MR UNCLASSIFIED 2

Technical Report No. §1

SACLANT ASW
RESEARCH CENTRE

DISTORTION OF BOTTOM REFLECTED PULSES
by

OLE. F. HASTRUP

1 MARCH 1966

VIALE SAN BARTOLOMED, 92

N A T O LA SPEZIA, ITALY

4B UNCLASSIFIED



This document is released to a NATO Government
at the direction of the SACLANTCEN subject to the
following conditions:

1. The recipient NATO Government agrees to :ise
its best endeavours to ensure that the informa.ion
herein disclosed, whether or not it bears a security
classification, is not dealt with in any manner (a)
contrary to the intent of the provisions of the Charter
of the Centre, or (b) prejudicial to the rights of the
owner thereof to obtain patent, copyright, or other
like statutory protection therefor.

2. If the technical information was originally
released to the Centre by a NATO Government subject
to restrictions clearly marked on this document the
recipient NATO Government agrees to use its best
endeavours to abide by the terms of the restrictions
so imposed by the releasing Government.



P UNCLASSIFIED

TECHNICAL REPORT NO, 51

SACLANT ASW RESEARCH CENTRE
Vidle San Bartolomeo 92

La Spezia, Italy

DISTORTION OF BOTTOM REFLECTED PULSES

By

Ole F. Hastrup

1 March 1966

APPROVED FOR DISTRIBUTION

Wadly

ENRIK NODTVED

Director

@ UNCLASSIFIED



Manuscript Completed:
18 August 1965



NATO UNCLASSIFIED o

TABLE OF CONTENTS

Page
ABSTRACT 1
INTRODUCTION 2
T THEORY 3
2. NUMERICAL CALCULATIONS 6
<4 REFLECTION OF SHOCK AND BUBBLE PULSE 7
REFERENCES 10
FIGURES 11

NATO UNCLASSIFIED i






DISTORTION OF BOTTOM REFLECTED PULSES

By

Ole F. Hastrup

ABSTRACT

The theory of linear systems combined with numerical Fourier trangformations
and inversion is used to obtain the shape of a general pressure pulse after its
reflection from a general multilayered sea floor. The method is used to
calculate the shape of the reflected shock and bubble pulses after reflection

from models with up to three layers and for different angles of incidence,






INTRODUCTION

In the study of a sea bottom as a reflector it is of importance to be able to
calculate the shape of the reflected pulse from the knowledge of the incident
pulse, the elastic parameters of the bottom, and the layering system. Up to
now the problem has been solved for special selected mathematical pulses
reflected from a liquid half-space where only phase distortion is involved

(Refs. 1, 2, 3 & 4), and not always with the same success.

It is, therefore, worth solving the problem in the general case where there is
no limitation on the shape of the incident pulse nor on the number of solid layers
in the bottom. This can be done by assuming plane waves and using numerical
Fourier transformation and inversion, and by treating the bottom as a linear

system,






1 the general case the reflection coefficient will be complex and frequency
iependent, which means that a harmonic wave will be reflected not only with
1 zmplitude change but also with a phase shift. Therefore, to handle the
reflection of an arbitrary pulse f(t) we can expand this pulse into harmonic
waves using 2 Fourier transformation given by:

00
Flw) = [ f(t) e g
Zo0
where w is the angular frequency. F(w) is generally complex. Denoting the
wmplex reflection coefficient by V(w), we know from the theory of linear
vetems (e,g. Ref, 5) that the output from V(w) caused by a harmonic source
= ".-'Imieimt, and from the formula for the inverse Fourier transformation we

et the reflected pulse.
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n the general case both V(w) and f(t) are very complicated, and f(t) is often
civen graphically, which means that numerical methods have to be used for
caleulating g(t).
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Beeause of the factor e in the integrals, it is impossible to use ordinary
(qu=cdrature in evaluating these, We will, therefore, approximate the functions

) 2nd Viw) ¢ F (w) with a series of straight lines corresponding to a constant

interval length,



Differentiating {nhe spproxirating function twice, we obtain 3 sequence of

impulses {Ref, 5):
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Concerning the nuraerical inverzion of Viw) © Fw) = Gilw), because g(t)

18 Ival, it can e expressed In the following way
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Again, by approximating Glw) by & seriee cf ztraight lines and differentiating

twice, the inversgion can be expregsed, in the same way =8 Eq. 1, by
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The determination of V(w) is carried out using a matrix procedure suggested
by W.T. Thompson (Ref. 6). To be able to handle the general case,damping

has also been included in the method, as shown in Ref. 7.






2. NUMERICAL CALCULATIONS

To handle the above indicated equations, several programmes in ALGOL have

been written for the Centre's Elliott 503 digital computer.

