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In this paper a theoretical treatment is given of the short -distance 
propagation and reception of a step-function in the presence of a con-
ducting half-space. The step-function is generated by a horizontal 
electric dipole situated in the conducting half-space. First the wave-
forms of the electric and magnetic fields are computed for points in 
the conductor, making use of Laplace-transform theory. Since the 
vertical electric field is discontinuous at the interface its waveform 
in points just above the conductor is derived separately. It appears 
that for horizontal distances larger than three times the antenna depth 
the attenuation of this vertical electric transient with distance is equal 
to that in the harmonic case, viz. proportional to the inverse square of 
distance. Moreover s smearing out of the signal as it is propagated in 
the horizontal direction does not occur, contrary to that of the other 
components. The waveforms of the vertical electric field and the com-
ponent of the horizontal magnetic field parallel to the antenna are 
plotted. 

The second part deals with the reception of transients by detectors 
(e. g. coils) having a frequency characteristic proportional to some 
power of frequency. It i s shown that a rising frequency characteristic 
(differentiator ) may cause an extra attenuation of the transient as a 
whole with horizontal distance while a falling characteristic (integrator) 
reduces the attenuation. The response of a system with a w t 
characteristic is treated extensively. Finally an unproven hypothesis 
is given, establishing a simple relation between the slope of the fre-
quency characteri s tic of the det ector and the extr a attenuation suffered 
by the transient. 
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In the search for improved methods for detecting and classifying submarines 
the possibility of using electromagnetic waves for this purpose is being investi-
gated. In this there are involved problems concerning the transmission., 
propagation.., reflection and reception of electromagnetic signals. These signals 
need not necessarily be sinusoidal in their tt.me dependence; also signals of a 
different shape, here generally called •ttransients", are possible and may some-
times even · be preferred. Using this definition, every practically realizable 
signal is in fact a transient since a pure sinusoidal wave has an infinite length. 
In this paper the propagation and reception of a special type of transient, the 
step-function, in the presence of a conducting half space, will be investigated 
theoretically. 

The problem of the propagation of electromagnetic signals over a conducting 

earth was first treated by Sommerfeldt) in 1909. He gave the fundamental 

1 

inte~als which describe the behaviour of the electromagnetic field, assuming a har-
-monic time dependence. Since these integrals do not lend themselves easily 

t . 1 i d . .2,3,4) o numer1ca computat ons much work has been one by varwus investigators 
in order to find approximate expressions which are more suited for numerical 
purposes. These formulas are usually valid for restricted ranges of the various 
parameters and variables involved, such as conductivity of the earth, height 
above or below the surface and horizontal range. For the case of a horizontal 
electric dipole situated in the conducting half space a fairly complete treatment 

of this subject has been given lately by Banos and Wesley5) :s who in their paper 
. also give an extensive list of references to the earlier literature. Though they 

also give solutions for other ranges their main interest is directed: to the near 
field, which is , the case of interest in detection of and short -range communications 
with submerged submarines. 

1) A. Sommerfeld,. Ann.Physik 28 (1909),. 665-737 
2) B. van der Pol,. z. Hochfrequ;;;z. Tech. 37 (1931),. 152-157 
3) H. ott, Ann. Physik 41 (1942).. 443 ... 466;-.Ann.Physik 43 (1943), 393-404 
4) S. 0. Rice,. Bell Syst~ Tech. J. 16 (1937), 101-109 -
5) A. Banos jnr., J.P. Wesley. Th7 Horizontal Electric Dipole in a 

Conducting Half Space. Vols I and II. (Scripps Institution of 
Oceanography.., SIO References 53-33 and 54-31). This paper contains 
a fairly complete list of papers dealing with the subject. 
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All these studies have in common the fact that they assume a harmonic time 
dependence of the antenna current. In practice, however, transmitted signals 
may have different shapes. Due t o the large dispersion which electromagnetic 
waves suffer in a highly conducting medium like sea-water the signal shape will 
be, in that case., greatly altered during the propagation. This problem has more 
recently begun to receive much interest. especially because of its importance in 

geophysical prospecting. Wait, in one of his papers6), has given an extensive 
survey of the existing literature, both of Western and Russian origin, on this 
subject. In the same paper he treats the propagation of transients generated 
by a horizontal electric dipole, limiting himself.; however, to the description of 
the behaviour of the electric field in the case of excitation of the antenna with a 
delta-pulse. As mentioned above, the paper here will be concerned with the 
propagation of step -functions .. this being a basic type of signal from which other 
signal shapes (square pulse .. repetitive square wave) can be derived by super- · 
position. In addition to the electric field components the magnetic field 
components also will be derived for points of observation in the conducting 
medium and at the interface. Since all components are continuous at the inter-
face, except the z component of the electric field, a separate expression has 
to be derived for this component in points lying in the non -conducting medium 
just above the interface. 

In addition to the effects of propagation the signal shape may also be 
influenced by the frequency response of the receiving equipment. This will, 
in general.; occur when the response of the receiver is not flat within the 
frequency range occupied by the transient. A simple example of this is the 
reception of magnetic signals with the aid of a coil. As a result an important 
quantity like the range dependence of the signal amplitude. as obtained from a 
recorder connected to the output of the receiver. may differ greatly from that 
expected on the basis of computations which only take into account the propa-
gation of the transient and do not consider the influence of the receiver. It is 
felt that this important fact is often not fully realized. 

This paper is divided into two major sections. Section ·l will be concerned 
with the derivation of the responses of both the electric and the magnetic field 
to a step-function excitation. In Section 2 the influence on the signal shape of 
a few simple receiver characteristics will be examined. Some mathematical 
details will be found in the Appendices. 

6) J. R. Wait . Appl. Sci. Research~ (1960),. 213-253. 
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Section 1. Propagation of Transient Signals 

1.1 Theory 

In the following a cartesian coordinate system will be used with its origin 
lying in the interface separating the two media. The conducting medium (sea 
water in the case of interest) with con-
ductivity ·<J"· and dielectric constant E., , 

will occupy the half-space z ) 0 ,. while 
the half space z ( 0 is non -conducting 
and has a dielectric constant f. 0 

The magnetic permeability ./"-o is the 

same in both media. An infinitesimal 
electric dipole of length d.t is situated 
on the positive Z-axis at the point 
(o,o,h). Its direction is parallel to the 
X -axis, as indicated in Figure 1. The 
point of observation, P , will be des-
cribed by its coordinates (x,y,.z). All 
quantities bearing relation to the non-
conducting medium will be denoted by 
the subscript zero, those related to the 
conducting medium will bear the sub-
script 1. The MKS unit system will be 
used. 

( DIE'tECTR.IC) 
------------~----------~x 

z 

Fig. 1. Coordinate system with 
dipole in conducting half 

space. 

