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P e r t u r b a t i o n  t heo ry  applied to sound  
sca t te r ing  f r o m  a rough  sea-floor 

H.-H. Essen 

Execut ive  Summary :  Sound scattering from the sea-floor is of great im- 
portance for sonar performance This is true not only for the estimation of 
reverberation (i.e. limiting acoustic ranges), but also for detecting mines by 
acoustic means. While the first task mainly concerns low frequencies, the sec- 
ond requires high frequencies. 

Scattering from the sea-floor is not yet well understood, mainly due to an 
insufficient knowledge of sea-floor parameters. Sea-floor roughness is considered 
to be the main source of scattering but inhomogeneities within the sea bed, such 
as buried stones in a sandy bottom, may also be of influence. Due to the shorter 
penetration, the latter effect can be assumed to be less important for higher 
frequencies. 

This report shows that, contrary to statements in the literature, perturbation 
theory yields useful results when applied to sound scattering from a rough sea- 
floor. Indeed, important features of measured backscattering strengths can be 
explained by the theory. These are the absolute value of scattering strength, 
its independence of frequency over a wide range, and the observed dependence 
on grazing angle from nearly grazing to  nearly perpendicular. It is shown 
that the necessary assumptions on the roughness spectrum of the sea-floor are 
reasonable. 

Recommendations for future work are: (1) perturbation theory should be ap- 
plied to interpret observed (mainly high-frequency) sea-floor scatter; (2) it 
seems worthwhile to use scattering coefficients as predicted by perturbation 
theory for numerical modelling and to compare this against other approaches 
such as Lambert's law. 
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Per tu rba t ion  theo ry  applied to sound 
sca t te r ing  f rom a rough sea-floor 

H.-H. Essen 

Abstract :  Perturbation theory is applied to acoustic scattering from a rough 
sedimental sea-floor. Realistic boundary conditions are used, i.e. continuity of 
pressure and the normal component of particle velocity. The scattering strength 
as a function of grazing and azimuthal angle of incident and scattered energy 
is derived, depending on acoustic frequency, the two-dimensional roughness 
spectrum of the sea-floor and the ratios of sound velocity and density of the 
sediment to water. For the special case of backscattering, theoretical scatter- 
ing coefficients are compared with measured data from the literature. Under 
reasonable assumptions on the sea-floor parameters, good agreement between 
theory and measurement can be achieved. 

Keywords: grazing angle o azimuthal angle o backscattering o sound 
velocity o sediment density 
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lntrod uction 

Scattering from the sea surface and sea-floor is of great importance in underwater 
sound propagation. While there exists a great deal of theoretical and experimental 
work on the sea surface, investigations on the sea-floor are relatively rare. This is 
mainly due to the limited knowledge of sea-floor characteristics. A recent review of 
mainly theoretical work is given by Ogilvy (1991). 

In this report the first-order perturbation approach is used to explain some features 
as observed in bottom reverberation. This relatively simple theory is suitable for 
our purpose of demonstrating the influence of boundary conditions on scattering fea- 
tures. After perturbation theory was successfully used to explain radar backscatter 
from a rough sea surface (Wright, 1968), it was also applied to acoustic scattering by 
a number of authors. Thorsos (1990) compares different theoretical approaches to 
acoustic scattering from a rough sea surface of known statistics and finds reasonable 
results for the perturbation approach. 

Two assumptions are fundamental to the present study. First it is assumed that 
perturbation theory yields reasonable results even if the requirement for roughness 
amplitudes to be small compared to acoustic wavelength is not strictly fulfilled. 
Two-scale models may extend the applicability of the theory to more general condi- 
tions. Secondly, it is assumed that the roughness of the sea bottom is the dominant 
determining characteristic for backscattering from the sea-floor, as stated by Urick 
(1983). 

In Sect. 2 the theoretical scattering coefficients are derived. Section 3 compares 
theoretical results with measured data. Most existing measured data of sea-floor 
scattering are from backscatter. For this reason, the comparison of theoretical and 
measured scattering coefficients has been restricted to this special case. Observed 
backscattering strength depends on bottom type, acoustic frequency and grazing 
angle. The absolute value of the backscattering coefficient, as well as the above- 
mentioned factors, should be reflected by the theoretical results. Sea-floor param- 
eters affecting the theoretical scattering coefficient, are the ratios of density and 
sound velocity of water and sediment and the two-dimensional roughness spectrum. 
The absolute value of the backscattering coefficient as well as its dependence on 
frequency are mainly determined by the two-dimensional wavenumber spectrum of 
bottom roughness. 