The calculation of the shape of the réflécted pulse involves the use of two
programmes, either

FOURIER INTEGRAL - PULSE SHAPE FROM PHASE SHIFT, or

FOURIER INTEGRAL - PULSE SHAPE FROM BOTTOM REFLECTIONS,
depending on whether it is a simple, liquid, one-layer bottom or the general,

multi-layered bottom.

To check the method, the reflection of a sine pulse involving phase shift only
has been used:; when checked with thé theoretical curves it was found to have
an accuracy of the order of better than 2%. The results are shown in Fig, 1

for different angles of phase shift.

For visualising the pulses the Centre's Plotting table has been applied by

using a ploiter programme, thereby saving time in both plotting and drafting,

(= 2]






3. REFLECTION OF SHOCK AND BUBBLE PULSE

The zignals chosen for investigation are the shock pulse and the first bubble
pulge from the bombetta explosion of a 200 gm TNT charge. The combined
shape is shown in Fig, 2, but, to facilitate the digitising, each pulse is

handled separately because the time interval (20 ms) ie great compared

with the length of the pulge itself. Figures 3 and 4 show the spectira cf the
pulses. To cover the range from 0 - 12 ke sufficiently, steps of 25 cps were
uged, To simplify the calculations,time was scaled with one unit equal to 1 ms,

which means that the frequency range wag from 0 - 12,

(a) One-layered liquid bottom without damping

In this case the theory gives a reflection coefficient that is real and frequency-
inaependent for angles of incidence less than the critical angle and is complex,

with modulus equal one, after the critical angle. This means that in the first

case there will be no distoertion but only amplitude -reduction, and in the second
there will be a phase-distortion depending on the angle of incidence and the

bottom constants. Figure 5 gives the relation betweeén angle of incidence, porosity,

and phase ghift,

The distortion of both the shock pulse and the bubble pulse has been calculated
and the results are given on Fige. 6 and 7, Even if the two pulses had more or

ess the same shape before the reflection there is a véry marked difference

[

; o
after, for example, a 60 phase shift does not change the shock pulse very much,

whereas the bubble pulse almost looks inverted.



To be able to use the reflected pulse shape — in thie cage ta calculate the

phase shift and then also the porogity when the angle of inciderce is known —

the ratio between the maximum and minimum amplitude is ploited as a function

5

of p

hase chift as shown in Fig, 8.

(b) Two and three-layered =olid bottom

The data used for the models are the same as uvsed in Ref. 7 and are given in

Table 1. To give an idea asbout the reflection coefficient based on the two

models, the reflection logses versus angle of incidence and frequency are given

in FPigs. 9-12.

TABLE 1
Meodel

3 0 .9 0 0 1 - Water

A 1.055 0. 26 0.468 | 1 1.5 1.89 1 45% porogity
1,18 0.40 | 0,428 1:5 2.5 2.05 - 35% porosity
1 0 0.5 0 0 1 - Water

*1.008 0.26 0.468 1 1.5 1.89 1 45% porosity

B
1.133 0.40 | 0.428 1,5 | 2.5 2.05 1.5 | 35% peresity
1.8% 1. 07 0. 25 0.5 | 0,79 22 x limestone

To check the accuracy in the time-scale first, the reflection from vertical

incidence has been calculated using Models A and B, and A and B without

damping, covering the time scale from =-0,2 to 9.8 for both shock pulze znd




bubble pulse. The results are shown on Figs. 13 and 14. The calculated
arrival times are given corresponding to the different reflections shown on
the figures. To separate the rays, they are shown with a certain angle of

incidence.

The calculated times correspond very closely to the curves, and the whole

events of reflections from different layers show up very clearly.

The influence of angle of incidence is given for the different model configurations
o)

and pulses for the following angles: OO, 200, 400, 60 and 80°., The results are

shown on Figs. 15-22, In the case of model B the shape has been calculated for

a longer time to show the refleectiocns from the lowest interface,

To show the influence of the different models on the peak amplitudes, these are
given in Figs. 23 and 24 as functions of the angle of incidence. The most obvious

things one will observe are:

a) the very little difference between the two-layer and three-layer

models in the case of the positive peaks,
b) the very little influence of shear for angles less than the critical, and

c) the considerably larger values for positive peaks in case of no shear.

Looking at the shape of the reflected pulse for 80° incidence it might be
interesting to use Figs, 5 and 8 to caleculate back to the porogity of the upper
layer under the condition of no shear. The ratio -*-(A/B) in Fig. 8 will be
respectively 0.47 and 1.3 for shock and bubblé pulses, which gives the angles
880 and '?50 or, using the average 82D in Fig. 5, leads to a porosity of 43%

compared with 45% used in the model.
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