As shown by Sommerfeld 7) the fields may be derived in the case of a 
horizontal dipole from a Hertz vector n pos-sessing both an X - a.Bd-a z 
component, . given for the non-conducting medium (z < 0) by 

7) A. Sommerfeld, Vorlesungen uber Theoretische Physik, Band VI. 
(Dietericb"sche Verlagsbuchhandlung, Wiesbaden, Germany .. 1947). 
pp. 260 ff. 
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n - :I: d t 1 oo___;e;;_u._o_-z._-_u._, h_ 
0~ - ~'tr i.. c w 0 ~ U..,+ u, 

and for the conducting medium (z) 0) by 

n,~ = o 

n :r. dt 
IZ. =- - :L 1'1'C1"" l ao l ) -c.L 1 ( z.-+ h) 

- 0 u..,-o. .. Q.. J l~ ) ). d~ 
"()~ 0 r.2.u. +-~2.l.&. 0 r a I I D 

where 

~~ == x.1.+ ~~ 

'"R!:::; p~ {:z;.-rh)1 
""R~= p1. t- (z.-h)~ 

u.} ;:: )..1 + 't,~ 

Eq.( 1) 

Eq.(2) 

Eq.(3) 

Eq._(4} 

I denotes the current strength) A is a variable of integration and w represents 
the angular frequency. 
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In Equations -(!) to (4) displacement currents in the conducting medium have 

been neglected which is equivalent to neglecting wE:, compared with unity. In a-
the case of sea water this is permitted for frequencies below 10 Me/ s. It can 
readily be shown that the Hertz vectors, as given above, satisfy the boundary 
conditions at z = 0: 

~,_ Do== "·'Ln. 
'to'" -an .... = '(,,_on, .. 

~z. '3 -z. 
Eq. (5) 

d.iv Oo -== ell:" O, 

5 

The electric and magnetic fields are derived from the Hertz vectors according to 

Eo """ - r(J'- o(J + ~rdd. d~v Oo Eq.(6a) 

~0 == L ( 0 W curl Oo Eq.(7a) 

£, = - r,'" CJ, -\- gr-id. d ~" o. Eq. (6b) 

H. = (5"' cu.rl n. Eq.(7h) 

As a further approximation it is assumed that ~0 ~ 0 i.e. that the wave-
length in air is infinite. This assumption is justified as long as ranges of 
interest are small compared to one free space wavelength. In the case on hand 
where attention is restricted to ranges of a few nautical miles this holds for 
frequencies up to a few kilocycles per second or; in the transient case, for times 
longer than about 1 msec. This is the only limit upon the validity of the results 
which will be derived in this paper. To this approximation Equations (1)-(4) 
become 

n I d.~ joo ) kz.- '"""' J ( ) 
o x. ~ i 1T 'tc w ~2. o ( u. - x e. .~ ~ p A d.}.. 

("2.(o) 
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:z:: ctt [e-¥R, e.-1Ro .. (oo -u.(-z.+h) J ] n,"' ~ !l frtr "R, - '"Ro +:;, - e U.+ .X 0 (~p) ~ cl.~ Eq.(10) 

n ::r:cll ~1
00 

) -u.l~+h)J ) 
az ~ - 1'11' a- 6"' ~x o ( u.-X e " (>. p d.~ 

( z. )o) 

Eq.(11) 

where the Sltbscripts from ~ and u. 1 have been dropped for brevity's sake. 

Equations .(lO) and (11) may be written as 

n :c. Jt [-n ~ ~N .t 7J
1 

( ~N )] 'X.~ "''tl" cr r, - 0 - .2. a z.. + J" )z."- ()z. + ~ Eq.( 12) 

Eq.(13) 

where the following abbreviations have been used: 

[
00 -u.l-z+h) J ) N= e. 0 (~p d).. 

0 u. Eq.{14) 

"Po - Eq.(15) 

Eq.(16) 

The second equality in Equation (15) has been demonstrated by Sommerfeld8) 

while for N , Magnus and Oberhettinger 9) give the following expression~ 

8) A. Sommerfeld, op. cit • • reference 7. p. 243 
9) W. Magnus, F. Oberhettinger. Formulas and Theorems for the 

Special Functions of Mathematical Physics. (Chelsea 
Publishing Co .• New York, 1949). p. 133 WN 
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where I (z) and K (z) are modified Bessel functions of order zero. It can 
0 0 

furthermore be shown that the functions P 
0

, P 1 and N all satisfy the wave 

equation 

Eq. (18) 

With the aid of Equations .(6), (7) , (12) to (16) and (18), the following expressions 
for the field components may be derived. 

Eq.(l9) 

Eq.(20) 

Eq.(21) 

Eq. (22) 

Eq. (23) 

Eq.(24) 

At the interface z = 0 , all components are continuous except the vertical com-
ponent of the electric field. Therefore the behaviour of this component at 
points situated in the non -conducting medium ju.st above the interface cannot be 
derived from Equation (21). Using Equations (1), (2) and (6a) it may be shown, 

however, that [ :r. d~ 'a~ N ] 
Eo-.. (-.;=o) ::l1'1Ycr. O!J<'d-z.>. Eq. (25) 

"Z.-::: 0 
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In deriving Equation ( 25) one has to wait until the various different1ati<OnS have 
been perfor·med before setting ¥0~ o , since otherwise incorrect results will be 
obtained. 

All formulas given so far apply to the stationary case, i.e. the case where 
the antenna current i( t) = i exp ( i(..t)t). If .. however. i( t) is not sinusoidal 

0 

but a transient) the response of the electromagnetic field to such an antenna 
current can be found with the aid of Laplace transformation. According to the 
rules of Laplace transformation the current is considered as a function of 
frequency I(i.w ). This function is obtained by taking the Laplace transform 
(symbolically denoted by the operator L) of i(t): 

where p = i w , and assuming that i(t) = 0 for t < 0 . After having replaced 
i w by p throughout. Equations (19)-(25) give the field components as. a 
function of p . Their behaviour as a function of time can be obtained by taking 

the inverse Laplace transform (indicated by the operator L -l) of Equations 
(19)-(25). If for example e 1x(t) denotes the x component of the electric 

field as a function of time it is obtained from 

In this paper the response of the electromagnetic field to a special transient, 
the step function. will be investigated. In the time domain this function is 
described by 

i.lt) 
where 

I. u.l-t) 

t <. 0 

t ~0 
In the frequency domain it is represented by the function 1.. . Examination of 

p 
Equations (19)-(25) reveals that in the expressions for the field componeats 

~WNORADED 7'0 
NATO RESTRICTEDUNCLASSlf!ED 
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the only quantities occurring are derivatives with respect to the various spatial 
~ ~ "P. N N yl. · L. 

coordinates of ·~) ;l. ) -t- ' T and v· since = (. ~0 '-'-' = ~~I 

Since the operations of Laplace transformation and differentiation with respect 
to spatial coordinates commute, it will suffice to compute the inverse Laplace 

t f f h f d f A d . t d '1 . 110) rans arms o t e a oresai ive quantities. ccor 1ng o Er e y1 et a 

where 

and 

1'"R~ 
~.=-­T 

1 0) A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricorn!, 
Tables of Integral Transforms (McGraw-Hill Book Co. Inc., 
New York, 1954). Vol. I. pp 245, 246. 