Apart from some measurements showing a linear increase of backscatter with fre- 
quency, most measured data are frequency independent (Bunchuk and Zhitkovskii, 
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1980; Urick, 1983). To reproduce this feature by the theoretically derived scatter- 
ing strength, a k - 3  dependence of the wavenumber spectrum has to be assumed. 
The roughness spectrum used for fitting observed data is discussed in Appendix A. 
A simple statistical model has been used to produce synthetic representations of the 
bottom roughness. It appears that the assumptions made concerning the total vari- 
ance and the dependence of the roughness spectrum on wavenumber are reasonable 
in the sense that they represent possible roughness fields. Also the assumptions of 
the perturbation parameter and the extension of the area of spatial averaging do 
not conflict with the considered roughness spectrum. 

Theoretical backscattering coefficients show an increase with increasing density, 
which is in general agreement with observations showing greater reverberation over 
rocky bottoms than over mud bottoms (Urick, 1983). Realistic densities only slightly 
affect the dependence on grazing angle, while the (unrealistic) assumption of a rigid 
bottom of infinite density yields a quite different dependence. 

Both the sound-velocity of the sea-floor and the roughness spectrum determine the 
grazing- angle dependence of backscat tering . Within the approximate range of graz- 
ing angles 5-45", data may be approximated by simple sinn laws, with n = 1 sug- 
gested by Bunchuk and Zhitkovskii (1980) and n = 2 (Lambert's rule) by Urick 
(1983). For larger grazing angles the backscattering strength shows a strong rise 
with increasing angle, which is not represented by these empirical functions. Spec- 
ular reflection from randomly distributed bottom facets has been used to explain 
this feature (Ellis and Crowe, 1991). The backscattering coefficient derived by per- 
turbation theory describes the grazing-angle dependence well for both angle ranges. 
Moreover, it predicts a nonrnonotonic behaviour of the backscattering strength with 
grazing angle exceeding the critical angle of total reflection. Evidence for this be- 
haviour may be found in reverberation measurements, such as those made by Robi- 
son (1975) at 123 sites in different areas of the North Atlantic and those published 
by Ellis and Crowe (1991). 
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Perturbation theory 

A cartesian coordinate system is used with the mean surface in the plane z = 0, 
and z pointing upwards. Incident acoustic energy arrives from above, in accordance 
with the geometry at the sea-floor. This geometry can also be applied to surface 
scattering, because it does not influence the results in term of scattering coefficients. 

For simplicity we will consider the scattering of plane acoustic waves. The incident 
wave is described by 

po = Aoexp[i(ko . x  - ~ o t .  - wt)] + c.c., 

with acoustic pressure p, wavenumber vector ko = [ko cos po, Lo sin yo],  horizontal 
wavenumber ko = (wlc,) cos Go, vertical wavenumber 70 = (w/c, ) sin 290, circular 
frequency w ,  and sound velocity c,. 

Bold letters are used to represent two-dimensional horizontal vectors. Horizontal 
angles count anticlockwise from the x-axis (mathematical convention), and vertical 
angles from the surface, i.e. they are grazing angles. The complex conjugate solution 
(c.c.) is added in order to get real field variables. 

The (infinite) interface is described by t. = ((x) and may be represented by a two- 
dimensional Fourier integral 

( = 1 Z(k) exp[i(k. r)] dk, 

with k = [k cos 9, k sin 91, and Z(-k) = Z*(k).  The latter condition is introduced 
for obtaining real values of C and is appropriate for the frozen sea-floor. In the case 
of a moving sea surface, the wavenumber vector indicates the direction of phase 
velocity, and waves travelling in opposite directions have to be distinguished. Then 
the complex conjugate integral has to be added in (2.2). In other words, the Fourier 
components Z(k),  as defined by (2.2), contain the variance of waves travelling in 
opposite directions, which may not be distinguished in the case of the frozen sea- 
floor. 

