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IMPULSE RESPONSE OF A LAYERED BOTTOM

By

0., Hastrup

ABSTRACT

Numerical methods are used for the Fourier inversion of the
frequency-dependent loss transfer function. Because of the
non-zero finite values of the integrand for an infinite high
frequency, the asymptotic value is subtracted from the integral,
thereby making it possible to use a finite truncation frequency
in the calculation of the remainder integral. The influence of
a correct asymptotic value, truncation frequency, and frequency

increment is shown in graphs,

The impulse response is calculated at several angles of
incidence for typical two and three layer models and is shown

in graphs.






INTRODUCTION

To classify the ccean bottom as a reflector, i1t is of importance

to describe the reflectivity in a simple but general way.

One of the most used quantities i1n this respect 1s the reflection
loss; which; for a given layering system, depends on both frequency
and angle of incidence, This method gives the most detailed
information but requires several lengthy and complicated

calculations,

The use of the distortion of explosive-generated, broad-band
pulses gives a very simple, direct picture of the reflectivity

but 1s specific with respect to the used source,

This limitation can be overcome by working with a pulse length that
1s very short compared with the travel times between the layers,
so the reflected signal i1s an approximation to the impulse

response caused by a delta pulse,

The impulse respcnse for a certain angle can be obtained by

a Fourier inversion of the frequency-~dependent complex reflection
coefficient for the same angle, In principle, this operation
does not give greater difficulties but a certain care has to be

shown at some of the points in the numerical calculations,
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1.1 Theory

Assuming that the bottom can be approximated by a linear and time
invariant system, the reflection coefficient H(y) will then
represent the transfer function for the system. This means that
an input f(t) with a Fourier transform F(y) =/{ f(t) e-iwt dt

will result in an output g{t), determined by

r Fw)+ H(w) oWt dy (Eq, 1)

g(t) = Fri

For the delta pulse, also called the Dirac pulse, there exists
the pair §(t) => 1 (see e.g. Ref. 1). This, together with Eq.1,

determines the impulse response h(t) as:

h(t) = ﬁ [H(m) SR (Eq. 2)



For a single half-space as a reflector; the transfer function

can generally be written i1n the following way:

or, using the signum function sign |y,

B SENY .
H(y) =4, * e = A (cos g, + 1 sin g, sgny),

which; inserted in Eq. 2, gives

i iyt . 1
h(t)==A°[cos B g e Y¥ay + sin 8o —é; i sgny oWt dw] .

1 .
From the pairs g(t) <> 1 and _t <> .1 sgny we obtain
”

sin g,

h(t) = A,-cos g~ §(t) - A (Eq. 3)

o TTt

which 18 shown in Fig. 1.



If there is nc¢ damping in the present case; 6, will be zero
for angles of incidence less than the critical angle ; hence
the impulse response is represented by the delta pulse at zero
time, Only after the critical angle will there exist a phase

shift causing the hyperbolic term in the impulse response,
1,2, Numerical Calculations

In the case of a layered bottom, H( w) is generally so
complicated that the integral in Eq. 2 has to be calculated by
numerical methods. Because of the factor eimt the integrand
will oscillate, thereby making it impossible to use nermal

quadrature,

By approximating H(w) with a series of straight lines corresponding
to a constant-frequency interval length and differentiating twice,
we obtain a sequence of equally-spaced delta pulses. These

pulses can then be transformed into the time domain and, after

some additional calculations, yield the required impulse response.

The method is described in detail in Ref. 2.

Later on in the numerical calculations it is necessary to truncate
the integral at a frequency high enough for the remainder to

be ignored., But there will then exist a finite reflection loss
for W =2 ®, so that any termination of the integral will cause a
serious truncation error. To avoid this difficulty we remove from

the transfer function the asymptotic value that corresponds to the



case where the upper layer is acting as a half-space reflector:
H(w) = H(w) + T(w) ,

where
T(w) = 0 for w=+w .,

Using Eqs. 2 and 3, the impulse response can be written as

WD
m| H(e) ]
h(t) = Re [H(-)] 8(t) - E[H—l +i T(w) etW (Eq. 4)

dw,
Tt
o
where Re[ ] and Im[ ] are respectively the real and imaginary
part. The last integral can now be calculated by truncating

at w,, such that T(w, )<<1,

In the case where no damping is present this procedure will not
be possible, because T(Ww) will keep oscillating even for W = =,
Therefore another method has to be used; which we will illustrate
by a two-layer model and waves with vertical incidence. If the
amplitude of the incident wave is unity, the amplitude of the
reflected wave will represent the reflection coefficient., The

reflected wave will be composed of the following parts:

a, Waves reflected from the lst interface.



b. Waves senetrating the 1st interface, passing through
the layer, being reflected from the 2nd interface, and finally

passing through the 1st interface agair.

c. Waves penetrating the 1st interface, undergoing two
reflections from the 2nd interface and one from the 1st before

leaving the layer through the 1st interface;, etc,

Dencting reflection coefficients by H, and transmission
coefficients by P, and letting the indices correspond to the

layer number as indicated in Fig. 2, we obtain:

Href - H10 T
mZik'd'
Po1-tiz;+Pio® ¥
-4ik d
POI.HZI‘HOI‘HZI.P],O.e 1 s (Eq. 5)

where 2k d, is the phase shift in the layer. Introducing
the sound velocity @ and frequency Ww ;, this can also be

written as (2d,/a,)w. The Fourier inversion of Eq. 5 can be

carried out by using the pairs 8(t)e=+1 and f(t-t )esF(w) e oY,
when f(t)=F(Ww), yielding the impulse response as:
h(t) = H ;.8(t) + )
2d,
Fo1*H21°F10 °(t = ) 33
7
Pox'H21‘H01‘H21‘P10‘°(t " e, ) ¥
(Eq. 6)




