=50 (dashed line) 
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Figure 2: Computed phase velocity as a function of frequency for modelled Q=20 
(solid line), Q=50 (dashed line) 
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been suggested 

There are three parameters in Eqs. (14) and (15) to choose, namely wo, co and 

Figure 3: Computed phase velocity as  a function of frequency for Q=2O using Eq. (10) 
(solid line) and Eq.(14) (dashed line) 

Qo. The parameter wo is a frequency taken to be well below the frequency band 
of interest, co is a velocity chosen to yield a desired phase velocity a t  a specific 
frequency and Qo is some constant Q-value. In Figs. 3 and 4 we show the curves 
computed from Eqs. (14) and (15) with the corresponding curves for Q(w) and c(w) 
in Figs.1 and 2 for a value of Q = 20. We have used Qo = 20, wo = O.lHz, and co 
is chosen such that c(200Hz) = 1485rnls in Eq. (14) and (15). 

From Fig. 3 we can see that with the appropriate choice of parameters the curve com- 
puted from Eq. (14) agrees well with the curve computed for the single-mechanism 
model except at  the low frequencies. The value of Q(o)  computed from Eq. (15) 
is essentially constant, with a value slightly less than 20, over the frequency range 
shown. 

We have analyzed the characteristics of the single-mechanism model in the frequency 
domain. However, the Finite Difference code is implemented in the time domain. 
From Eq. (3) this would seem to require the computation of time-convolution terms 
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Frequency (Hz) 

Figure 4: Computed Q as a function of frequency for Q=20 using Eq. (9) (solid line) 
and Eq.(15) (dashed line) 

at  each spatial grid point. Fortunately, due to the form of I'(t) and M ( t )  in Eqs. (4) 
and (5) each of the convolution expressions for a,,, a,, and a,, can be expressed 
in terms of a time-dependent term and time-dependent variables Txx, T,, and r,, 
respectively which satisfy straightforward differential equations. Thus, instead of ex- 
plicitly computing time convolutions, the differential equations for the convolutions 
are updated at  the same time steps as the standard, elastic differential equations. 
For the single-mechanism model, three extra differential equations are required (at 
each spatial point). 

In the MATLAB implementation of the code, a module has been written which 
takes user-specified grids of Q-values and sound speeds and converts this into grids 
of r, and r, values. These grids are required by the FD code for the attenuation 
modelling. 

2.3 Boundary attenuation 

In order to make the computational grid for the FD method finite, it is necessary 
to impose some boundary conditions on the elastic field at  finite values of x and z. 
The true boundary conditions are that the scattered portions of the field should be 
only outgoing and it is possible to simulate these boundary conditions with varying 
degrees of accuracy (131. The approach of the FD code of this report is to set the 
elastic variables to zero at  the edges of the grid. This causes a spurious reflection 
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of energy incident on the sides of the grid. In order to eliminate this artificially 
reflected energy, an attenuating layer is introduced to the grid, running parallel to 
the sides of the grid. Two MATLAB modules have been written for the creation 
of this attenuating layer. The first module follows the suggestion of [5] and allows 
the user to define a very low Q value at the edge of the grid (e.g. Q = 2). A 
smooth transition from the true Q-value in the interior of the grid to the low value 
at the edge is used (typically, a transition over 20-40 grid points is used). Thus we 
are applying the visco-elastic capabilities of the code to the problems of artificial 
reflections from the grid boundaries. As was explained in the previous subsection 
(see Fig.2) there is significant dispersion for low values of Q. In order to eliminate 
reflections caused by the change of phase velocity due to changing Q, the compres- 
sional and shear velocities defmed on the grid are adjusted using Eq.(lO) so that the 
phase velocity a t  the dominant frequency of the problem is a constant with respect 
to Q. Automatic velocity-tuning is a feature of the MATLAB module. A second 