The sea-floor is assumed to be a zero-mean homogeneous random process: 

(Z(k))  = 0, 
(Z(k)Z*(kl)) = F(k)d(k - k'). 
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with (C2) = F(k)  dk. The angle brackets indicate ensemble means. The decor- 
relation of the Fourier amplitudes follows from the assumption of homogeneity. In 
this case the covariance function depends on the spatial lag between positions only 
and not on the position itself, and is the cosine transform of the variance spectrum 
F(k). It should be mentioned that the integral is taken over the whole wavenumber 
circle with identical contributions from wavenumbers of opposite direction. 

The boundary conditions at the sea-floor require continuity of pressure and normal 
component of particle velocity, 

with vertical component of particle velocity w, horizontal vector of particle velocity 
u = [u, v], and V = [d/dx, slay]. The indices w and b refer to the upper fluid and 
lower sediment half-space, respectively. 

In both media (m = w or b) the same equations of motion are valid but with different 
values of sound velocity c and density p:  

Approximate solutions of (2.4) and ( 2 . 5 )  may be obtained by means of perturbation 
theory, in which case the field variables can be expanded into convergent perturba- 
tion series: 

Performing a Taylor expansion around the undisturbed interface and inserting the 
perturbation series (2.6), the zero- and first-order boundary conditions become 

and 
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The zero-order solution yields the specular reflected wave in the fluid medium and 
a refracted wave in the sediment bottom: 

(0) = exp[i(ko . x - yoz - wt)] + A, exp[i(ko . x + 702 - wt)I + c.c., Pw 

$) = At exp[i(kox - n0.z - wt)] + c.c., 

with A, = (a70 - no)Ao/(ayo + KO) ,  At = 2a-(oAo/(ayo + K O ) ,  KO = J ( w / c ~ ) ~  - ki, 
and a = pblp,. For small grazing angles, KO becomes imaginary and total reflection 
occurs. 

By inserting the zero-order solutions (2.9) into the first-order boundary conditions 
(2.8) and making use of the linear equations of motion within the media (2.5), one 
obtains 

p y )  = x 1 Bt exp[ia(k, x - ri.2 - wt)]Z(k) dk, 
u = f  1 

with k, = ko f ak,  7, = t/(w/cw)z - kz, and K, = \ ; ( W / C ~ ) ~  - k,2. 

Due to the quadratic coupling, two contributions occur, referring to the sum (a = 
+1) and difference (a = - 1) of the interacting wavenumbers. The wavenurnbers as 
well as the amplitudes of the scattered field depend on a .  

We are only interested in the acoustic field of the upper fluid half-space, i.e. the 
amplitude B, : 

Br = ~ ~ Y o A o / [ ( ~ ~ o  + K O ) ( Q ~ ,  + K,)] 

2 x [(a - l ) [a (ko .  k. - ko) - K ~ K , ]  - a(a7; - ni)]. 

When a = 0 the acoustic field vanishes in the lower half-space and the solution refers 
to the free sea surface. 

The perturbation expansion requires the first-order solution to be small in amplitude 
as compared to the incident wave. This obviously is the case if the perturbation 
parameter (or Rayleigh parameter), i.e. the product of vertical wavenumber yo = 
(wlc) sin(l')O) and roughness amplitude Z(k),  is small compared to unity. At small 
grazing angles this may be true even for relatively large roughness amplitudes. 
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In order to compute scattered intensities, ensemble averaging (2.3) over the random 
interface (2.2) is performed. For real data, no ensemble is available and spatial 
averages have to be taken. It has to be assumed that the area considered is large 
compared to the correlation length of the random surface. 

Taking the square of the scattered field within the fluid half-space in (2.10) and 
making use of the statistical properties of the scattering interface (2.3), the mean 
scattered acoustic intensity becomes 

(2)  (2))  = C / / Br l 2  F ( k )  dk. I. = (PW Pw 
u = f  1 

This equation may be simplified, as opposite signs of a refer to opposite signs of 
the scattering wavenumber vector k ,  which both yield the same contribution to 
the integral (2.12). Making use of (2.2) and (2.3) and replacing the scattering 
wavenumber of the interface by the difference between the incident and scattered 
acoustic wavenumber (2.10)) one obtains 

It should be mentioned that this simplificatioll is not possible for a moving surface 
where contributions from opposite scattering wavenumber vectors may be different. 
Making use of (2.13), one obtains 

with k, = k o +  k .  