~WNGRADED TO 
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Eq. (26) 

Eq.(27) 

Eq. (28) 

Eq. (29) 
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In the same table it is found that 

where 

a= \ + '-

Using the well known theorem 

where 

f. l p) 

one obtains 
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( -z. t "' ):t 
p 

11) A. Erdelyi et al., op cit., reference 10,. Vol. 1.; p. 284. 

NATO RESTRICTED 
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Eq.(31) 

Eq. (32) 
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L-'{~l =it (f:--c-) -a. . ~oa:ra. I /~oo-p:?.) 
~.1 ~ a .:1 r e o \ ~-r: d t:' 

/"ocrp~ 
The integrals on the right can be transformed by setting 8 r =- X 

(not to be confused with the coordinate x), thus giving 

where the function Mn (a .. 3 ) (n integer) is defined by 

11 

Eq.(33) 

Eq.(34.) 

Eq. (35) 

For use in the final results it appears profitable to introduce a related function 

N (a, ! ) de tined as n 

Eq. (36) 

The function M (a,O) can again be found in a table of Laplace transforms 12) 

12) A. Erdelyi et al., op. cit., reference 10, Vol. 1, p.l96. 

NATO 
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a..> I 

In the final results only those functions occur for which n = 0, 1, 2 or 3. 
For these specific values of n , Equation (37) gives 

I 

M
0

{a.,o) = (a..~-IJ-J: 

3 

M,lo..,c) = a.. t a_:l. _, )- i = f~ l p'--r:tdl.)(~J'Ro'f; 

'S" 

M1 (a.,o) = ( l 0.~+1) ( ""1 -· r -s: := f L l3 p ~ + g p1 d 1 + 8 JLf) ( l d 'R0 f:l 

Eq.(37) 

Eq.(38) 
~;>' 

where use has also been made of Equation (31) and the quantity z + h has been 
denoted by d , which notation will be retained throughout the rest of this paper. 

Since in Equations (19)-(25) L-l l r _, N { p) l 
do not themselves occur but only their various spatial derivatives, the simplest 
of these derivatives are given here 

:z. [ (d )l. n+l -a.! l )ll = T l r Mh+l - 3 e.. Io ~ J 
4d 

p:t M"'+' 
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in which the arguments have been dropped. From these the higher derivatives may 
be derived without difficulty. Further properties of the functions M (a. ! ) n 
and N {a, 3 ) are given in Appendices A and B. Since neither of the functions n 
has been tabulated as far as the author has been able to ascertain, the function 
N (a, 3 ) has been programmed for computation on the ERA 1101 computer. n 

1. 2 Results for the Field Components 

In Section 1. 1 the theory has been developed sufficiently far to render 
possible the computations of the field components, starting from Equations 
(19) to (25). The actual computations are straightforward but tedious. There-
fore only the final results will be given, first for the general case, then for the 
special case that both dipole and observer are situated at the interface, 
i.e. z == h == 0 • For the sake of brevity the following abbreviations will be 
used besides those already defined in Equations (29). (31), (32) and (36): 

ktx) ={;.\~~->.. 

F(~,x.) = 2l,+Ll.)No-ttf;f'·(g+9l)N,+ q(;)'i(•:H·'-' X) Nl.-

- 1l (~)' N~ -t ~ ( 4 x-a)e.._o.f Io (~) 
6- lt X.)= 1N 0 - 8(~)1N 1 + q(t)~W:t -~ ~ (\-X.) 14-o.~ Xol~) + 

+ 12.e.-~'t ti,b;)-Iot'~)l 

Eq. (40) 

Using this notation the following expressions are found for the field components 
(again dropping the arguments of the N (a, 3 ) in places where no confusion 

. ) n can ar1se 

DOWNGRADED rn 
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l j_) X. d.( X [ z. + \, ( ) 'Z. - h ( )] e., -z. 1". =- 4 'tt' C5'" 'S' h\ ~ c + A) rn )\ , 
""Ro "1\, 

h ·~ lt) ~- ~:t ·{ ~~~+>- "'(>..)} + ~d"' (>..) - k(\..)-

- {,- "(~)"- ~ (~)1+ f'~t F (!_X~ 

h,j [~) = I'l !l ~~; f [1- s(.;J] [.:~-,..,l>-.TI - ~- (~ )'"-

14 

Eq.(42) 

Eq. (43) 

Eq. (44) 

-~i.f Gt>.j -k l>..)- t,-,ct>- ~ (~~ J} -~ ~ f ml}..,) -kl~.J}+ 

+ .r( { (,+tt)\11. -1 (~f£,+~ J\.)N, + 8~~~~ 1112 - _. (~)' F{~. x)} J Eq. < 45) 
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and finally for the vertical electric field in air, measured at points at the 
surface: 

;4 [- 3 e '4 h 11, ~ .h_)" 
· ~~~-N0 t-IOl.(5"JN 1 -8(f N1 + 

0 

-1- !{ 1- 4(~)'-q e.-"-~ I.l~~ Eq. (47) 

Several partial checks on the correctness of Equations (41) to (47) are 
possible. In the first place differentiation of Equations (41) to (43) with respect 
to time gives the response of the electric field to a delta-impulse excitation. 

The results thus obtained are essentially identical to Wait' s 13) equations ( 101) 
:!r: ) 

to (103) . 

Secondly, Equations (44) to (46) each contain a few terms proportional to 

A0-
1 = l T RC::z. which would tend to infinity if t ~ co . It can easily be 

shown, however, that the denominator of these terms is of a degree in T 
higher than 1 which makes them vanish for t ~ co . 

13) J.R. Wait, op .cit., reference 6. 
*) A slight difference is found when the derivative of e 1}t) is taken, 

viz. a factor xy(z + h)/T 3t is found where Wait gives xyz/T
3t. 

Since in the expressions Eqs. (10) and (11) for nl and n1 . X Z 
the observer depth z only occurs in the combinations 
z + h or z - h , however , the first factor should be the correct one, 
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In the third place Equations (41) to (47) each contain a few terms which are 
independent of T . These terms do not vanish for t ~ co ; they give the 
static fields which would be generated by a horizontal electric d ipole fed with 

direct current. These fields have also been computed by Banos and Wesley14); 
after the necessary modifications in notation and direction of coordinate axes 
have been made their expressions are identical with those obtained from 
Equations (41) to (47) by letting t ~~ . 