60 65 70 75 80 85 90 95 100 
Grid point 

Figure 5: Attenuating factor fmm Eq.(16) for a transition layer of 40 grid points 
using p=2 (solid line) and p=0.4 (dashed line). 

attenuation mechanism is implemented by multiplying the wavefield within the at- 
tenuating layer solution by a constant ( at each time step. The constant (' is equal 
to one at the start of the attenuating layer (i.e., within the interior where the layer 
starts and is tapered to a smaller value (e.g. c,;, = 0.97) a t  the edge of the grid. 
The MATLAB module which was written for defining these layers, uses a tapering 
function of the form 
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This type of approach, in conjunction with radiating boundary conditions was used 
by Fricke[l]. In practice, when using Eq.(16), we used p=2 or p=0.4 and N =  20 
or 40 points. In Fig.5 we show the attenuating function of Eq.(16) (with C,,, = 
0.97) for N=40 and p=2 (solid line) and p=0.4 (dashed line). The two curves are 
quite different in character. The p = 2 curve has its largest slope in the middle of 
the transition zone whereas the p = 0.4 curve is gradually decaying for much of the 
curve and then has a large (infinite at the end point) slope a t  the end. We found 
that for modelling a point source the p = 0.4 curve worked well; however, in general, 
one must often experiment with the absorbing boundary in order to  ensure that the 
FD solutions are sufficiently free of spurious boundary reflections. 

For the FD code of this report, one can use either of the attenuating mechanisms 
described above or both. For the computations of this report we used only the 
second technique. 

2.4 Specification o f  incident field 

In our implementation of the FD code we use point excitations a t  grid points to 
generate incident fields. We consider below some of the details of modelling a point 
source which lies within the boundaries of the numerical grid. Second, we discuss 
the generation of an incident field from a distant source by using an array of point 
sources. 

Interior point source 

The basic equations of elastic propagation (ignoring any additional visco-elastic 
terms) can be written as 

dux dv, 
flzz,t = (A+ 2p)- + A- dz dz 

av, avz 
flzz,t = (A+2p)% t A- ax 

Let us consider, in an acoustic medium, a point source located a t  x = x, (discrete 
grid point is) and z = z, (discrete grid point j,) which emits a signal S( t ) .  Since the 
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medium is acoustic, the terms p and a,, can be set t o  zero in the above equations. 
Also, a,, = a,, - a. Equation(20) can now be written as 

av, av, 
at = A- + A- + S(t)S(x - x,)S(z - z,). ax a z  

Differentiating Eq.(22) with respect to  time and utilizing Eqs.(l7) and (18) we obtain 

a2 1 a 2 ~  a20) as,lt) 
- g = - X  -+-  
at2 p (ax2 a z 2  +- S(X - xS)6(t - z,) 

a2a 
at2 
- = c 2 v 2 a  + St(t)S(x - xs)6(z - z,). 

In the discretized version of Eq.(20) the source term is implemented using the equa- 
tion, 

The normalization with respect to A t  is due to  the time-discretization of Eqs.(l9) 
and (20); the spatial normalization is chosen so that  the source appears as a spatial 
delta-function with respect t o  discrete integration [14]. From Eq.(24) it can be seen, 
that  in order to  compare the FD solutions with analytical solutions of the acoustic 
wave equation, it is necessary to use the time-derivative of the source function S( t )  
as the source function in the analytical solution. 