Changing the integration in (2.14) to ps and d,, the integral reads 

I. = ~ ( w / e w ) ~  JJ I B, ~ ( k .  - ko) sin #, cos #, d7, d#., 

with ks = (W/CW) cos #,[COS ),, sin ),I. 
Now, the scattering coefficient S is defined (cf. Brekhovskikh and Lysanov, 1991) by 

I. = A: J ( s l r2 )da ,  (2.16) 

where r is the distance from the scattering area to the reference point and the 
integration is carried out over the infinite bottom or surface. The dB value of the 
scattering coefficient is called the scattering strength. For geometrical reasons, the 
integral may be changed to 

I,  = A: 1 Scot 19. dv, d19,. 
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Comparing (2.15) and (2.17), the scattering coefficient then becomes 

This formula allows some conclusions with respect to scattering close to the specular 
hrection. In this case the scattering wavenumbers become small, which means that 
scattering is due to the long waves of the roughness field. In general, these con- 
tain more variance than shorter waves and scattering in the near-specular direction 
heco~nes stronger. 

Backscaltering is of special interest. In this case, the condition 

holds and the backscattering coefficient becomes 

Sb(w, (Po, $0) = TbF(2ko) 

A vanishing subsurface density refers to a free surface, for which the transfer function 
Tb becomes 

Tb(w, PO, 290) = 4704. 
The variance spectrum, as defined by (2.3)) refers to a frozen surface and represents 
the contributions from positive and negative wavenumbers in the case of a moving 
sea surface. 

The backscattering coefficient of an absolutely rigid sea-floor is obtained in the limit 
of infinite density, which yields the tranfer function 

It is worthwhile to notice that in this case, backscatter does not vanish for zero 
gra?ting angle. 
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3 
Numerical results 

An empirical scattering coefficient has been introduced by Mackenzie (1961) based 
on Lambert's rule: 

(3.1) S = So sin 190 sin 9, 

with So = constant. This relation is well known from optics and states the fact that 
for many materials an illuminated area looks almost equally bright when viewed 
from different angles. Lambert 's rule contains no dependence on the roughness 
spectrum and predicts frequency-independent scattering coefficients. The respective 
backscattering coefficient becomes 

In a review paper, Bunchuk and Zhitkovskii (1980) found that most backscatter- 
ing measurements show a dependence on sindo for grazing angles below 50'. Urick 
(1983), as well as Ellis and Crowe (1991)) prefers Lambert's rule. The scattering 
coefficient derived by means of perturbation theory shows a more complicated de- 
pendence, influenced by sea-floor parameters. 

The representation of backscattering coefficients in dB (scattering strength) per- 
forms a decomposition into additive contributions from the transfer function and 
the spectral component of roughness (cf. (2.20)): 

Considering the results of perturbation theory applied to a free surface, the first 
term in (3.3) yields a grazing-angle dependence of sin4 (cf. (2.21))) which is super- 
imposed by a contribution from the roughness spectrum. The roughness spectrum is 
a function of the horizontal wavenumber, and thus of the acoustic frequency and the 
cosine of the grazing angle. Only in the unrealistic case of a constant spectrum (i.e. a 
white spectrum in both components of horizontal wavenumber) does the sin4 depen- 
dence of the transfer function also hold for the backscattering coefficient. However, 
the roughness spectrum is insensitive to variations in small grazing angles. Thus, 
for small grazing angles a sin4 dependence of the backscattering coefficient can be 
assumed. 

Figure 1 compares different sinn 290 functions with n = 1, n = 2, and n = 4, where 
the first two represent empirical approaches, and the latter arises from perturbation 
theofy applied to scattering from a free surface at small grazing angles. Scattering 
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Figure 1 Empirical backscattering 
strengths. Dashed curve: sin 60. Solid 
curve: sin2 6" (Lambert's rule). Dotted 
curve: sin4 6". 

I Grazing angle (deg) 

Figure 2 Theoretical backscatter 
transfer functions for diflerent surfaces. 
Dashed curve: rigid bottom (pb = 
00). Solid curve: sedimental sea poor 
(cb /cw = 1.2, pt,lpW = 2.0) .  Dotted 
curve: free surface (pb = 0 ) .  

