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A DETAILED STUDY OF SOUND REFLECTIONS FROM A LAYERED

OCEAN BOTTOM

By

P. Stangerup

ABSTRACT

The effect of layered sediments on sound reflection from the ocean bottom has
been investigated theoretically and experimentally. Very detailed,systematic
and computer-zided calculations of the reflection coefficient of a two-layer
bottom are made, using well-known theory and varying the following parameters:
(1) velocity and density contrasts; (2) layer thickness normalized with respect
to wavelength; (3) absorption in the sediments (in db/wavelength); (4) shear wave
velocity in the lower layer. Calculations are made both for a harmonic source
and for a broadband source analysed within certain bands around the harmonic
source frequency. A series of curves is obtained represeniing the two-layer
effect for a range of parameters that encompasses typical ocean bottom values.
It is shown that absorption in the upper layer is of great importance in sound
reflection, especially beyond a critical angle, but that moderate shear wave
velocities have little effect, An octave band analysis of experimental data —

using a broadband source — tends to support this theoretical two-layer model.






INTRODUCTION

Very low frequency sound has long been used to investigate the characteristics
of the oceans' deep bottom sediments and has often revealed distinct layers of
different materials, However, it is only during the last few years that higher
frequency sound has been used for similar studies of the layering in the upper
tens of metres of the sediment. This has also aroused interest in attempts to
explain the ocean-bottom sound-reflection mechanism for frequencies in the

kilocycle region by using coring samples,

In fact, the sound reflection loss in the ocean bottom can seldom be explained

by a model in which the bottom is considered as a simple, homogeneous, semi-
infinite reflector. As short-pulse echo-soundings show, the higher bottom
sediments often consist of a complicated system of thin,horizontal layers believed
to be produced by turbidity currents, volcanic deposits, etc. Furthermore,the

acoustic parameters of these sediments can depend on their age.

Many investigators (Refs. 1, 2 & 3) have tried to explain the bottom-reflection
loss by multilayered reflectors consisting of two or more horizontal layers of
different acoustic impedance. The present report describes a more systematic,
theoretical survey of the subject. It will be shown that rather simple models can
be used in many cases, because layers that are thin with respect to the wave-
length of the sound have a very small effect and because high frequency sound

might not penetrate through many layers because of absorption.

The presently described survey has therefore been carried out for a two-layer
reflector in which the lower layer is semi-infinite and in which the thickness of
the upper layer has been normalized with respect to the wavelength. Shearwaves

in the lower layer and the effects of absorption have also been taken into account.






1. THEORY

1.1 Reflection Coefficient

The amplitude-reflection coefficient for the sea-bottom can, in the plane-wave

case, be calculated in a simple way: -

where ZW is the acoustic impedance of the water and Zin 1s the acoustic input
impedance of the bottom. This is completely analogous with the reflection from
an impedance ZL = Zin at the end of a transmission line of characteristic
impedance Zo = E

e

For vertical incidence the acoustic impedance of water is

where pw is the density of the water and Cw is the sound velocity in it. The
input impedance of the reflector is equal to the acoustic impedance of the
reflecting medium, if the latter is semi-infinite. In transmission line theory
this corresponds to having the input impedance equal to the characteristic

impedance for an infinitely long line.

When the angle of incidence is different from zero, the velocity used in the

expressions for the impedances should be the vertical phase velocity, which is

cos 9



where 8 is the angle of incidence. This is illustrated in Fig. 1.

The angles of incidence in the water and the reflector are connected through

Snell's law
kw sin Sw = kB sin B

where kw and kB are the wave numbers in water and reflector regpectively

2fl ¢ :
(k = = f being the frequency).

A layered reflector is analogous to a series connection of transmission lines of
different characteristic impedances, The input impedance of a transmission
line of length £ and characteristic impedance ZD, loaded with an impedance ZL’
is known to be
AR i O - | q.‘.:
z, - —E& - 2

i“ Z_ iz tangs

where 95 = ’}’f is the phase change along the line, rr being the phase shift
per unit length,

An n-layered reflector is shown in Fig. 2, the layers being labelled from the

f.
lowest upwards. It is now easy to find the input impedance of the j'h layer

(j-1)
n

because it can be expressed by the input impedance, Zi , of the (j~1)5t



h
layer and the acoustical impedance, Zj’ of the jt layer (Ref. 4).

p UV_ 12 tan P .
() Bk / ]
ZinJ = zj
. (j-1)
zj % tan c;S j
?5_ =k, h. cos 9 y
i 373 i

where kj is the wave number in the jth layer
hj is the thickness of the jth layer, and

Bj is the angle of incidence in the j' layer.