An incident field from a distant source 

Because it is necessary t o  use 10-20 grid points per wavelength in the FD mod- 
elling, the ED grid corresponds to  relatively small physical dimensions for higher 
frequencies. However, for many problems of interest the source may be so far away 
from the scattering object or surface, that  it is not feasible t o  include the source 
point within the computational grid. If the waveguide between the source and the 
scattering region is sufficiently simple, it may be possible to  analytically compute 
the incident field a t  the edges of a numerical grid. From the integral relations of 
the Gauss's divergence theorem (151 we can use these boundary values to  excite the 
FD code and propagate the incident field within the grid. This type of approach 
has been used previously by authors in electromagnetic modelling (see for example, 
[16] where an approach very similar to  that considered in this report is used). We 
now present some details of our particular implementation. We consider the case 
of an acoustic waveguide between the source and scattering region. From Gauss's 
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Divergence Theorem, we can express the acoustic pressure field at a single frequency 

where C is a bounding rectangle located within the computational grid, G is a waveg- 
uide Green's function satisfying the Helmholtz equation 

w v 2 G  + -G = 6(x - xt)6(z - z'), 
c2(z> 

and n' denotes the normal derivative with respect to the coordinates of integration 
along the boundary. We can interpret the integral of Eq.(27) as the pressure field 
resulting from a distribution of monopole and dipole sources (Huygen's sources [17]). 
If the source is distant from the scattering region, then the incident field will look 
like an incident plane-wave (or as we will discuss a generalized plane-wave for a two 
halfspace medium) in the water column and this plane-wave will have an associated 
angle of incidence. We define the numerical grid so that one of its edges is normal 
to the angle of incidence of the plane-wave (Fig. 6) and is internal to the absorbing 
boundary layer of the grid. We consider Eq.(27) only along this line and ignore 
the other boundaries' contributions to the incident field. There are different ways 
of implementing Eq.(27). We can consider a line of appropriately weighted discrete 
monopole point sources along the boundary. The FD solution for this array of 
sources effectively performs the integration with respect to  the Green's function ( 
a convolution in the time domain). Because of the symmetrical field produced by 
these monopole sources, G,I is zero along the line and we only have the first term 
in the integral of Eq.(27). Alternatively, we could simulate a series of dipole sources 
by placing a sequence of (+) and (-) monopoles one grid point on either side of the 
bounding edge. In this case only the second term of the integral is required. A 
simpler method to implement a dipole is to add a spatial delta function (weighted 
by the incident pressure field normalized by density) to the equation, Eq.(17), for 
v,. For all these boundary implementations, the sources produce a field which 
propagates outwards in both directions. Thus not only the incident field is produced, 
but also, a field incident on the grid boundary. If, however, the attenuating layer 
is working well, this field will not reenter the grid. If Eq.(27) is implemented using 
both the monopoles and dipoles then we can produce only the incident field. The 
approach implemented in the FD code was to excite the equation for v,(z) along 
the line x = xinc with P(x;,,, z, t)/p(z). 

At this point our discussion has been general in terms of form of the incident field; 
however, we have numerically implemented the case where the incident pressure field 
is a plane wave with an angle of incidence Bi in a two halfspace environment. Then 
the incident field consists of the direct wavefield 

z 
p D ( x ,  z, t )  = Real - -sin(@;)) clw , 

C1 I I 
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the reflected wavefield 
x z 

p R ( x ,  Z, t )  = Real (1, S ( W ) R ( B ~ ,  w ) e z p  

and a transmitted field, 

x p T ( x ,  Z ,  t )  = Real {lm S(W)T(B., w)exp  

where 

and ~ ( w )  is the Fourier Tranform of the source function. The factor \/c: - c~eos2(8 ; )  
is imaginary for 0; less than the critical angle, in which case the reflection and 
transmission coefficients are complex. This means that in the time domain the 
reflected and transmitted pulses are combinations of the source pulse shape and its 
Hilbert Transform [18]. 

Direction of distant source \ 

Figure 6: Schematic diagmm of orientation of Finite Difference grid with respect to 
a distant source 
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Numerical Examples 

In this section we first show the numerical results obtained from the finite differ- 
ence modelling of propagation and scattering problems, for which we can also com- 
pute analytical solutions. In particular, we consider the propagation of an acoustic 
wavefield from a point source in non-attenuating and attenuating media. We then 
consider the propagation of a shear plane-wave in an attenuating medium. Finally, 
for the benchmark cases, we consider the scattering of a compressional plane-wave 
by solid, thick-shelled, and thin-shelled aluminum cylinders. The shelled cylinders 
are filled with water. The analytical solutions in this case are computed by solving 
in the frequency domain a sequence of elastic cylinder scattering problems and then 
constructing the time-domain pulse by Fourier synthesis. 