The transmission coefficient will always be positive and, for
an increasing impedance through the layers, only the reflection
coefficient H01 will be negative, We .herefore obtain the
impulse response as a sequence of delta pulses separated from
each other by the travel time (2d,/a,) and with alternate

signs after the 2nd pulse,

At this point it is possible to get an idea of the influence of
damping on a separate pulse., Let us consider the first reflection
from the second interface and represent the damping by a

complex wave number k'=k(l ~ ie)y which, used with Eq. §,

gives the phase shift:

—2ilk? -~ - - -
o-2ik'd__-2ikd -2ked_ -i(2d/a)w _-(2de/q)| w|

The Fourier inversion is then carried out by the use of the
pairs e-—ﬂ|t|+}29/(32+ u.lz) and F(t) <> 2n £(-w),
when f(t) <> F(w), resulting in the second pulse given by

dlel/ai

n(4(d,e,/a,)z+(t- 2d,/u,)2)

PO!'H21°P10

In this case it is not a delta pulse, but a "gaussian —looking"
pulse that is obtained; thus increased damping will decrease

the peak amplitude but widen the pulse.



Working with plane waves, a physical requirement 1s a causal
response for vertical incidence because, except for vertical
incidence, one can consider the reflection as starting at time
‘minus infinity, Assuming at this point that Im[H(u}] = 0, this
means that the last term has to be causal. To obtain this it is
very important in the calculations to use the right asymptotic
value of H(yw) calculated from the top layer as half-spaced.
Figure 3 shows the result for vertical incidence and near-zero
time; when using the value of H as bias at g and at

infinity. The parameters for the model used are given in Fig, 2.

For the same model and incidence, the effects of the truncating
frequency and frequency increments on the shape of the second
pulse are shown in Figs. 4 and 5. The error caused by a too

early truncation shows very clearly ain Fig. 4.

Returning to the requirement of causality, this 1s not fulfilled
by the second term in Eq, 4 except when Im[ ] = 0, Under the
same assumption of a finite and constant damping § pr. wave
length; the damping will be unlimited for y 4 =. Therefore,

for |y =+ ®; § must trend towards zero, which 7 i11n means that
the phase shift, and thereby the imaginary part of the loss,
must also approach zero. Since we are not able to describe the
exact way that the damping behaves for infinite frequencies we
will maintain the chosen model, but will remember the cause for

the non-causality in case of vertical incidence,

Had the damping in the water been taken into account; the reflection
from the first interface would not have been a perfect delta pulse

but a finite pulse,as the reflection from the second interface.



Because of the asymmetry around t = 0 for the hyperbolic term,
the effect when using the impulse response for convolution will
be negligible for signals of a certain length, which again agrees

with the limited frequency band for such a signal,

10



2, NUMERICAL EXAMPLE

To 1llustrate the method, the impulse response for a two-layer
and a three-layer model has been calculated and plotted for
the following angles of incidence: 09, 40°, 60°;, B80°. The
data for the two models are given in Fig. 2. On the results
shown 1in Figs, 6-13 the delta pulses are indicated by solid

arrows with a length proportienal to their value and sign.

Looking, for example, at Fig, 11. which shows the i1mpulse response
for the three-layer model and 40° incidence; we notice the following
reflections: first the delta pulse and the hyperbolic term from

the surface, then the gaussian-looking pulse from the second
interface., Because the critical angle for the half-space 1s 32.3°,
the reflection from the third interface will involve a phase shift;
which gives the pulse from this layer an inverted look. The next
pulse to be seen on the figure occurs at t 4 4.5 and 1s caused

by the reflection of the previous pulse from the first and second
interfaces before leaving this layer through the first interface.
The pulse will have the same polarity as the incident because an
additional reflection from the first interface separating a higher
from a lower impedance, The following pulses are difficult to trace
exactly because of the repeated influence of the phase shift., The

closing-in of the pulses with increasing angle of incidence is

11



caused by the geometrical phase shift in the layer., For vertical
incidence, Eq. 5 gives the phase shift as (2d/q)y, which;

for other angles of incidence, has to be multiplied by cos g,
where g 1s the angle between the layer normal and the ray

in the layer. Therefore, in the impulse response; the pulses
will be spaced by (2d/q) cos g when the angle of incidence

1s less than the craitical angle associated with the crataical

reflection,

A direct comparison with experimental data is rather difficult
because of the need for a short time constant, which, in practice,
limits the peak amplitude and thereby the penetration depth., A
compromise must therefore be made, and we have considered the
reflection, at three different angles of incidence, of an
experimental shock pulse having a time constant at about

0.3 - 0.4 ms (Ref., 3).

The analysis of the reflection losses using octave band filters
indicates a critical angle of about 60° and relative densities

of 1.4 and 2,3. The reflected pulses suggest that we are dealing
with at least an upper layer where the critical angle is larger
than 70° and a lower layer where the critical angle is less than
70°, On the basis of this information the 4-layer model shown in
Fig. 14 was constructed, and the impulse responses were calculated
for angles of incidence of 70°, 74.5°, and 81,5°, as shown in
Figs. 15a, 15b, & 15¢. These theoretical response curves are

seen to agree well with the corresponding experimental curves

plotted on the same figures,

12
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a ¢ dB/wavelength 0
1,00 1,00
0.97 | 0.01 1.20 0.01 1.35
1.15 0.40 1.50 2,00 2,20
1.20 0.40 1.50 2,00 2.30
0,98 0.05 1.50 0.05 1.40

G/ //<<f
NN
R AR R RIR,

FIG. 14 LAYERING CONSTANTS FOR FIGS.15a,b¥&c
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