Examination of the behaviour of the solutions for t -----7 0 ( J , X , A0 and 
>., -----71) has not much sense because Equations (41) to (47) are not valid for 
times much shorter than 1 msec. Nevertheless one can easily check, keeping 
in mind that N (a, oo ) = M (a, 0) and using Equation (38), that for short times n n 
the solutions Equations ,(41) to (47) tend to zero when z + h ) 0. When 
z = h = 0 (i.e. a = 1) this is not the case anymore, for reasons outlined above. 

A special case of interest is formed by the configuration where both trans-
mitting antenna and observer are situated in the interface, i.e. z = h = 0 , 
a = 1 • While deriving the field components the condition a ) 1 has been 
encountered several times (cf Equations (30), (31) - (38)). This condition is 

16 

necessary to ensure the convergence of integrals of the type £(10 x" ex.p(-<tx.)I0 Cx)Jx 
In the final formulas for the field components, however, the way in which these 
integrals occur is such that their divergent parts cancel so that their sum 
remains finite. Since all field components, except E , are continuous at the z 
surface and also since no discontinuity in their behaviour is expected when the 
dipole is raised to the surface (i. ea h ~ + 0), the condition a) 1 can be 
dropped in Equations (41) to (47). The field components then become: 

N 
14) A. Banos jnr. , J.P. Wesley, ope cit. , reference 5, Chapter IV. 
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~ ~~ ;. e.-~ [ I.l~) t- I,lr)- ~ l-f,-)•{ J:o(t)+ 1 I,(!)}] 

_Ide ...!L[3-""l~~) +!:!..imb~)-kl:t~)}ll 
,e:, 11 p?l ~ .3 l ~ 

where use has been made of the relation 

a proof of which is given in Appendix B. 

1. 3. Discussion 

17 

Eq.(50) 

Eq. (51) 

Eq. (52) 

Eq. (53) 

Eq. (54) 

Eq. (55) 

The general expressions Equations (41) to (47) are so complicated that it is 
very difficult to draw any conclusions concerning their behaviour without 
numerical evaluation of the formulas. Since these computations are very time 
consuming only two vectors .. h1 and e • will be examined in more detail 

X OZ 

here. But first some general remarks can be made. 
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As was already mentioned the quantities z and h never occur by themselves, 
but always in the combinations z + h = d or z - h . The vector hlx is the only 

one which contains only z + h and not z - h . Therefore in the case of this 
vector only the sum of the antenna and receiver depth is of importance, not the 
individual depths themselves. 

The angular dependence in the horizontal plane is different for the various 
vectors. If <p is defined as the angle between the X -axis and the line connecting 
the projection of P on the XY-plane with the origin, e and e 1 vary like oz z 
cos <p , hlz like sin <p , ely and hlx like sin 2 'f while e 1x and hly display 

an angular dependence of the form a + b cos 2 <p • 

When looking at Equations (48) to (54), valid in the case that both dipole and 
observer are situated at the surface, it is seen that all components show a finite 
rise time except e (t) and e

1 
(t) • Of course these vectors will possess a oz y 

finite. albeit very short, rise time too, since for very short times the assumption 
¥0 ~ 0 is not allowed anymore. 

Another quantity of practical interest is the dependence of signal strength 
upon horizontal range ~ . Here it is already difficult to draw conclusions 
without numerical computations. as will be seen in the case of the vector e • oz 
First of all the signal strength is defined as the maximum value which a field 
component, considered as a function of time, may assume. For most components 
this will be the value reached as t ~ co but others may reach their maximum 
earlier and then decrease towards their stationary value as t ~ oo • Numerical 
computations show that for ~ >> d the x component of the magnetic field decreases 
like the inverse square of range. i.e. h

1
)t> cc p-.t; This is also what one would 

expect from examination of Equation (44). In Figures 2, 3 and 4, h1)t> 

has been plotted for different values of the parameters. (All figures have been 
plotted on a logarithmic scale because the variables and parameters of interest 
vary over large ranges. In order to obtain a correct impression of the true 
shape of the signal, replotting on linear scales is advisable). It is clearly seen 
from these figures that as ~ increases the field strength needs a longer time to 
reach its final value: the signal is smeared out. This is .also seen from the 
formulas: time never occurs alone but always in combination with the square of 
a distance. When all distances are increased by a certain factor time must be 

NATO 
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increased by the square of that factor to preserve the same signal shape. This 
smearing out makes detection of the signal more difficult and in the case of 
communication reduces the rate at which information may be transmitted. 

20 

Examination of the formulas without numerical computation may easily. lead, 
however, to incorrect conclusions, as is seen in the case of the vertical electrical 

-3 vector e (t) . From Equation (47) one might conclude that e (t)cC. o but oz oz \ 
numerical computation shows that the maximum value of e (t) (i.e. the signal oz 
s trength)a:: p -2 • Since this vector shows still other interesting properties it 
is worthwhile to examine its behaviour a little further. In Figures 5 and 6 
e ( t) has been plotted as a function of time for various ranges and antenna oz 
depths. It is seen that the maximum value is reached rather quickly after which 
the field s trength decreases again. The time t at which the maximum is max 
reached can be found by differentiation of Equation (47) with respect to time, from 
which it results that 

or 

and 

p:t 
.!: max -== 4 h"' 

T max 

t max 

= 4h2 

1 2 
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Thus t only depends on the depth of the antenna, not on horizontal range, max 
and the pulse is not smeared out as is the case with the other components. The 
way in which the height of the maximum of e ( t) depends on ~ cannot be oz 

21 

determined analytically but must be computed by numerical means. The maximum 

value of the part of Equation (47) within the square brackets is denoted by Q(h I r ) 
and has been plotted vs h IV in Figure 7. It is seen that for ~ ~ 0,3, i.e. 

P ~ 3h, the quantit~ Q(h If ) is proportional to (hI~ ) -l , so that the maximum 
value of e (t) itself decreases like the inverse square of range. For points of oz 
observation closer to the dipole a different range dependence of the signal strength 
(a more rapid fall-off) is found. Figure 8 shows a plot of e ( t) for a fixed · 

oz 
antenna depth and various ranges which illustrates the fact that t does not max 
depend on horizontal range. 
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Table I summarizes the results di scussed above and for the sake of comparison 

also lists the range dependences for sinusoidal signals15), the frequency of which 
satisfies the inequalities 1op << 1 and 't, p >> 1 • (For a horizontal range of a few 
thousand meters this means any frequency between about 10 and 5000 cps). 

Component Step -function Sine-wave 

-2 -2 e v f oz 

hlx ~ 
-2 r -3 

Table I 

Range dependence of signal strength for 
a step-function vs. sine-wave signal. 

From this table it is seen that the vertical electric vector in air~ e oz 
possesses very interesting properties with regard to the transmission of informa-
tion from a submerged dipole to a receiver at the surface of the sea. For sine-
wave signals the attenuation of e with horizontal range is less than for any of 

oz 15) 
the other electric or magnetic components . In the case of step -function-like 
signals the attenuations of e and h

1 
with horizontal distance are equal but 

OZ X 

the electric signal e ( t) is not smeared out~ as is the case with the magnetic oz 
signal h 1x(t). 