I 

Grazing angle (deg) 

strengths in Fig. 1 are arbitrarily normalized with the constraint of intersecting at 
grazing angle of 45'. 

In orde ! to show the influence of the boundary conditions involved, Fig. 2 displays 
I the dependence of the transfer function on grazing angle for a free surface (2.21), a 
I sedimeat bottom with realistic sound velocity and density (2.20), and an absolutely 

rigid bdttom (2.22). The normalisation is arbitrary but the same for all three curves. 
Except for an additive constant, the dotted curve (scattering from a free surface) is I the same as in Fig. 1. The three cases show distinctly different behaviours for all 
grazing angles. An important feature of the tranfer function of the sediment bot- 
tom is 1 he nonmonotonic behaviour around the angle of total reflection (the critical 

The transfer functions do not represent the backscattering coefficient, as the 
spectrum also contributes angle dependence. However, for small graz- 
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ing angles this dependence is of less importance. For small grazing angles (i.e. below 
30°), the comparison with Fig. 1 shows that the theoretical scattering coefficient for 
a sediment sea-floor may not be represented by a simple sinn law. 

The transfer function Tb (cf. (2.20)) is proportional to w4, indicating a strong fre- 
quency dependence, which on the other hand could not be observed in measured 
data. Thus, a sea-floor wavenumber spectrum is sought which compensates for the 
frequency dependence of the transfer function. As nothing else is known, it is rea- 
sonable to assume that the wavenumber spectrum is isotropic: 

G(k) is the one-dimensional wavenumber spectrum which, by inserting (3.4) in (2.3), 
yields 

(C2) = J G(k) dk. (3.5) 

Inserting (3.4) into (2.20), the backscattering coefficient becomes 

Through ko both the dependence on grazing angle and frequency are affected, de- 
creasing the latter to w - ~ .  

In general, roughness spectra decrease with increasing wavenumber. A reasonable 
assumption is a k - 2  decay, which means that amplitudes are proportional to wave- 
length. Such spectrum leads to a linear increase of backscattering with frequency. 
Some of the measurements summarised by Urick (1983) show this rise in scattering 
strength with frequency, but most of the data show frequency-independent backscat- 
ter, in accordance with data presented by Bunchuk and Zhitkovskii (1980). For this 
reason, we introduce a wavenumber spectrum decaying by k-3: 

It should be mentioned that by this assumption the factor Go is dimensionless. The 
backscattering coefficient becomes 

Sb = TbGo/(32xk4), 

Insertion of the transfer function Tb of a free surface (2.21) yields 

Sb = GO t an4 290/(8x). 

The frequency independence of backscattering, as reported by Urick (1983) and 
Bunchuk and Zhitkovskii (1980), extends from about 2 kHz to 100 kHz, the back- 
scattering strength for sediment sea-floor at a grazing angle of 30' varies around 
-30 dB. Fitting the theoretical backscattering coefficient to these data, we find 
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Grazing angle (deg) 

Figure 3a Theoretical backscattering 
strengths for dinerent surfaces, G ( k )  = 
0 . 0 1 k - ~ .  Dashed curve: rigid bottom 
(pb = 00). Solid curve: sedimental 
sea floor (cb/c,  = 1.2, pl,/pw = 2.0). 
Dotted curve: free surface (pb = 0) .  

Figure 3b Comparison of empirical 
and theoretical backscattering strengths. 
Dashed curve: sin(z9o). Dotted curve: 
sin2(do) (Lambert's rule). Solid curve: 
theoretical backscattering strength with 
G ( k )  = 0.01k-3, average over 1 . 0 ~ ~  < 
CL, < 1.3cw, 1 . 6 ~ ~  < pb < 2 . 1 ~ ~ .  

Grazing angle (deg) 

~e~reskn ta t ions  of the roughness spectrum, defined by (3.7) and (3.10) are derived 
in ~ ~ p e n d i x  A. It appears that the asssumptions made can be fulfilled by realistic 
roughn!ess fields. 

I 
1 

The b 'ckscattering strengths, presented in Fig. 3a, again show the strong depen- B dence pf backscatter on the type of interface. For small grazing angles, the angle 
dependence agrees well with that of the transfer function in Fig. 2. For larger grazing 
angles there is an increase of backscatter, which is also observed in measurements 
but ca I, not be represented by the empirical scattering coefficients of Fig. 1. 