By using this formula and the fact that the lowest layer is semi-infinite

b B (1)

in Zl), it is now possible to find the input impedance of the whole

system of layers seen from the water above. The reflection coefficient is then

found from

The analogy with transmission lines shows that the problem of sound reflection
can, in principle, be solved by means of a Smith chart (Ref. 5) — at least for
angles of incidence smaller than the critical angle. However, the Smith chart
will probably not be accurate enough and a computer should be used. As will be
shown later, the computer programme turns out to be quite simple, even when

absorption is present.



1.2 Introduction of absorption for n-layer bottoms

Bottom sediments are lossy media. It is therefore natural to include the effect

of absorption in the calculations.

If absorption is absent, a plane sound wave can be characterized in the following

way: -

% S i e—j(mt + kx)

o3 i X
where k is the wave number. If absorption is present, a factor e 5 must be

added, giving

[ 4 = +
y < X % jlwt + kx)

e-j['mt + (k + j& )x]

A

& e—j(wt + T x)

This means that the propagation constant is now complex and that Snell's law

becomes
'-YW sin ew = ’Yj sin O i
= ERWE S = + § &
where wa kw ] s and 'YJ kj ] j
. . ; .th 3
are the propagation constants in the water and in the j layer respectively.

Thus the angle of incidence in the jth layer becomes complex, namely

k

Sinej:ﬁ&T Sil‘!Bw



if absorption in the water is ignored.

The real parts of the propagation constants determine the sound velocity in

the various media

while the imaginary parts, X J_)are the absorptions in Neper/unit length,

The impedances can now be defined as

for vertical incidence and

J (k+j0f)cosej

P. C.

for oblique incidence,which reduces to Z. = A e absorption is absent.

cos ;
J

1.3 Introduction of shearwaves in the lowest layer

The effect of shearwaves can easily be introduced if they exist only in the semi-

infinite lowest layer, since this will only modify the impedance of this layer.

If shearwaves exist in other layers than the lowest, the problem becomes much

more complicated and cannot be solved on a basis of impedance, since each



reflection from a boundary between two media will give rise to both a
compressional wave and a shearwave, In this case the problem mugt be solved
using the boundary conditions for the potentials at each boundary, but this will

not be treated in the present report.

It can be shown (Ref. 4) that the input impedance of a semi-infinite medium

with shearwaves can be written

2 2
= 2 - i
z, zp cos 65 Z_ sin® 2 95
where Z = ———— < and Z = L

’chosep s Y. cos 6

and where ’Yp and ’Ys are the propagation constants (complex if absorption
is present) for the compressional waves and the shearwaves respectively. 8
and Qs are related to the angle of incidence @W in the water through Snell's

law

kwsin QW = ’);sin ep - ,YSsin es



2. CALCULATED RESULTS

2.1 Effect of the upper layer thickness

On the basis of the above theories, a computer programme has been written to
compute the reflection loss for a reflector consisting of an arbitrary number of
layers. Absorption can be included in all the layers, and shearwaves can exist

in the lowest layer.

The programme exists in two forms. One which computes the reflection loss
when a harmonic sound source is used, and the other which computes the
reflection loss for a broadband source analyzed in arbitrary frequency bands,

taking into account the bandwidth of the filter and the spectrum of the sound source.

The programme has been used to calculate the effects of varying the thickness
of the upper layer, the velocity contrasts and the absorption in a theoretical study

of a two-layer bottom model.

In Figs, 3 and 4 are shown the reflection loss vs. angles of incidence for different
values of the thickness of the upper layer when absorption is absent. Results

are computed for two examples., In the first, the velocity of the upper layer is
lower than the velocity in the water, while in the second the velocity of the upper
layer is slightly higher than that in the water., The velocity in the lower layer is
in both cases higher than in the upper layer and higher than the velocity in the
water. These two examples are believed to represent two important cases of two-

layered bottoms.



The curves for zero layer thickness show the reflection loss for the case in which
only the lower medium exists. When the upper layer is thin in comparison with
the wave length of the sound, the reflection loss will be very close to the reflection
loss for the lower layer alone, because nearly all the energy leaks through such a

thin layer.

When the upper layer becomes a quarter wave length thick, there is a relatively
high loss at vertical incidence. This will always be the case when the lower layer
has a higher impedance than the upper one. From transmission line theory it

is known that a quarter wave length line will transform an impedance Z_ to an

L
input impedance Zin' which'is

where Zo is the characteristic impedance of the line. This means that the low
impedance upper layer (the impedance of this is however higher than that of the
water) will transform the high impedance of the lower layer into an impedance that
is quite close to the impedance of the water. In other words, one is closer to

an impedance-matching and more of the energy is transmitted into the bottom.