15) A. Banos jr., J.P. Wesley, op . cit., reference 5, Vol. L p. 199 
and Vol. II. p. 126. 
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SECTION 2. RECEPTION OF TRANSIENT SIGNALS 

2. 1. Possible Detectors. 

In Section 1 it was seen that during the propagation over a conducting half-
space not only the amplitude but also the shape of a transient is changed. In this 
section the influence of the equipment used for reception of the transient will be 
investigated. 

In the receiving equipment three parts can be distinguished: 

(a) detector 

(b) amplifiers and signal processing equipment 

(c) display equipment. 

Considered from the point of signal shape deformation part (c) will not present 
many difficulties. It will usually consist of a recorder with a flat characteristic 
in the frequency range of interest. Part (b) may consist of anything from a 
simple high -gain amplifier to a complicated signal processing equipment and 
therefore will not be treated further. Part (a) can be divided into detectors for 
the reception of electric signals (antennas) and detectors which detect variations 
in the magnetic field. In this section attention will be focussed on detectors of 
the se,cond kind, since they are widely used and their response may be strongly 
frequency dependent. 

The frequency dependence of magnetic detectors depends on the type of 
detector used. The response of alkaline vapour magnetometers, for instance,. 
is usually f1at within the frequency range of interest. Such a magnetometer will 
not alter the shape of a transient received by it and therefore need not be con-
sidered further here. Frequently, however, coils are used for the detection of 
changes in the magnetic field. Their frequency response will depend on the 
material used for the core and on the coil impedance as compared with the input 
impedance of the amplifier following the coil. In some cases the input impedance 
of the amplifier is very high so that the coil impedance has no influence. For a 
harmonic field variation an air-cored coil will then give an e. m. f. proportional 
to frequency according to the law of induction 

d'B e.<L- dt = i.wB 
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If the field variation is a transient the output signal from the coil will be propor-
tional to the time derivative of the transient. A magnetic field varying like a 
step -function will thus give rise (in the idealized case) to a delta -impulse at the 
output of the coil. The mathematical description of this case presents no 
difficulties. 

Things become more complicated when a core of ferromagnetic material is 
used. especially when this core is not laminated and eddy currents can occur. 
This is, for instance. the case with the mine coils used by the Electromagnetic 
Group at this Center in propagation experiments. Experimentally it has been 
found that the frequency response of these coils in the frequency range of interest 
is roughly proportional to ui . The problem of determining the response of 
these coils to transient variations in the magnetic field may be solved analyti-
cally but there are some mathematical difficulties. This case will therefore be 
examined here in somewhat more detail. 

2. 2. Transient response of coils with a frequency characteristic 
I 

proportional to w2: . 

The computation of the transient response of a coil with a frequency charac-
.!. teristic proportional to wa. to simple field changes does not in principle present 

great difficulties. Denoting the frequency spectrum of the input signal (i.e. the 
change in the magnetic field) by~ (p). the spectrum F(p) of the output signal 
(i.e. the emf generated by the coil) is found by multiplying the input spectrum 

\ 

by Sp 2:' (where S denotes the sensitivity of the coil) 

The output signal in the time domain f( t) is then found by taking the inverse 
Laplace transform of F(p). 

fH) = L' l Flp)} = s L' I ~i !(~)I 
e. g. the response of the coil to a unit step at t ::: 0 in the magnetic field is 
found from 

NATO 
DOWNGRADED TO 
NATo UNCLASSIFIED 

RESTRICTED 

Eq. (56) 
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which is a pulse wit h an infinitely steep leading edge and a comparatively slow 
I 

fall off proportional to t -:{(Figure 9). 

'j 
0 

__ t 
0 --t 

I 
Fig. 9. Response of a coil with frequency characteristic d: w'i. 

to a unit step in the magnetic field. 

It is of practical interest to compute the output signal for the case in which 
the coil is being used to detect a signal from a horizontal electric dipole excited 
by a step-function current. To this end it is assumed that both coil and dipole 
are situated at the surface of the sea at a distance ? from each other, and 
that the line connecting them makes an angle cp with the dipole which is 
supposed to be oriented along the X - axis. Moreover it is assumed that the 
coil is oriented in a direct ion parallel t o the X -axis, so that the change in the 
magnetic field detected by the coil is given by Equation {51) for h 1)t). In 

polar coordinat es t his equation is 

25 

Eq. {51 a) 

where as before 
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In principle the response e( t) of the coil to this signal may be computed from 

The computation of the inverse Laplace transform of the expression within the 
square brackets is, however, very complicated. Therefore a different method 
will be followed here. This method has the additional advantage of providing, 

26 

at an intermediate stage, an integral representation for e(t) which for large~ 
(short times) can be expanded asymptotically, thus providing information con-
cerning the behaviour of e( t) for small t. The final result will be an expression 
of e( t) in terms of generalized hyper geometric functions. 

To this end use is made of the theorem mentioned on page 10. Denoting the 
I 

inverse Laplace transform of the function pa; by f
1
(t) , i.e. 

the theorem would run in this case 

Eq. (57) 

Unfortunately it turns out that from the straightforward application of this method 
a divergent integral results. The reason for this is that the inverse transform 

L -ll pi J does not exist in itself but only as the limiting case ~-->0 of the more 
16) general transform 

I 

L' h,i .,_--1111>11 = .2 _j 11 -i<f +6~ [ ( f+t')i-~~ r( ~ .... t:•-)'1: + ~z 

16) G. A. Campbell, R. M. Foster, Fourier Integrals for Practical 
Applications (D. van Nostrand Co. Inc. ,!Princeton, N.J. 1957). 
4th ed. p. 75. 
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The correct procedure would be to insert Equation (58) into the integral in 
Equation (57) and integrate before letting ~-+0, but then the integral becomes 
too complicated to solve. 

The problem can be solved, however, in the following way. The coil 
(Figure lOa) is replaced by two systems, connected in series (Figure lOb). 

(a) (b) 

Fig. 10. Replacement of the coil by a series connection of two other 
systems which together have the same frequency characteristic. 

I 
The frequency characteristic of the first system is given by the function S· p --:r, 
while the second system is a normal differentia tor, having a frequency charac-
teristic p • The net effect of the two systems in series is therefore the same 

as that of the coil with frequency characteristic S· p! . The inyerse transform 
I 

of the function p -x exists and has already been given in Equation( 56). The 
signal at the output of the first system i s then equal to 

Eq. (59) 

This integral converges. The output signal e(t) of the second system, which is 
identical to the signal obtained at the output of the coil, i s then found by 
differentiating g(t) once with respect to time, an operation which can be per-
formed entirely in the time domain. 