I 
~ i ~ u r e !  3b shows an averaged backscattering strength as function of grazing angle I compared with the empirical sin1 and sin2 functions of Fig. 1. Averaging is per- 
formed over bot tom-sound velocities in the range 1 . O - 1 . 3 ~ ~  and respective densities 

I 
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Figure 4a Theoretical backscattering 
strengths for different k-dependences 
of roughness spectrum, cb/cw = 
1.2, pb/pw = 2.0. Dotted curve: 
G ( k )  = 0.01(wo/cw)-1k-2 .  Solid 
curve: G ( k )  = 0 . 0 1 k - ~ .  Dashed curve: 
G ( k )  = O . O l ( ~ ~ / c ~ ) k - ~ .  

Figure 4b Theoretical backscat- 
tering strengths for different sea- 
floor sound velocities, pb/pw = 2.0, 
G ( k )  = 0.01k-3. Dotted curve: 
cb/cw = 1.1. Solid curve: cb/cw = 1.2. 
Dashed curve: cb/cw = 1.3. 

in the range 1 . 6 - 2 . 1 ~ ~ .  This averaging is in accordance with the data of Bunchuk 
and Zhitkovskii (1980) and Urick (1983), representing mean values from different 
experimental sites. Bunchuk and Zhitkovskii (1980) state a sin' dependence of the 
backscattering coefficient for grazing angles in the range 10-50°, while Urick (1983) 
suggests a sin2 dependence (Lambert's rule). Figure 3b shows a good agreement 
of the theoretical curve with Lamberts's rule at grazing angles below 25' while for 
higher grazing angles a sin1 dependence better fits to the flattening of the theoretical 
curve. 

Theoretical backscattering coefficients depend on different parameters, such as the 
k-dependence of the roughness spectrum, the ratios of sediment to water sound 
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Grazing angle (deg) 

Figure 4c  Theoretical backscattering 
strengths for dinerent  sea-floor den- 
sities, ck,/cw = 1.2,  G ( k )  = 0 . 0 1 k - ~ .  
Dotted curve: pb/pw = 1.8. Solid 
curve: pt,/pw = 2.0. Dashed curve: 
P ~ / P W  = 2.2. 

Figure 4d Theoretical backscattering 
strengths for di f ferent  bot tom losses, 
c~/c, = 1.2,  ~ b / ~ w  = 2.0, G ( k )  = 
0 .01k-3 .  Solid curve: car = 0 .  Dotted 
curve: c b I / c w  = 0.01. Dashed curve: 
cbI/cW = 0.1. 

Grazing angle (deg) 

velocitk and density and also on the acoustic attenuation of the sea-floor (bottom 
loss). khese parameters are investigated in Figs. 4a-d. Modifications are related I to standard conditions, wavenumber spectrum as defined by (3.7) and (3.10), the 

f sound velocities c b / c w  = 1.2 and densities p b / p w  = 2.0 in sediment and 
no bottom loss. These are represented by a solid line throughout. 

~ i ~ u r d  4a shows the dependence of the backscattering strength on the decay of the 
I roughness spectrum. This is mainly seen at larger grazing angles, while smaller 

gazink angles are not affected. The steeper increase refers to a k - 4  decay of the 
spectrum, implying a frequency dependence of the backscattering coefficient by w - l .  
~ c c o r h i n ~ l ~ ,  the less steep curve refers to a k-' decay and a linear increase of the 

I backscattering coefficient with frequency. 
I 
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Figure 5a Measured data fitted by 
theoretical backscattering strengths, 
c ~ / c ,  = 1.2, pa/<, = 2.0. Solid curve: 
G ( k )  = 0.005k- . Dashed curve: 
G ( k )  = 0 . 0 0 4 ( w o / ~ , ) k - ~ .  Crosses: 
data from Ellis and Crowe (1991) of 
explosive measurements i n  a deep-water 
area. 

Figure 5b Measured data fitted by 
theoretical backscattering strengths. 
Solid curve: cb/cw = 1.2, pb/pw = 2.0, 
G ( k )  = 0 . 0 5 k - ~ .  Dashed curve: 
average over 1 . 0 ~ ~  < ct, < 1.3cw, 
1 . 6 ~ ~  < p ~ ,  < 2.1pw, G ( k )  = 0 . 0 5 k - ~ .  
Crosses: data from Bunchuk and 
Zhitkovskii (1980) of mean values for a 
sandy sea poor and acoustic frequency 
range 10 kHz-100 kHz. 

