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Effects of intrinsic medium 
inhomogeneities on long-range 
acoustic transmission 

H.G. Schneider 

Executive Summary: In the deep sound channel transmission ranges of 
1000 km may be achieved at  frequencies of a few hundred hertz. For a single 
transmission the arrival structure of the wavefronts may be measured as a func- 
tion of time and uniquely related to ray arrivals. These characteristics are used 
in long range surveillance as well as in tomographic experiments to estimate 
changes in the environment. In modelling such propagation a deterministic ray- 
theory approach is normally used which cannot explain the vertical extension 
of the measured arrival structure into the 'forbidden' region, i.e. the extension 
into greater depths than the ray-theoretical turning point depth. This is not a 
penetration into a classical shadow zone, since energy will be arriving a t  that 
depth, but not in the time interval under consideration. 

A possible explanation of this effect is presented here by assuming an intrinsic 
stochastic variability of the sound speed which is too small to disturb the main 
ray paths, but sufficiently large to scatter energy into the 'forbidden' region. 
This assumption is substantiated by a generic model Ixzsed on stochastic ray 
tracing. The effects modelled are of the correct order of magnitude but more 
exact evaluations cannot be made because of missing oceanographic informa- 
tion. 

This type of experimental result could be used to estimate several missing 
oceanographic quantities. In the present approach only the diffusion constant 
may be deduced. Determination of additional quantities will require the devel- 
opment of an appropriate methodology. 
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Effects of intrinsic medium 
inhomogeneities on long-range 
acoustic transmission 

H.G. Schneider 

Abstract: Duda et al. [J. Acoust. Soc. Am. 92(2).  939-955, 19921 have 
measured wavefront arrival times over a 1000 km track in the Pacific. In mod- 
elling the propagation they use a WKBJ-based approch in the ray-theory limit 
which cannot explain the vertical extension of the measured arrival structure 
into the shadow zone, i.e. into depths greater than the ray-theoretical turning 
point depth. A possible explanation of this effect is presented here by assuming 
an intrinsic stochastic variability of the sound speed which is too small to dis- 
turb the main ray paths but sufficiently large to deviate energy into the shadow 
zone. This assumption is substantiated by a generic model based on stochas- 
tic ray tracing. The effects modelled are of the correct order of magnitude 
but more exact evaluations cannot be made because of missing oceanographic 
information. However, this type of experimental result could be used to es- 
timate the missing oceanographic quantities if a more detailed methodology 
were developed. 
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Introduction 

Duda et al. [I] and Howe et al. [2] have presented extensive measurements and an 
analysis of wavefront arrivals in the Pacific to examine wavefront fluctuations. In 
their analysis they use an acoustic propagation code based on the ray limit of the 
WKBJ approximation which is used to identify arrivals in terms of multiple ray 
cycles. In their Fig. 3 [I], which is reproduced here as  Fig. 1, the arrival times 
of a single pulse at  1000 km range are displayed for receivers at  depths from the 
surface down to 3000 m. Figure l a  shows their predicted result and Fig. lb ,  the 
intensity measurement exceeding a threshold. Two items are noteworthy, first there 
are theoretical arrivals on the sound channel axis which arrive later than those 
in the experimental data, and second, the arrival structure in the experimental 
data extends to greater depths than in the prediction. This latter difference has 
already been discussed during a preliminary presentation [2] of the data. It was 
then suggested by this author that these differences might be due to energy being 
diverted into that region by small inhomogeneities in the sound-speed structure. 
This is exactly the point which will be substantiated in this report. 

Figure 1 h r n  Dada et 
al. [ I ] .  Wavefront arrival 
times versus depth for a 
transmission range of 1000 
km in the Pacific. (a) Pre- 
dicted result based on a ray 
approach; (b) Measured ar- 
rival times. 
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Method 

In almost any sound propagation experiment the interest focuses naturally on the 
propagation characteristics of the high-energy arrivals, and the low-energy arrivals 
are either masked or contribute only a negligible amount. The low-energy arrivals 
often become visible only if they are sufficiently separated from the main path of 
propagation either in space or time and only if the background noise is sufficiently 
low. A shadow zone, as in this experiment, constitutes an ideal location for their 
detection. The shadow zone is here defined by the envelope of the turning point 
depths of the subsequent ray arrivals in time. Energy may be carried into this 
region by either diffraction or scattering, or both simultaneously. 