After these benchmark cases, we consider a buried solid aluminum cylinder and con- 
sider a generalized (i.e., consisting of direct, reflected, and transmitted components) 
plane-wave incident upon this object. We consider the cases of the direct wave in 
the water column having pre-critical and post-critical angles of incidence. For the 
case of an evanescent transmitted wave, we examine the effect of a rough interface. 
Finally we use the FD method to compute the backscattered field from a cylinder 
a t  an array of receivers in the water column and then time-reverse this field and use 
it as the "incident" excitation field. The resulting backpropagated field in the water 
column focuses a t  the sources of scattering. 

The numerical code was run in Fortran on a DEC-3000 Alpha workstation. A 
computation with a 440 x 440 grid and 12000 time steps required 128 minutes of 
CPU time. In the following examples, the absolute levels of the computed pressure 
fields have often been scaled for plotting purposes. 

3.1 Computations in a homogeneous medium 

First we consider a point source in a homogeneous acoustic space. We consider the 
source function in Eq.(22) to be the time derivative of a Gaussian pulse, [I], 
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where 

and wo is the central angular frequency which we take to be 1500 Hz. We take the 
sound speed to be co = 1500 m/s. Thus the reference wavelength for this example 
is lm. We do our computations with Ax = 0.05 m or X/20. From our previous 
discussion of stability limits, we must use a time step At such that 

We use At = 10-5sec which is approximately half the stability limit. We consider a 
numerical grid which is 300 x 300 in dimension. We use 40 points for the absorbing 
boundary layer. We construct this absorbing layer using the second absorbing mech- 
anism described in subsection 2.4. We found that using a fractional power p = 0.4 
in Eq.(16) with C = 0.95 worked well. In Fig.7 below, we show the ED signal as a 

Figure 7: Finite d ierence  (solid line) and analytical (dashed line) pulse shapes for 
receiver at 8.5 wavelengths from the source 

solid line along with the analytical solution of Eq.(24) (dashed line) for a source at 
(i, j )  = (70,150) and a receiver at (i, j) = (240,150) (where (i, j )  denote the discrete 
indices for the (x, z) coordinates). The agreement is excellent between the computed 
and analytical solutions with only small artifacts due to the boundaries in the tail 
of the signal. 
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We now consider the same geometry as above, but for a medium with Q = 20. In 
Figure 8a we show the comparison between the FD computed pulse and an "an- 
alytically" computed pulse. The analytical solution used Fourier synthesis and a 
Qjdispersion relation of the form of Eqs.(l4) and (15) with the parameters which 
were used for the computation of the curve of Fig. 3. The agreement is excellent. 
In Fig. 8b we show a comparison between the FD pulse and the analytical solution 
if no frequency dispersion is used; i.e., we fixed the phase velocity a t  c = 1500 m/s 
for all frequencies and simply added an imaginary part to the sound speed to  pro- 
duce the required attenuation. This procedure is the usual approach in frequency 
domain modelling. The agreement between the two pulses is no longer so good. The 
amplitudes of the two pulses are similar but the shape of the pulses are noticeably 
different. We have used a large attenuating factor in this example; the differences 
between the curves in Fig. 8b would be less for smaller attenuation. Finally in Fig. 8c 
we show the analytical pulse computed for a Q=1000 (no attenuation). In this case 
the pulse is too large in amplitude, illustrating the importance of attenuation in this 
example. 

