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IMPULSE RESPONSE OF A LAYERED BOTTOM 

By 

0. Hastrup 

ABSTRACT 

Numerical methods are used for the Fourier inversion of the 

frequency-dependent loss transfer function. Because of the 

non-zero finite values of the integrand for an infinite high 

frequency; the asymptotic value is subtracted from the integral, 

thereby making it possible to use a finite truncation frequency 

in the calculation of '- the remainder integral. The influence of 

a correct asymptotic value, truncation frequency, and frequency 

increment is shown in graphso 

The impulse response is calculated at several angles of 

incidence for typical two and three layer models a~d is shown 

in graphso 
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INTRODUCTION 

To class1fy the ocean bottom as a reflector~ 1t 1s of 1mportance 

to descr1be the reflect1v1ty 1n a s1mple but general way. 

One of the most used quant1t1es 1n th1s respect 1s the reflect1on 

loss ~ wh1 c h j for a g1ve n layer1ng system ~ depends on both frequency 

and angle of 1nc1denceo Th1s method g1ves the most deta1led 

1nformat1on but requ1res several lengthy and compl1cated 

calculat1onso 

The use of the d1stort1on of explos1ve~generated, broad-band 

pulses g1ves a very s1mple~ d1rect p1cture of the reflect1v1ty 

but 1s spec1f1c w1th respect to the used source. 

Th1s l1m1tat1on can be overcome by work1ng w1th a pulse ~ength that 

1s very short compared w1th the travel t1mes between the layers, 

so the reflected s1gnal 1s an approx1mat1on to the 1mpulse 

response caused by a delta pulseo 

The 1mpulse response for a certa1n angle can be obta1ned by 

a Four1er 1nvers1on of the frequency-dependent complex reflect1on 

coeff1c1ent for the same angleo In pr1nc1plej) th1s operat1on 

does not g1ve greater d1ff1cult1es but a certa1n care has to be 

shown at some of t he po1nts 1n the numer1cal calculat1ons. 
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1 o I~ _?L.L33 RE.SPONSE 

1.1 Theory 

Assum1ng that the bottom can qe approx1mat ed by a l1near and t1me 

1nvar1ant system~ the reflect1on coeff1c1ent H(w) w1ll then 

represent the transfer funct1on for the systemo Th1s means that 
ao 

an 1nput f ( t) w1th a Four1er transform F ( w·) = f ( t) e dt 1 I -iwt 

w1ll result 1n an output g(t), determ1ned by 

g(t) = l 
2'Ti 

co 

F(w)· H(w) e dw I iwt 

-co 

-co 

For the delta pulse, also .called the D1rac pulse, there ex1sts 

the pa1r 5(t) ~ l (see e.g. Ref. l) 0 Th1s, together w1th Eq.l, 

determ1nes the 1mpulse response h(t) asg 

h(t) = l 
2'Ti 

co 

H(w) e dw I iwt 

-co 

( Eq. 2) 
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for a s1ngle half""'space as a reflectorj) the transfer funct1on 

can generally be wr1tten J.n the follow1ng way~ 

0 e ieo w > 0 

H(w) = . 
0 · -19 w < 0 e o 

or~ USJ.ng the SJ.gnum funct10n SJ.gn W~ 

. ieo sgnw 
H(w) = Ao e e = Ao(cos eo+ i Sl.n 9o sgnw), 

wh1ch~ 1nserted 1n Eqo 2~ g1ves 

h(t) = A 0 [ COS . 9 0 

l 
2rr 

e 1 w dw + s1n e JCD • t 

-CD 

1 

0 

1 
2rr 1: sgnw 

-co 

iwt e dw] • 

From the pa1rs 5(t) ~ l and ~ -i sgnw 
rrt 

we obta1n 

Sl.n 9o 
(Eq. 3) 
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If there is no damping in the present case 9 90 will b e zero 

for angles of incidence l ess than the critical angle ; hence 

the impulse response is represented by the delta pulse at zero 

timeo Only after the critical angle will there exist a phase 

shift c ausing the hyperbolic term in the impulse response. 