Mter this outline of the procedure to be followed the signal e(t) is computed 
as follows. Substitution of Equation (5la) into Equation (59) gives for g(t) 
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/ ' ~~t l g H)= - S :r..,~ s.l;%:tcp 1f -~..-! ( i: -1: f :2: e- l!c { :r:J~8";t~ +'-I., [!tf:) 5 d 't" 

~ C l f'· 'I') ~i1:- i { ><- f r± e.-"' 1 T..lx) + .t I, lx) \ c!. Eq.(60) 

where 

Before solving this integral exactly it is worthwhile to investigate its behaviour 
for large .I . since, from this, information can be obtained concerning the 
behaviour of e(t) for small t. 

For large values of their argument the modified Bessel functions in 
Equation(60) may be replaced by the first few terms of their asymptotic expan-
sions 

I l ) e.."' ( 3 I 'S"" ) " ,... )- ' - - - - - . . .. ' h.'lf" ~ 8x. 118 )(.1. 

Eq.(61) 

Inserting this into Equation (60) an asymptotic expansion for g(t) is obtained 

and after differentiation with respect to time 

' H:) _ gCH) 3 (,. )"ie { ) o ( 5' 1os- ) 
e. - dt ""'""£ T · f'tf:,AoG""f2. \ - JT:!:- lt>~~~!t - .. . .. 

Id~ -- ~;"' ~!£ 3 , S (I _ -5"" _ I o s- ) p!. - ~.,l'Y)i ~ ~ Jo~'l ~2. - .. - .. 

NATO RESTRICTED 
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With the aid of Equation (32) this expression can be written as a series in 
ascending powers of t : 

29 

Eq.(64) 

For large times it is profitable to express e(t) in terms of Meyer's 
G-functions, which can be expanded into a series of ascending powers of 1 . 
(The most important properties of these G-functions, which are a generalization 
of the hype~geometric function, are listed in Appendix C). To that end one uses 

th 1 
. 17) e re at10n 

Eq. (65) 

which upon substitution in Equation (60) gives 

Eq.(66) 

Differentiating this expression once with respect to time one obtains for e(t) 

q Vi ~ 21 ( II I ) 21 ( I I -±) J e.(l) = /'~>crp~ L lf.cp) CT,_3 ~~ ~ y i + .1 Gl~ 21 t .3.. 
2. 

:I: dt ,.;., ·T .t s ~~(~~I.' I ) .. ( I I '-x)] --- I ! + .2 G._~ .t t i J.. Eq. ( 67) 41f p3 ~-~,)i 1~ 'i 2: .:l 

For a numerical computation of e(t) it is necessary to expand the G-function 
into a power series, giving 

17) A. Erdelyi et al., op. cit., reference 10~ Vol. II, p. 207 
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where the function <f ( z) is the 1 ogarithmic derivative of the gamma function 

(z) = r'( -z.) 
'P r (:z.) 

A more detailed derivation of these results is given in Appendix D. 

' From Equation (68) it is seen that e(t) = 0 ( !l.) as ~--+ 0, i.e. that 
I 

e(t) approaches zero like t -l: as t~oo . With the aid of Equations (64) and 
( 68) it is now possible to draw a qualitative sketch of the signal as it may be 
measured at the output of the mine coil (see Figure lL In reality the pulse will 
of course have a finite rise-time be-
cause at frequencies above a few 
hundred cycles per second the res-
ponse of the coil is no longer 

I t proportional to w c: , but flattens · 
out. ) -<2 (tt 

Another important feature of 
e(t) which follows from Equations 
(64) and (68) is its dependence upon 
horizontal range p . The field 
variation h 1) t) giving rise to the 

emf e(t) varies itself as the 
inverse square of distance but the 
emf e( t) generated by it varies as 
the inverse cube of p . At first 
sight this seems paradoxical. The 
explanation is that during 
propagation of the transient along 
the surface of the conducting 
medium the higher frequencies at 

0 t 

Fig. 11. Shape of the signal - e( t) 
at the output of a detector coil, with 
frequency characteristic ce. wz . 
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first present in the signal are attenuated more quickly than the lower ones. 
During detection of this signal with a coil which has a frequency characteristic 
proportional to a positive power of the frequency, the lower frequencies are less 
well transferred by the coil than are the higher frequencies. These combined 
effects result in a higher attenuation of the transient as a whole than would be 
expected on the basis of the propagation laws alone. In the case of a coil giving 
an emf e(t) cC H this extra attenuation is even more serious. Si nee d/ dt = 

2 -1 2 
-8 ~ 

0 
0"' p ) ~ d/ d ~ the influence of such a coil on the range dependences 

of the various field components, as for instance given in Table I for the case of 
h 1 , can be described as multiplication of these range dependences by a factor 

x_2 P The same holds of course for differentiating electronic equipment placed 
behind the detection coil. On the other hand, it is seen from Equation ( 66) that 

31 

I -1 
a characteristic cC W-~ would give an overall range dependence d:. p for h 1x(t), 

i.e. a reduction of the attenuation. 

The truth of these statements is in fact only apparent in the case d = 0 , 
i.e. the case where the signal depends only on p and t . If d f 0 matters 
become more complicated since the signal received does not depend on d itself 
but rather on the ratio d/~ , which ratio decreases when p is increased 
while d is kept fixed. This effect may partly compensate the increased atten-
uation with range caused by the detection coil. This behaviour is more or less 
analogous to that of the vertical electric field e (t) where as one has seen, the 

d oz 
decrease of the ratio / ~ reduces the attenuation with range from an inverse 

cube to an inverse square law. For a more quantitative description of these 
phenomena a detailed numerical analysis of the problem is necessary, which 
will be refrained from here. 

The result derived above concerning the change in range dependence of 
I 

transients received by detectors having frequency characteristics cC. w a., cC uJ 
' or c:C w- I suggest the following more general hypothesis: 

If a transient disturbance of the electromagnetic field which is 
propagated over a highly conducting half-space, and which 
depends on no other distance than the horizontal distance p 
between antenna and dector and of which the amplitude is 
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_G(, 
proportional to p , is detected with the aid of a 
detector having a frequency characteristic proportional 

to w ~, the output of the detector will depend on 
-(«+2.~) horizontal range as p . 

The general validity of this statement, however, has not yet been proven. 

SUMMARY 

For the case of a horizontal electric dipole situated in a conducting half-space 
and excited by a step -function current, expressions are derived for the various 
components of the electromagnetic field as a function of time for points of obser-
vation both in the conducting half-space and at the interface. It is shown that the 
attenuation with horizontal range of transient signals may differ from the atten-
uation experienced by pure sinusoidal signals. While all components exhibit 
some degree of "smearing out" of the signal as it propagates, the vertical 
electric component in air exhibits some advantages in this regard over the other 
components. For the vertical component the time for the signal to reach maxi-
mum value is shown to be independent of the horizontal distance between source 
and receiver which makes this component very suitable for transfer of informa-
tion. In this analysis propagation time has been neglected. 