Figure 8: Finite diflerence (solid line) and analytical pulse shapes (dashed line) for 
Q =20 for (a) analytical solution computed accounting for frequency dispersion (b)  
attenuation model with a fixed phase velocity of 1500mls (c)  using Q=1000 

We now consider an example with a non-zero shear speed. In particular we excite 
the equation for v, with an array of point sources along the line x = 70. This 
arrangement should excite a shear plane-wave. However, due to the fact that there 
is a finite, discrete aperture of sources the synthesis of the plane-wave is not exact 
and other energy, some of it compressional in nature, is excited. We use an absorbing 
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layer of 40 points in this case, with C = 0.96 and p = 2. To reduce the amount of 
spurious energy produced by the edge effects of a finite aperture of sources, we weight 
the source terms by a cosine taper away from the centre of the grid. The source 
time history is the same as for the previous example. However, we now take the 
compressional sound speed to  be c, = 3000mls and the shear speed c, = 1500mls. 
Because of the high compressional sound speed we use At = 1 0 - ~ / 2 .  We define the 
Q factor for the compressional waves to  be Q ,  - 1000 throughout the grid and the Q 
factor for the shear waves Q, 20. If the FD code is correctly modelling the elastic 
and attenuation properties of the medium, the wave propagation for this example 
should be well-modelled as a shear plane wave attenuated by a Q value of 20. In 
Fig.9 we show the pulse (we plot v,) a t  the centre of the grid a t  x = 240 as computed 
by the FD code (solid line) and analytically (dashed) for an  attenuated shear plane 
wave. The agreement between the two curves is good. There is a small amount of 
spurious energy, some of which is compressional (note that  any compressional energy 
is much less attenuated than the true shear energy as we have used Q p  = 1000 for 
this example). It is interesting to  note that  for this example, the Green's function 
which we use in the computation of the analytic solution is of the form 

whereas in the point source example the Green's function was of the form 

3.2 Computations for an elastic cylinder surrounded by an homogeneous fluid 

We now consider an  aluminum cylinder of radius 1 m located in an  homogeneous 
compressional space with c, = 1500m/s and p = 1000kg/m3. For the aluminum 
cylinder we use the parameters C ,  = 6380m/s ,  c, = 3136mls and p = 2172kg/m3. 
Because of the large velocities within the cylinder it is necessary t o  take small time 
steps. We used Ax = 0.025m (or 40 points per wavelength) and At = 0.01/8ms in 
our computations with a 400 x 400 grid. The cylinder is located a t  the centre of 
the numerical grid. A normal-incidence plane-wave was excited by applying point 
source functions to  ox, and a,, along the line x = 1.5m with the time-history of a 
time-differentiated gaussian. In order to  reduce edge effects we tapered the incident 
plane-wave by a cosine-weighting for the first and last 100 points of the grid. Figure 
10 shows a comparison of the FD time series with the time series computed using 
Fourier synthesis and the harmonic Fourier-Bessel series for the scattered field from 
an infinite elastic cylinder. The series were computed for receivers 3.5 m from the 
centre of the cylinder a t  angles of 0°, 90°, 270' and 180" with respect t o  the cylinder 
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Figure 9: Finite diflerence (solid line) and analytical pulse shapes (dashed line) for 
a shear plane-wave with Q = 20 

centre. From symmetry, the time series for 8 = 90' and 270' should be identical. 
However, this is not true in practice due to the staggered grid formulation of the RBS 
FD code. Although the FD solution is initially symmetrical, the symmetry of the 
field is not sustained over time. The FD and analytical amplitudes of the incident 
wave do not agree well for the receivers at 90' and 270' because the tapering of 
the plane-wave is significant at these locations. The scattered fields, however, are 
caused by the scattering of the incident field at the cylinder and these amplitudes 
are correctly modelled. 

We now repeat the above numerical experiment with a shelled cylinder. We consider 
an aluminum shell 0.5 m thick (or 20 grid points) with the interior of the cylinder 
filled with water. The comparison with the analytic solution is shown in Fig. 11. 
The agreement between the numerical and analytic solutions is good. 