When the layer becomes half a wave length thick,the input impedance for vertical
incidence is exactly the same as the impedance of the lower layer, i.e. the
reflection loss is the same as if the upper layer does not exist. At about 600
angle of incidence (exactly 60° in the upper layer) the layer becomes a quarter wave

length layer, since the vertical phase velocity in the upper layer becomes

_Cup_
cos Gup

2 C
up

10



This means a minimum in the curve at this angle.

Beyond the critical angle for the lower layer (this angle is reached earlier than
in the upper layer because of the higher velocity) the reflection becomes total.
This can be explained by the fact that beyond a critical angle the input impedance
of the medium is purely imaginary. This means that the input impedance of the
whole system will also be purely imaginary, since a transmission line loaded by
a pure reactance impedance will always show a purely reactive input impedance,

independent of the length of the line.

As the layer becomes thicker than half a wave length, a series of maxima and
minima will show up. The maxima will occur for angles of incidence for which
the upper layer becomes half a wave length with respect to the vertical phase
velocity. The upper envelope for the curve will be the reflection loss curve for
a reflector consisting of only the lower semi-infinite medium. The minima will
occur for angles of incidence at which the layer thickness with respect to the

vertical phase velocity becomes an odd multiple of a quarter wave length.

2.2 Effects of absorption and of source bandwidth

Figures 5 to 16 have been drawn to show the effects of absorption on the reflection
loss for different layer thicknesses, Each figure is divided into three columns.

In the left-hand column are shown some of the same cases as described above

but, in addition, showing the effect of absorption. In most cases the absorption in
the sediments seems to diminish the oscillations of the reflection loss curves, but
in a few cases the opposite occurs, especially for the thinner layers and around
the critical angle. It is also seen that absorption in the lower layer has much

less effect than that in the upper layer.

11



The middle column shows computed results, using a breoad band white scurce
through a filter 1/3 of an getave broad arcund the frequency for which the layer

thickness is normalized.

The right-hand cclumn shows the resulte using a breoad band scurce in an

octave band.

It is seen that the characteristic shape of the curves for a given layer thickness
is the same in the 1/3 octave band when layer thicknegses are less than one
wave length as it is for a harmonic source. For the octave bands this is only
the case for layers thinner than half a wave length at the centre frequency of the
band, At thicker layers all interesting effecis are averaged out in the broad
bands, 1f an explosive scund source is used, the analysis should not be made

in broad frequency bands — which is often the case — but by a Fourier analysis.

However, by comparing the curves for the harmonic source with the curves for
the octave band it is seen thal phenomena beyond the critical angles are
relatively frequency-independent. It seems that the shape of the curve beyond
the critical angle is primarily determined by the absorption per layer thickness

and by the velocity contrast,

2.3 The effect of intrcducing a thin layer in the upper sediment cf the iwo-
layer model

As has already been seen, a very thin layer (with respect to the wave length)
has a negligible effect —- it is nearly transparent. This was illustrated in

Fig. 3.1 for a thin layer overlaying the lower, semi-infinite medium.

Such layers are often found in nature, especially when turbidily currents are

respongible for the depesiticn. As an example of thig it is inleresting to

12



analyze the case in which a thin layer is found within the upper medium of the
two-layer bottom. The bottom now, in fact, is better characterized by a four-

layer model,

Consider, therefore, the addition of an extra layer — >\ /16 thick, for instance —
and allow the location of this layer to change within the upper medium. For each
position of this thin layer a certain reflection loss curve 1s obtained for the whole
system  The envelopes of all these curves give the maximum deviation one can

expect from the pure two-layer model without the exira layer.

The result of such a computation is shown in Fig, 17 — computed for two velocity
contrasts — from which it is seen that, with velocity contrasts that are not
too high, thin layers have little importance, no matter where they are located

in the system.

This result is quite important,since from this one can often simplify the
complicated models frequently obtained from cores or high frequency echo-
soundings. In models that include a series of very thin layers it is possible to

neglect these layers completely and thereby simplify the analysis.

2.4 The effect of the shear waves in the lower layer

The effect of shear waves on the reflection loss for a simple semi-infinite
reflector is shown in Fig, 18. Two cases have been computed, one without

absorption and the other one with the absorption of 1 db/A .