The diffraction will not be discussed in detail, but from a full wave theory example 
the influence of diffraction can be inferred by comparison with the ray-theoretical 
approach. 

To study the influence of intrinsic sound inhomogeneities we apply the ray-diffusion 
concept [3] which has been sucessfully applied in a similar case [4]. 
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Generic example 

3.1. NO VARIABILITY 
As a generic example the Munk profile 

is used with the following parameters: 

E = (B/2) x 1.14 x 
a0 = B = 1.3 km. 

For a source depth of 1.3 km and a propagation range of 1000 km the wavefront 
arrivals due to a ray-tracing code [3,4] are as given in Fig. 2. A single profile was 
assumed for the entire track and an infinite bottom loss was applied, limiting the 
propagation to refracted arrivals only. A threshold of 110 dB transmission loss 
was chosen, so that with a source level of 192 dB the received signal would equal 
the reported noise level. (Duda et al. [I] assume spherical spreading for the entire 
1000 krn track, which seems unrealistic and gives about 20 dB too much loss.) The 
upper and lower turning points in depth reflect the asymmetry of the sound-speed 
profile relative to the channel axis. The envelope of the turning points constitutes 
the shadow zone boundary and the increasing time axis corresponds to decreasing 
propagation angles. 

3.2. DIFFRACTION 
To estimate the energy being diffracted into the ray-theoretical shadow zone a full 
wave solution is required. Here the normal-mode program SUPERSNAP is used and 
the arrival of a pulse a t  1000 km is computed via standard FFT techniques. We 
restrict this analysis to the one turning point which is given in Fig. 2 at  a time of 
0.66 s and a turning point depth of 3950 m. Figure 3 displays an enlarged version of 
this area for the normal-mode solution. The centre frequency of 250 Hz was chosen 
as in the experiment with a bandwitdth of f 4 0  Hz. As expected, energy can be 
detected below the ray-theoretical turning point down to about 4025 m which is 
75 m or about 12 wavelenths below the ray limit. However, this extension is not 
sufficient to explain the measured data which extends 400 m below the ray turning 
points. (The structure to the right is an earlier arrival which wrapped around in 
this time window.) 
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Figure 2 Arrival times at 1000 km range due to a single Munk profile with n,o 
sound-speed variability. Source depth 1.3 km, reduction speed C, = 1485 m/s. 

3.3. INTRINSIC SOUND-SPEED VARIABILITY 

To estimate effects of the intrinsic sound-speed variability, a ray-tracing scheme is 
applied which uses piecewise linear sound-speed gradients versus depth. The main 
difference from other ray-tracing codes is the evaluation of the energy at a receiver. 
This is done by simply summing in a vertical receiver window of dimension dz the 
incoherent ray intensities associated with single rays which penetrate this window. 
Hence all difficulties usually oc5urring with ray divergence methods are avoided, but 
a sufficiently large number of rays has to be traced if this method is to be applied 
to deep-water acoustics. An insufficient number of rays, or equivalently a too large 
angular separation at the source, will leave some receiver windows empty. Also the 
sound-speed profile must be sampled sufficiently finely to avoid large discontinuities 
in the sound-speed gradients of adjacent depth intervals, otherwise this may lead to 
errors for the late arrival times. 

The intrinsic stochastic variability of the sound speed Ac is assumed to be small 
compared to any sound speed c ( z )  in the profile. Following Chernov [5] we assume 
a zero mean process = 0 and define the variance of the index of refraction 
as /.L' = (Ac/c)'. Further we assume an isotropic background profile c  = co, and a 
Gaussian correlation function of the stochastic variability Ac with correlation length 
ao. Using the ray diffusion approach in the limit for small angular perturbations 
results in a Gaussian density for the change in propagation angle Aq5 with a standard 
variation of 
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Figure 3 Single turning point 
of a pulse arrival computed with 
normal modes. Corresponds to the 
turning points of Fig. 2 at t = 0.66 s 
and a depth of 3950 m. 

where s is the path length in the stochastic medium and D the diffusion constant. 
The small perturbation angle approximation requires that << 1. Obviously 
the requirement of an isotropic background profile is not met for a canonical deep  
water profile. However, if small perturbation angles and short path lengths between 
scattering events are used, this may still be a reasonable assumption in the vincinity 
of the sound channel axis where the sound-speed gradient is small. 