By varying the shell thickness, we found that good agreement between computed 
and analytical results were obtained down to and including shell thicknesses of 3 
grid points corresponding to a relative shell thickness of 7.5%; by decreasing the 
spatial discretization size we should be able to decrease this ratio. The comparison 
between the FD curves and the analytical curves are shown in Fig. 12. In Fig. 13 
we show a snapshot of the pressure field for the thick shelled cylinder 4 ms into the 
computation. The plane-wave can be seen passing by the exterior of the cylinder. 
A faster wavefront has already passed through the cylinder and the backscattered 
wavefront is visible at the front of the cylinder. 
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Figure 10: Finite diflerence (solid line) and analytical time series (dashed line) for 
receivers at (a) 0" (backscatter) (6) 90" (c) 270' and (d) 180' (forward direction) 
for an infinite elastic (aluminum) cylinder 

Figure 11: Finite difference (solid line) and analytical time series (dashed line) for 
receivers at (a) 0" (backscatter) (b)  90" (c)  270' and (d) 180" (forward direction) 
for thick-shelled (20 grid points) cylinder filled with water 
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Figure 12: Finite diflerence (solid line) and analytical time series (dashed line) for 
receivers at (a) 0" (backscatter) (b) 90" (c) 270" and (d) 180" (forward direction) 
for thin-shelled (3 grid points) cylinder filled with water 

3.3 Scattering of a generalized plane-wave by a buried cylinder 

We can simulate an incident acoustic or elastic wavefield by exciting monopole and 
dipole sources along the boundaries of the grid. In these examples, we only use 
dipole excitation. We excite the particle velocity v, by pinc/p(z) .  This means that 
the correct field propagates into our grid, but also a mirror-image field propagates 
to the left where it is attenuated by the absorbing layer of our grid. By exciting the 
normal stress by pp, it should be possible to eliminate the left-going field. 

In the examples which follow, we will consider a fluid half-space with sound speed 
1500 m/s and p = 1000kg/m3 overlying another fluid space with sound speed 1700 
m/s and p = 1500kg/m3. The critical angle for these parameters is 6, = 28.07" 
(measured from the horizontal). We first consider the case of the angle of incidence 
0 = 30". We consider our grid rotated so that the boundary of excitation is parallel 
to the incident direct wave and as a result the fluidlfluid interface has a slope of 30". 
The advantage of this approach is that one obtains a maximum aperture of sources, 
using a single boundary, to simulate an incident field. The disadvantages are (1) 
that the interface is sloping upwards to the right of the incident excitation line and 
it is difficult to know how to model the bathymetry to the left of the incident line 
in order to avoid diffraction effects at the intersection of the interface boundary and 
the vertical array of excitation sources; (2) because the interface is sloping we are, 
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ABOVE 0.227 
0.204 - 0.227 
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0.020 - 0.043 

BELOW 0.020 

Figure 13: Snapshot of pressure field at 4 ms for thick-shelled aluminum cylinder 
filled with water 
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in fact, approximating it with a staircase in the FD approximation and these small 
stairsteps cause small diffractions. However, we find that despite these problems 
the incoming incident field is well-behaved. In Fig. 14 we show the incident field 
(i.e., p ( z , t ) / p ( z ) )  which is used to excite v,. The vertical axis is depth and the 
horizontal axis is time. The direct pulse appears vertically oriented. As can be seen 
there is significant energy transmitted into the bottom. For the FD computations 
of this set of examples, we used a 440 x 440 grid with 60 points in the absorbing 
layer (C,;, = 0.96, p = 2). The equations for v, were excited a t  the line xi,, = 63. 
In Fig. 15 we show a time snapshot of the pressure field after the plane wave in the 
bottom has interacted with the buried aluminum cylinder. There is a substantial 
reflected field from the cylinder. Only the field in the square region interior to the 
absorbing boundary layers and the line of dipoles is shown. 