Furthermore, an investigation is made of the influence of the frequency 
characteristic of magnetic detectors on the shape of the received signal. It is 
shown that a rising frequency characteristic increases the overall attenuation of 
the final signal with horizontal range while a falling characteristic reduces this 
attenuation. 
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APPENDIX A. Approximate Formulas forM (a, j ) and N (a, ~ ). 
n n 

33 

Since tables of the functions M (a, ~ ) and N (a, 't ) do not exist, some 
n n 

work has been done in order to find approximate expressions for these functions 
in terms of tabulated functions. The results of this work are given in this 
Appendix and in Appendix B. Since M (a, t ) and N (a, t ) are related through 

n n 
Equation (36), a result which is derived for M (a, ~ ) can also be used for the 

n 
numerical computation of N (a, ~ ) and vice versa. 

n 

A.l. Approximation of M (a, t ) for large ~ . 
n 

When t is sufficiently large the modified Bessel function I (x) in the 
0 

integrand of 

Eq. (A. 1) 

can be replaced by the first term of its asymptotic expansion: 

' I o { x) I'J ( .t 'Yl'"-) -;;; e.:~· 

Substituting this in Equation (A . 1) and using the definition of the incomplete gamma 

function r (b, z)
18) one obtains 

I 

M..,la..1)"'(.t1f,-i(4.-•fn-:i r{ .... .,..i_, lo.-,)~J Eq. (A 2) 

18) A. Erdelyi, w. Magnus, F. Oberhettinger, F. G. Tricomi 
Higher Transcendental Functions (McGraw-Hill Book Company Inc., 
New York, 1953). Vol. II, pp. 133 ff. 
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This relation can be simplified by the use of the recurrence relation 

* 19) and the formula 

34 

Eq. (A. 3) 

Eq. (A. 4) 

Repeated substitution of Equations (A. 3) and (A. 4) into Equation (A. 2) gives 
finally with the aid of the first of Equations .(40) : 

Eq. (A; 5) 

This expression can be used for the numerical computation of M (a, ~ ) for 
n 

large values of ~ . Table II gives an idea of the accuracy so obtained. It is 
seen that the relative error is smallest for high n and a close to unity. 

a = 1.02 a = 1.2 

Relative Relative 
Computer Eq.(A. 5) difference Computer Eq. (A. 5) difference 

M (a,10) 
0 

2.6486 2.6355 0. 50o/o 0.07266 0. 07195 0. 98% 

M 1(a,l0) 117.89 117.53 0.3lo/o 1. 0430 1.0335 0. 91% 

Table II. Comparison between the exact values of M (a, I ) and n 
those computed using Eq. (A. 5) for various values of the parameters. 

* The definition of the error function as used in this paper differs in a factor 
1. ,--Y.z from the one used by Erdelyi et al in reference 18, but is the same 
as the one used by Erdelyi et al in 10. 

19) A. Erdelyi et al., op. cit., reference 18, Vol. 
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A. 2. Series expansion of N (a, l ) . 
n 

When ~ is finite I (x) can be replaced in the integrand of / 1x..,., e. -a.~ Io ("') ci1.. 
0 0 

by its series expansion and this form integrated term by term. The result is a 
series of incomplete gamma functions, 

35 

Eq. (A. 6) 

where the incomplete gamma function '6 (b + 1,z) is defined by 

}' (b+•, -z.) ~ ~- t d\:-i z. t b 

0 20) 
In case b is an integer ~ {b + 1,z) can be expressed as 

Y(b+•,-z.) = b~ [.- e.--z. e.blz.)J 
where eb(z) is the truncated exponential series 

b """ 
eh ( -z.) = 2: 2 

1 
WI'\-.:. M. 

Inserting this into Equation (A. 6) gives: 

E. G. for n = 0 the first few terms are 

20) A. Erdelyi et al., op. cit., reference 18, Vol. II, p. 136 
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+ _!_ I - ( \ + a.. t +- i-_ 0.. L ! ~ + -t <l.~ ~ 3 + ~ 0-'f ( ~ ) 'l-~ ~ 
/? (J ... :s-

Eq. (A. 8) 

This series converges extremely rapidly for small J , while its rate of 
convergence for l of the order of unity is still reasonably high. Taking for 
example a = 1, ~ = 0. 5 and using the first two terms of Equation (A. 8) gives 
N (1, 0. 5) with an accuracy of 2. 5 parts in 104 . Three terms give a six 

0 

decimal accuracy. 

Expansion of N (a, l ) in a double series of ascending powers of ~ and 
n 

a - 1 is also possible but the rate of convergence is greatly inferior to that of 
Equation (A. 7). Therefore the derivation of this series will not be given here. 

In order to facilitate the numerical computation DJ the field components a 
program has been written for computation of the function N (a, t ) on the 

n 
ERA 1101 computer. Tables have been made which give N (a, l ) to four n 
significant figures for the following values of the parameters and variables: 

n = 0, 1, 2 and 3 

! = 0( 0. 0 2) 1 and 0( 0 • 1) 1 0 

a = 1(0. 001) 1. 01 (0. 01) 1. 2 (0.1) 3. 

Figures 12 and 13 give an impression of the behaviour of the functions 
N

0
(a, ~ ) and N 1(a, r ) . 
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In this Appendix the following relation will be shown to hold: 

38 

Eq. (B. 1) 

which makes it possible to express the field components in the case h=z=O in a 
closed form. 

As a first step inthe proof it may be shown that 

Eq. (B. 2) 

where 1 F 1 (a; b; x ) denotes the confluent hyper geometric function. For this it 

is sufficient to consider N ( 1, ~ ) as a Special case of the following Riemann-
0 

Liouville integra121 ) 

_ (2..n.)"'J_A+!2.V r(v+i) 
.,.i r~+:l."'+•) 

.F.(v+i ;_)"'-+.2.V+I ~-,1~t) 

Ra../"'" )' 0 ;, ~ v > - :f 
E q. (B. 3) 

from which Equation (B . 2) immediately follows by setting -:; = 0, a= 1 and~= 1 • 

The next step makes use of the Weyl integra122) 

21) A. Erdelyi et al., op. cit., reference 10, Vol. II, p. 197. 
22) A. Erdelyi et al., op. cit . , reference 10, Vol. II, p. 207. 
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Eq. (B . 4) 

which for _r = v = a = 1 runs 

Combining this with Equation (B. 2) the relation 

is obtained. 

Keeping in mind that I (x) satisfies the differential equation 
0 

T 11 (~)+~I'l~) -I. l~) =o -o ~ o o 

and that 

the remainder of the proof is straightforward. The relation 

Eq. (B. 5) 

Eq.(B.6) 
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becomes, after two partial integrations, 

from which, together with Equation (B. 6), Equation (B. 1) follows. 
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APPENDIX C. Some properties of Meyer'.s G-functions. 