lo2o Numerical Calculations 

In the case of a layered bottom, H( w) is generally so 

complicated that the integral in Eq. 2 has to be calculated by 
i~ numerical methods. Because of the factor e the integrand 

will oscillate~ thereby making it impossible to use normal 

quadratureo 

By approximating H(w) with a series of straight lines corresponding 

to a constant-frequency interval length and differentiating twice~ 

we obtain a sequence of equally-spaced delta pulses. These 

pulses can then be transformed into the time domain and, after 

some additional calculations, yield the required impulse responseo 

The method is described in detail in Ref. 2. 

Later on in the numerical calculations it is necessary to truncate 

the integral at a frequency high enough for the remainder to 

be ignoredo But there will then exist a finite reflection loss 

for w ~ e~ so that any termination of the integral will cause a 

serious truncation error. To avoid this difficulty we remove from 

the transfer function the asymptotic value that corresponds to the 
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case where the upper layer is acting as a half=space reflectorg 

H(w) = H(e) + T(w) ~ 

where 

T(w) ~ 0 for w ~ ~ • 

' Using Eqs. 2 and 3~ the impulse response c~n be written as 
wo 

Im[H(e)J I 
h(t) = Re [H(•)] 6(t)- + * 'T(W) eiwt dw, 

nt 
0 

where Re[ J and rm[ J are respectively the real and imaginary 

part. The last integral can now be calculated by truncating 

at W0 ~ such that T(w0 )<<1. 

In the case where no damping is present this procedure will not 

be possible~ because T(w) will keep oscillating even for w ~ •o 
Therefore another method has to be used 1 which we will illustrate 

by a two-layer model and waves with vertical incidence. If the 

amplitude of the incident wave is unity 1 the amplitude of the 

reflected wave will represent the reflection coefficient. The 

reflected wave will be composed of the following parts~ 

a. Waves reflected from the 1st interface. 
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b~ Waves ~enetrating t he 1st interface ~ passing through 

the layer~ being reflected from the 2nd interface~ and finally 

passing through the 1st interface agaiPe 

Co Waves penetrating the 1st interface~ undergoing two 

reflections from the 2nd interface and one from the 1st before 

l eaving the layer through the 1st interface~ etc. 

Denoting reflect~on coefficients by H~ and transmission 

coeffici~nts by P~ and letting the indices correspond to the 

layer number as indicated in Fig. 2~ we obtaing 

H ref = HlO + 

p H H H p -4ik 1 d 1 01 • 21 • 0 1 • 21 • 10 • e ~ ( Eq. 5) 

where 2kvdv is the phase shift in ·the layer. Introducing 

the sound velocity ~ and frequency w ~ this can also be 

written as The Fourier inversion of Eq. 5 can be 

carried out by using the pairs 6(t )++ 1 and 

when f(t) .. F(W)~ yielding the impulse response asg 

2d, 
Pol.H21.Plo a(t -~) + 

POl .H21 eHOl.H21.P 10• 6( t ~ 
4d, 
-)+ a.v 

7 
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The transm~ssion coefficient will always be positive and~ for 

an increasing impedanc e through t~he layers» only the reflection 

coefficient H01 will be negativee We ~herefore obtain the 

impulse response as a sequence of delta pulses separated from 

each othe r . by the travel time (2d 1 /a 1 ) and with alternate 

signs after the 2nd pulseo 

At this point it is possible to get an idea of the influence of 

damping on a separate pulse. Let us consider the first reflection 

·from the second interface and represent the damping by a 
' complex wave number k =k(l- ie:)~ which~ used with Eq. 5~ 

gives the phase shiftg 

=2ik'd -2ikd -2ked =i(2d/a.)w ~(2de:/a)l w I e =e .e =e · .e 

The Fourier inversion is then carried out by the use of the 

pairs e-~ltl~2~;(~2 + w2 ) and F(t)~ 2n f(-w). 