ABOVE 
0.62 
0.42 
0.22 
0.02 

BELOW 

Figure 14: Incident plane-wave field (absolute value) used to excite vertical array of 
dipole sources for 9 = 30'. 

Next, we consider the case for the angle of incidence of the direct plane-wave in 
the water column being post-critical, B = 20'. The incident field used to  excite the 
equation for v, is shown in Fig. 16. 

In this case the transmitted field is evanescent and the reflected pulse is a temporal 
combination of the direct pulse and its Hilbert Transform. There is a region of high 
intensity near the interface where the incident and reflected waves interfere with 
each other. In Figs. 17,18, and 19 we show a single time snapshot for the wavefields 
generated in the case of a buried solid aluminum cylinder, for a rough interface with 
no cylinder, and the same rough interface with a buried cylinder. In Fig. 17 we see 
that  the incident field of Fig. 16 has propagated into the grid. The exponential tail 
of the transmitted wave just touches the cylinder. There is a small amount of energy 
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0.05 - 0.25 

BELOW 0.05 

Figure 15: T ine  snapshot of pressure field (absolute value) resulting from interaction 
of transmitted wavefield with cylinder 
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Figure 16: Incident plane-wave field (absolute value) used to excite vertical array of 
dipole sources for 9 = 20'. 
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BELOW 0.05 

Figure 17: Prof~gating plane-wave field (absolute value) with buried aluminum cylin- 
der 

ABOVE 1.05 
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BELOW 0.05 

Figure 18: Propagating plane-wave field (absolute value) with rough interface 
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BELOW 0.05 

Figure 19: Propagating plane-wave field (absolute value) with rough interface and 
buried aluminum cylinder 

Figure 20: Time series at a receiver located 3.25 rn above interface at incident army 
when there is no cylinder in the bottom (solid line) and when there is a cylinder in 
the bottom (dashed line) 
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following the incident wavefield which was probably incorrectly created during the 
generation of the incident wavefield from the dipoles. This can sometimes be an 
annoyance when generating incident post-critical wavefields; it is not surprising that 
the use of a discontinuous (because of the l /p(z) normalization), analytic wavefield 
to excite a discrete numerical grid may cause the excitation of a small amount of 
spurious energy near the interface. It may be possible to reduce this problem by 
smoothing the incident wavefield and/or the medium, but we did not do this for 
these results. 

The "rough" interface of Figs. 18 and 19 is generated from the equation 

Here j is the vertical index and i the horizontal index. There are 40 points per wave- 
length used in this example so that the peak-to-peak roughness is 112 wavelength 
and the wavelength of the roughness is one wavelength. The rough interface gen- 
erates backscattered energy and also transmits energy into the bottom (Fig. 18). 
This energy can significantly interact with the cylinder (Fig. 19) - however, the 
differences between Figs. 18 and 19 in the water column are very slight. This is 
emphasized in Fig. 20 where we show the received timeseries for a receiver 3.25 m 
above the interface at the horizontal location of the array of Huygen's sources for the 
case of no cylinder in the bottom (solid line) and a cylinder in the bottom (dashed 
line). The two curves are almost indistinguishable. There is, however, a small but 
noticeable difference between the two curves in the 6-8 ms interval. Another inter- 
esting feature of these two curves is the the appearance of a definite frequency of 
backscatter for this case. This is expected from a perturbation analysis of the rough 
interface. Following the work of, for example, [19] we expect for our given roughness 
wavelength that the maximum backscattered field should occur approximately when 

In our case the perturbation has a wavelength of 1 m so that we find an optimal 
frequency of approximately 750 Hz or a period of oscillation of 1.3 ms which agrees 
well with the result of Fig. 20. 