41 

In this .Appendix only the most important properties of Meyer's G-functions will 

be listed. For a more complete account the reader is referred to Erdelyi et al
23

} 
and to Meyer's original papers, a list of which is given by Erdelyi et al, loc. cit. 

The function 
(T t'\'\t'\ (~ O..t ) ......... > dp ) 

P'\ b,> ......... ,b9 · sometimes written more 

briefly & ;~ ( l( a.,..) 
b , is defined by 

.s. 

Eq. (C. 1} 

where 0 / m {.. q , 0 (. n / p • An empty product is interpreted as 1 and the 
~ " ~ ~ parameters are such that no pole of r (b.-s), j = 1, ...• m coincides with any 

J 
pole of r ( 1-ak +s), k = 1, . . . . . , n • Among the several possible paths, L , of 

integration the following will be used in Appendix D: a loop starting and ending 
at + 00 and encircling all poles of r (b .-s), j = 1, ... , m once in the negative 

J 
direction. All poles of r (1-ak +s), k = 1, ..... , n , however, lie outside this 

contour. The integral converges if q ~ 1 and either p <. q , or p = q and 

lxl (1. 

With this definition the integral in Equation (c. 1) can be evaluated as a sum of 
residues and the G-function may thus be written as a power series in x . 

23) A. Erdelyi et al., op. cit., reference 18, Vol. I, Ch. 5. 
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Some important relations between G-functions are 

Eq.(C.2) 

Eq.(C . 3) 

Eq. (C. 4) 

E q . (C .5) 

X~" G-;~ (X I~:)= G;~ ( •f~:: ~~: .. : :~) ~Co.,-o)G;;H ::) Eq.(C. 6) 

h ~' 
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The behaviour of G-;~ { x..l ~.J in the neighborhood of the point x = 0 

can be obtained from Equation (C. 1). One has 

43 

Eq.(C.7) 

where p " q and ~ = min Re bh, h = 1, 2, ••• , m. 
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APPENDIX D. Derivation of an expression for e(t) in terms of 
Meyer's G-functions and expansion of these into power series. 

In this Appendix an expression will be derived for e(t) in terms of Meyer's 
G-functions. Furthermore it will be shown how these functions may be expanded 
into a power series in ~ , thereby permitting the computation of e(t) for small 
values of l (large times). Extensive use will be made of the properties of the 
G-functions listed in Appendix c. 

One starts from the integral representation of g(t) derived in Section 2. 2., 
Equation ( 60): 

Eq. (D. 1) 

which is split up into two integrals of the form 

This integral can be found in a table of Weyl transforms 24 ) and is equal to 

Eq.(D.2) 

Substitution into Equation (D. 1) gives 

Eq. (D. 3) 

24) A. Erdelyi et al., op. cit., reference 10, Vol. II, p. 207. 
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Eq. (D. 4) 

From this it follows for e(t) , making use of Equations (32) and (C. 6) 

e.l t) = J.d~U:) = _J. d.g(!) = 
~ f. d ~ 

= -J.~L ccf'·'l')~ [ ~~ (: -~i • -i)- G-:: (~ rl3: 0- ~,-J + 

+ 2 G.~(.t tIt_,~ '-1)- 2 GtJ ~t, 0 

t '-f J] Eq. (D. 5) 

This can be simplified somewhat with the aid of Equation (C. 5), giving 

Eq.(D. 6) 

which, a gain using Equation (C. 2) , may be written as 

Eq. (D. 7) 

By writing out C ( p,cp ) Equation (67) is obtained. 
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From Equation (D. 7) it is now possible to extract information concerning the 
behaviour of e( t) as t ---7 oo . According to Equation (C. 7). 

r ~1 (.t rl I I ) 
l.Tl.. ~ .!. 1 .. a. a. .t. 

46 

and Eq. (D. 8) 

I 

as ~__,. 0 . Therefore e( t) approaches zero like t- i as t---+ oo . 

Equations (D. 7) and (67) are not suited for numerical computation of e(t) . 
For short times t the asymptotic expansion Equation (64) may be used for this 
purpose, but for large values of t (small r ) it is necessary to expand 
Equation (D. 7) into a series of ascending powers of r . This is done by replacing 
the G-functions by their integral representation Equation (c. 1) and evaluating each 
contour integral as a series of residues. 

The integral representation of the first term in Equation (D. 7) is, 
(te mporarily replacing 2 ~ by y ) 

~~ (~ 1-! I 1 I J..) = -•-.j P( t -s) r(i -s) r(s) 
... ~ .2. t-rrl L rt~. -t~) r< '-~J Eq. (D. 9) 

The poles and the integration path L are sketched in Figure 14. There is a 

simple pole in s = ~ and two -fold poles in s = 
3 I 2, 5 I 2, 7 I 2. . . • . • . The 

residue k-! in the point s = 1 is found from 

n. ( , ) rH -::.) rU -s) r£s) s. .t 
k I - ..{."""' ~- ~ ~ - - ~ .l,. 
· 'i ~ .s ~ .t 2. r( i + $ ) r< • -s) 

.2. 
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Fig. 14. The contour used for the evaluation 
of the integral i n Eq. (D . 9) 

while the residues k , , n = 1, 2, 3 . . . . . . are obtained from 
n+~ 

47 

Eq . (D . 11) 

n:l,~,;, .... . 

where the function 'f ( z) is the logarithmic derivative of the gamma function, 

r'l-z.) 
lJih.)-= rl-z) 
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and extensive use has been made of the properties of gamma and '¥ -functions. 
Since the contour integral in Equation (D. 9) equals minus 2 1( i times the sum of 
the residues {the minus sign stemming from the fact that the contour is traversed 
in the negative direction) one obtains 

48 

Eq. {D. 12) 

~ ~i~ +,;.-g. (-)h ~~:·.~~ ~11 +h [~ .. !Jut (.,.i) --.3'\'(.,., ~JJ 
from which it follows immediately that for small y 

which is in agreement with the first of Equations (D. 8). In an analogous way it can 
be shown that 

Substituting Equations (D. 12) and (D. 13) into Equation (D. 7) one obtains for e{t) 

H:) !l ~ , ) ~ i I. , ~ " r l(.,. ... i.) 1 )"' 
e. /ocrpl.. Ltp.cp ~ ~ + :n:-~~~) f'3(n+•) \.~ ~ • 

·{ , ...... [Jl ... (,~h .. "'(., ... ~)-3.,.,( ...... 1] _ ~::~ ~ .. ~~r>+lf[ ... l)-~.p{-)-3"'[M,m} 
~ ) i ~ , ~ "-' r\.l~"'-1.) l )~ ~oo-'p:s: C (r,cp ~ 1 + '1r L (-) ~( ) l ) 2 ~ • 

\1:•01 r "'~I f' ~+2. 

·{ "'.:":~ -• + "(..,- ') [ ~ h (o. {)+ 'l. 'f' (n+ t) -3 <\> ln+•) J}] Eq. (D. 14) 
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