when f(t) ~ F(w)~ resulting in the second pulse given by 

In this case it is not a delta pulse j) but a av gaussian --looking" 

pulse that is obtained; thus increased damping will decrease 

the peak amplitude but widen the pulseo 
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Work1ng w~th plane waves , a phys1cal requ1 rement 1s a causal 

response for vert1cal 1nc1dence b ecause, except for vert1cal 

1nc1dence~ one can cons1der the reflect1on as start1ng at t1me 

'm1nus 1nf1n1ty~ Assum1ng at th1S po1nt t hat Im[H(~)] = oj th1S 

means that the last, term has to b e causal o To obta1n th1·s 1t . 1s 

very 1mportant 1n the calculat1ons to use the r1ght asymptot1c 

value of H(w) calculated from the· top layer as half-spacedo 

F1gure 3 shows the result .for vert1cal 1nc1dence and near-zero 

t1me, when us1ng the value of H as b1as at Wo and at 

1nf1n1tyo The ·parameters for the model used are g1ven 1n F1.go 2 o 

For the same model and 1nc1dence~ the effects of the truncat1ng 

frequency and frequency 1ncrements on the shape of the second 

pulse are shown 1n F1gso 4 and 5" The error caused by a too 

early truncat1on shows very cle.arly 1n F1g o 4 .. 

Return1ng to the requ1rement of causal1tyj th~s 1s not fulf1lled . 

by the second term· 1n Eqo 4 except when Im[ J = Oo Under the 

same assumpt.1on of a f1n1te and constant damp1ng ~ p r o wave 

length, the damp1ng w1ll be unl1m1ted for w ~ ~o Therefore, 

f'or w .,. ~J 5 must trend towards zero j wh1.ch f :11n means th.at 

the phase sh1ft , and ·thereby the 1mag1 nary part of the loss » 

must also approach zeroo S1nce we are not able to descr1be t ·he 

exact way that the damp1ng behaves for 1 nf1n1te frequenc1es we 

w1ll ma1nta1n the chosen model~ but W111 reme mber the cause for 

the non~causal1ty 1n case of vert1cal 1nc1dence o 

Had the damp1.ng 1n the water b een tak e n 1nto acc ount s the reflectJ..on 

· ~rom the f1rst 1nterface would not have been a perfect d e lta pulse 

but a f1n1te pulse,as the reflect1on from the second 1nterfac~o 
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Because of the asymmetry around t = 0 -for the hyperbol1c term 9 

the effect when us1ng the 1mpulse res ponse for convolut1on w1ll 

be negl1g1ble for s1grials of a certa1n lengthj wh1ch aga1n agrees 

w1th the l1m1ted frequency band for such a s1gnal. 
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2o NUMERICAL EXAMPLE 