As already mentioned, the computer programme permits computation of the
reflection loss for a multi-layered reflector with shear waves in the lowest
layer. The effect of shear waves in the lower medium of a two~layer bottom
is shown in Fig. 19 for some different thicknesses of the upper layer and for
some different shear wave velocities, In these cases absorption has not been

included,

13



The shear wave velocity is certainly a very difficult parameter to measure in
practice. Velocities from 0,05 - 0,3 times the compressional wave velocity
seem to be typical for marine sediments (Refs. 6, 7). It is seen from Fig. 19

that such low shear velocities have a very small effect on the reflection loss.

If, on the other hand, the shear wave velocity in the lower medium is high

(as in rock) the picture becomes quite complicated, as shown in Fig. 20,
The assumption that the shear velocity should be zero — or very close to zero —

in the upper layer is probably true, The upper layers are nearly always

considered completely fluid.

14



3. MEASURED REFLECTION COEFFICIENTS

The reflection loss for the ocean bottom has been measured over great areas of
the Mediterranean Sea, using explosive sound sources and measuring the energy
of the received signal reflected from the bottom. The angle of incidence was

varied by varying the distance between the transmitting and receiving ships.

The energy was measured in octave bands between 75 and 4800 cps. If the
bottom can be characterized by a two-layer model, it should be possible, in one
or two neighbouring filters, to observe a relatively high reflection loss if the
layer thickness is about a quarter wave length. The effect should be very
pronounced if the layer thickness is a quarter wave length at the centre frequency
of one of the octave bands. For the above filters this means layer thicknesses

in the range 10 ecm - 4 m.

These effects have actually been observed in the measurements. Figure 21
shows results of a measurement where the reflection losses at vertical incidence
are not very different in the different filters (Ref. 8). On the contrary, the
results given in Fig, 22 show very clearly a higher reflection loss in the lowest
filter (75 - 150 cps), which might mean a layering of the sediments with an
upper layer thickness of some few metres. Actually, this case seems to be at
least as common as the case shown in Fig, 21 where the reflection loss does not
vary with frequency. It should be emphasized that the results shown in Fig. 21

and 22 are average results from quite large areas.

Some coring has been carried out, but not deep enough to verify the acoustic
measurements. However, in an area with acoustic results very similar to the
results shown in Fig. 22 — indicating an upper layer some few metres thick —
most of the core contained fine mud, while at the bottom (at about 3.5 m) a

sand layer showed up. Because of the shortness of the core it is uncertain

15



whether this sand layer is only thin or whether it stretches to greater depths. A
core from the area that gave the results in Fig. 21 (frequency independent
reflection loss) showed a much more sandy sediment extending right to the top.

Deeper cores will probably be taken in the very near future.

In Fig. 23 an attempt has been made to fit some measured points to a theoretical
computation of the reflection loss for a two-layer reflector. The parameters
used in this computation are not measured ones, but a trial and error method
has been used in which a certain relationship between density and sound velocity

has been taken into account.

The well-known relationship between sound velocity and porosity (which determines
the density) (Ref. 9) is shown in Fig. 24,which also shows some measured

points obt ained from the cores.

16



CONCLUSION

The purpose of this work has been to make a systematic, theoretical survey of

the reflection loss from a two-layer reflector.

It has been seen that the shape of the curve showing the reflection loss vs,
angle of incidence is very characteristic for a given layer thickness and should

be easily recognizable.

Absorption alters the curves, especially around and beyond the critical angle,
its effect being mostly to diminish the oscillations in the curves. Absorption

in the lower layer has much less effect than that in the upper layer.

Wide angle measurements with a harmonic source should be very useful. If a
broad band source is used, a Fourier analysis is to be preferred to energy
measurements in broad frequency bands, since otherwise many interesting
effects are averaged out. However, layers which are about a quarter wave length
thick can be — and probably have been — detected using explosive sound sources

analyzed in octave bands,

Shear waves in the lower layer of the two-layer model have a negligible effect
on the reflection loss for the low shear wave velocities expected to exist in

porous marine sediments.

Layers that are thin with respect to the wave length are practically transparent,

A useful supplement to this theoretical work would be to investigate the effect of

velocity gradients in the layers.

17



Programmes to compute both the pulse distortion upon reflection from a
layered reflector and the reflection coefficient with shear waves in all the layers
are being prepared by O. Hastrup and will make a natural conclusion to the

present theoretical work on layered bottoms.

18
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Analogy between Sound Reflection from

the Ocean Bottom and Reflection from a
Discontinuity in a Transmission Line
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Bottom
Sediment

Infinitely Long Semi-infinite
»~ Transmission Line

Fig. 1
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