3.4 An example of time reversed propagation 

As shown above it is straightforward to introduce an incident field into the grid 
by using an array of monopoles and/or dipoles. Another interesting application of 
this concept, is to time-reverse [20] the scattered field at the receiving array and 
propagate it back into the medium. We would expect the field which has been 
scattered from compact objects to focus back at those same objects. 
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We consider the same cylinder and medium as the previous example but now the 
cylinder is only partially buried. A time snapshot of the pressure field is shown in 
Fig. 21 just after the incident field has encountered the cylinder. In Fig. 22 we 

ABOVE 
0.85 
0.65 
0.45 
0.25 
0.05 

BELOW 

Figure 21: Plane-wave field incident on partially buried aluminum cylinder 

show the time-reversed pressure field recorded by 210 receivers. The first of these 
receivers is located in the water just above the interface and the others are located 
sequentially above it. Starting from the right hand side of the plot, the incident field 
is evident, then backscatter from the rough interface, and then from 7.0 to 5.5 ms 
an event associated with backscatter from the cylinder, and then finally backscatter 
from the rough interface again. The field of Fig. 22 is then used to  excite the array of 
dipoles (just for the positions of the 210 receivers). We stop the time-reversed field 
just prior to the time that the original incident field is present in the time series. In 
this numerical experiment of time-reversed propagation, we suppose that we do not 
know what created the scattered field. Hence although the cylinder was used in the 
FD modelling to  produce the scattered field of Fig. 22, it is not included in the model 
for the backpropagation of this energy. Instead, only a two halfspace medium is used 
in the modelling of the backpropagated scattered field. In Figs. 23 and 24 we show 
2 time snapshots of the resulting field as it propagates back into the grid. Figure 23 
shows the field scattered from the cylinder just starting to focus and Fig. 24 shows 
the field close to the time of maximum focussing; the focus is along the side where 
the original specular reflection occurred. For this example, our recording aperture 
did not sufficiently surround the scatterer and the frequency of the source was not 
high enough to obtain a good definition of the scattering object; nevertheless, the 
backpropagated field did focus at  the correct location, corresponding to the area of 
specular reflection from the object. 
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0.0 2.5 5.0 7.5 10.0 12.5 
Time (ms) 

Figure 22: The time history of the time-reversed pressure field (absolute value) as 
recorded along a vertical army of receivers located at the line of incidence 
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Figure 23: Back-propagated field (absolute value) as scattered field is just starting to 
focus; the cylinder is not used in the modelling 
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Figure 24: Back-propagated field (absolute value) near the tinae of maximum focus- 
ing; the cylinder is not used in the modelling 
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Summary 

We have described some of the theory underlying a visco-elastic Finite Difference 
code (in particular, the RBS ED code). We compared the FD computations with a 
suite of analytical cases for both homogeneous propagation and scattering and found 
that the FD results were in good agreement with the analytical results. The attenu- 
ation properties of the FD code are in good agreement with analytical computations 
if one uses a realistic frequency dipersion relation in the analytical modelling. We did 
computations of scattering from aluminum cylinders, which have a very high veloc- 
ityldensity contrast with the surrounding fluid and obtained good agreement with 
analytical computations for the 4 quadrants of scattering, although the results were 
best for the backscatter direction. We consider aluminum shells of varying thickness 
and found that we obtained good results for shells only 3 grid points thick. 

We then showed how we could introduce an incident field into the grid by exciting 
an array of dipoles. We used this concept to introduce a generalized plane-wave, 
corresponding to  a two half-space medium into the grid. In particular we considered 
an incident wave for which the wavefield in the bottom half-space was evanescent 
and considered the scattering by a buried aluminum cylinder. We then repeated the 
computations for a rough interface. For this particular example, the rough interface 
introduced more energy into the bottom but the signal received in the water column 
was dominated by the backscatter from the rough interface. Reflected energy from 
the cylinder was just observable in the backscattered signal. Finally, we showed 
that  with the incident-field formulation of this code, one can easily back-propagate 
scattered fields and focus this energy into areas of high reflectivity. 
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