To 1llustrate the method 9 the 1mpulse response for a two=layer 

and a three=layer model nas been calculated and plotted for 

the follow1ng angles of 1nc1.dence g 0° 9 40° ~ 60° ~ 80° 0 The 

data . for the two models are g1ven 1n F1go 2o On the results 

shown 1n F1gso 6=1 3 the delta · pulses are 1nd1cated by sol1d 

arr ows WJ..th a length proport1onal to the1r value and s1gno 

Look1.ng 9 for example~ at F1g o 11 » wh1ch shows t he 1mpalse response 

~or the three=layer model and 40~ 1nc1dence~ we not1ce the follow1ng 

reflect1ons g f1rst the delta pulse and the hyperbol1c term from 

the surface ~ then the gauss1an-look1ng pulse from the second 

·1nterfaceo Because the cr1t1cal angle for the half..,.space 1s 32' o3°~ 

the reflect1on from the th1rd 1nterface w1ll ·1nvolve a phase sh1ft~ 

wh1ch g1ves the pulse from th1s layer an 1nverted looko The next 

pulse to be seen on the f1gure occ urs at t ~ 4o5 and 1s caused 

by the reflect1on of the prev1ous pulse from the f1rst and second 

1nterfaces before leav1ng th1s layer through the f 1rst 1nterfaceo 

The pulse w1ll have the same polar1ty as the 1nc1dent because an 

add1t1onal reflect1on from the f1rst 1nterface separat1n~ a h1gher 

from a lower 1mpedanceo The follow1ng pulses are d1ff1cult to trace 

exactly because of the repeated 1nfluence of the phase sh1fto The 

clos1ng-1n of the pulses w1th 1ncreas1ng angle of 1nc1dence 1s 
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caused by the geometr1cal phase sh1ft 1n t he layero For vert1cal 

~nc1dence~ Eqo 5 g1ves the phase sh1 f t as (2d/~)w~ wh1ch 9 

for other angles of 1nc1dence~ has to be mult+pl1ed by COS 9~ 

where 9 1s the angle between the layer normal and the ray 

1n the layero Therefore~ 1n the 1mpulse response~ the pulses 

w1ll be spaced by (2d/~) cos 9 when the angle of 1nc1dence 

1s less than the cr1t1cal angle assoc1ated w1th the cr1t1cal 

reflect10~o 

A direct comparison with experimental data is rather difficult 

because of the need for a short time constant 9 which» in practice 9 

l i mit s the peak amplitude and thereby the penetration depth. A 
c ompromise must therefore be made~ and we have considered the 

reflection» at three different angles of incidence, of an 

experimental shock pulse having a time constant at about 

Oo3 = 0.4 ms (Ref. 3). 

The analysis of the reflection losses using octave band filters 

indicates a critical angle of about 60° and relative densiti~s 

of 1.4 and 2o3o The reflected pulses suggest that we are dealing 

with at least an upper layer where the critical angle is larger . 

than 70° and a lower layer where the critical angle is less than 

70@. On t he basis of this information the 4 ~layer model shown in 

Fig. 14 was constructed~ and the impulse responses were calculated 

for angles of inc i dence of 70° 9 74.5°~ and 81.5° 9 as shown in 

Figs. 15a» 15b~ & 15c o These theoretical response curves are 

seen to agree well with t he corresponding experimental curves 

plotted on t he same figures. 
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FIG .. 14 LAYERING CONSTANTS FOR FIGS. 15a, b & c 
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DISTRIBUTION Ll ST 

COPIES COPIES 
TR TM TR TM 

MINISTRIES OF DEFENCE SCNR for SACLANTCEN 

MOD Belgium 5 5 SCNR Belgium 

MOD Canada 10 10 SCNR Canada 

MOD Denmark 10 10 SCNR Denmark 

MOD France 8 8 SCNR France 

MOD Germany 13 6 SCNR Germany 

MOD Greece 11 11 SCNR Greece 

MOD Italy 8 8 SCNR Italy 

MOD Netherlands 10 10 SCNR Netherlands 

MOD Norway 10 7 SCNR Norway 

MOD Portugal 5 5 SCNR Turkey 

MOD Turkey 3 3 SCNR U,K. 

MOD U.K,- 20 20 SCNR U,S, 

SECDEF U,S. 70 70 
NATIONAL LIAISON OFFICERS 

NATO AUTHORITIES NLO France 

SECGEN NATO 1 NLO Italy 

NATO Military Committee 2 2 NLO Portugal 

ASG for Scient. Affairs NATO 0 NLO U.S, 

SACLANT 3 1 
SACEUR 3 3 NLR to SACLANT 

CINCHAN NLR Belgium 

SACLANTREPEUR NLR Canada 

CINCAFMED NLR Denmark 

CINCWESTLANT 0 MM France 0 
COMSUBEASTLANT NLR Germany 1 
COMCANLANT NLR Greece 

COMOCEANLANT NLR Italy 

COMEDCENT NLR Norway 

COMSUBACLANT N LR Portugal 

COMSUBMED NLR Turkey 

CDR Task Force 442 NLR U, K, 
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