This diffusion concept is implemented into the ray tracing in the following way. 
A ray is traced according to the sound-speed profile c(z)  from one boundary of 
a sound-speed layer to the next and the path length is accumulated. The path 
length between scattering events is controlled by the length Sscat. If the path length 
s, measured from the last scattering event is within SScat < s, < 2SScat a t  some 
boundary then the propagation angle is changed at that boundary by the random 
quantity Ad according to the Gaussian density distribution above. If the path length 
s, at the layer boundary is larger than 2SScat, the ray segment will be terminated 
a t  a path length SScat from the last boundary (i.e. within the layer) and the change 
of propagation angle is applied there. This provides a certain randomization of the 
scattering locations without requiring too many additional computations, and limits 
the path length between scattering events. 

The size of the small-scale sound-speed variability is not very well established. Cher- 
nov reports data from a depth of 30 to 60 m with p2 = 5 x lo-' and a mean 
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size of the inhomogeneities of a0 = 0.60 m. This leads to Ac,,, = 0.1 m/s and 
D = 1.5 x m-l. 

In the deeper parts of the ocean the variability is certainly smaller and choosing 
D = 3 x 10-lo m-I would correspond to Ac,, = 0.3 m/s or AT,, = 0.07"C 
with a   or relation length a0 PZ 600 m. For a maximum path length s = 2SScat = 
4000 m between scattering events the rms angular variation is aa4 = = 0.09". 
Because the diffusion approximation requires an isotropic background profile the 
scattering has been restricted to path segments in the depth region from 900 m to 
1750 m, i.e. where the sound-speed gradient is sufficiently small. 

These parameters lead to the arrival pattern in Fig. 4. The horizontal bars indicate 
the depth of the turning points in the deterministic case which is displayed in Fig. 5 
as an enlarged section of Fig. 2. The energy at the turning points of the wavefronts 
extends in the stochastic case about 250 m deeper than in the deterministic one. 
This is the same order of magnitude as the differences in Fig. 1. Obviously the main 
wavefronts remain undisturbed and the scatter is only slightly increased. Further 
the extension of energy to larger depths does not result in a significant time spread 
or time delay, which is remarkable since this implies that a bundle of rays with 
different angles arrives a t  different depths within the resolution cell of 0.005 s. At 
the upper shadow zone, where the sound-speed gradient is larger, the illumination 
due to scattering does not extend so deeply into the shadow. 

A larger diffusion constant will increase the scatter around the wavefronts because 
the ray may arrive with a displacement in depth, and energy will be carried even 
further beyond the deterministic turning point depth of the ray. 
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Time - Range11485 (s) 

Figure 4 Arrival times at 1000 k m  range due to a single Munk profile with 
sound-speed variability: dzflusion constant D = 3 x lo-'' m - l ,  SScat = 2000 n. 
The horizontal bars indicate the turning point depths of Fig. 5. Source depth 
1.3 km,  reduction speed C, = 1485 m/s.  

Time - Range11485 (s) 

Figure 5 Expanded part of Fig. 2. Arrival times at 1000 k m  range due to 
a single Munk profile with no sound-speed variability. Source depth 1 .3  km,  
reduction speed C, = 1485 m/s.  

Report no. changed (Mar 2006): SR-214-UU



Conclusion 

By using a simple stochastic ray tracing scheme it has been shown that small stochas- 
tic sound-speed variations divert energy into the ray-theoretical shadow zone. This 
intrinsic variability illuminates regions even beyond the shadow zone boundary where 
diffraction effects are important, but it leaves the remainder of the arrival pattern 
unchanged. The extension of energy into the shadow zone is a function of the sound- 
speed gradient and the sound-speed variability. 

This provides a possible explanation for the shadow zone illumination in the exper- 
imental results of Duda et al. [I] and Howe et al. [2], since the computational result 
describes the finding within the correct order of magnitude. Proper modelling would 
require a better description of the nature of the intrinsic sound-speed variation in 
terms of variance, correlation lengths and variation with depth and range. 

If the explanation offered is the dominant cause of this acoustic phenomenon, then 
this type of experimental result has the potential to determine the missing oceano- 
graphic quantities. In the present approach, however, only the diffusion constant 
may be deduced. To obtain more detailed information on the variance and correla- 
tion lengths of the intrinsic stochastic variability an appropriate methodology would 
need to be developed. 
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