Grazing angle (deg) 

Figure 4b displays backscattering strengths for different sound velocities of the sea- 
floor. Clearly, this parameter is very important, both for the absolute value as well 
as the dependence on grazing angle. In particular, the critical angle is determined by 
the sound-velocity ratio and with it the nonmonotonic interval of the backscat tering 
strength as a function of grazing angle. 

The dependence of the theoretical backscat tering strength on the density of the sea- 
floor is shown in Fig. 4c. By further increasing the density (to unrealistic values), the 
curve approaches that of the absolutely rigid bottom, presented in Fig. 3a. Though 
the shapes of the backscattering curves are also affected by density variations, the 
more important influence is that on the magnitude of scattering strength, which 
increases with increasing density of the sea-floor . 
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Bottom loss may be considered by introducing a complex sediment sound velocity 

Figure 4d displays the influence of bottom loss on the theoretical backscattering 
strength. Bottom losses are chosen for significantly modifiying the curves. Realistic 
values are represented by the dotted curve while the dashed one is only of theoretical 
interest. Thus, it may be stated that bottom loss can be ignored in calculating 
backscattering strengths. Only around the critical angle does smoothing of the 
dependence on grazing angle occur. 

Figures 5a-b show fits of theoretical curves to measured data. The data of Ellis and 
Crowe (1991) in Fig. 5a are from experiments with explosives in a deep-water area. 
These data have been chosen because they show the nonmonotonic behaviour of 
scattering strength as a function of grazing angle, predicted by theory. The measured 
data can be well fitted by theoretical backscattering strengths deduced from a sea- 
floor with the standard values of sea-floor velocity and density (solid line) but a 
somewhat smaller spectral amplitude as (3.10). For large grazing angles, an even 
better fit can be obtained by assuming a k k 4  decay of the roughness spectrum, which 
implies a decrease of backscattering strength with frequency, as discussed above. It 
should be mentioned that for large grazing angles facet reflection may contribute to 
the scattering strength, which is not considered by the theory presented. 

Mean backscattering strengths in the frequency range 10-100 kHz as a function of 
grazing angle are given by Bunchuk and Zhitkovskii (1980) for different sea-floors. 
For our purpose, we use the data referring to a sandy sea-floor, which are represented 
as a continuous curve for grazing angles between 5' and 75'. I11 Fig. 5b these data 
are displayed by crosses in steps of 5'. Both theoretical curves are derived from a 
roughness spectrum with k - 3  decay. Again, a better fit at the higher grazing angles 
65-75' can be obtained by using a steeper roughness spectrum. However, this does 
not seem to be reasonable because contributions from specular facet reflection have 
to be taken into account. Backscattering in the frequency range considered is due 
to roughness wavelengths of several centimetres, which may be superimposed on 
longer-scale roughnesses responsible for the above-mentioned facet contribution at 
larger grazing angles. 

The solid curve in Fig. 5b refers to our standard sea-floor parameters, but with a 
greater roughness spectrum amplitude. The dashed curve represents averaging over 
sea-floor parameters as in Fig. 3b (solid curve) and is more appropriate to the data 
representing a mean over different experimental sites. The agreement with the data 
is better mainly because the peak at the critical angle is smoothed out and the 
dependence of scattering strength on grazing angle becomes nearly monotonic. 
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Conclusions 

A simple scattering theory (perturbation approach), well known in applications such 
as radar and acoustic scatter from the sea surface, describes surprisingly well im- 
portant features of acoustic backscatter from a rough sea-floor. Because of the use 
of over-simplified boundary conditions this has not yet been recognized. 

Theoretically derived scattering strengths are strongly dependent on sea-floor pa- 
rameters, ratios of density and sound velocity of sediment and water, and on the 
two-dimensional roughness spectrum. However, minimal knowledge about the struc- 
ture of the sea-floor exists. This is mainly due to the fact that measurements are 
complicated and cover limited areas only. For the comparison of theory with mea- 
sured data it has only been possible to show that the necessary assumptions on the 
sea-floor are reasonable. 

For very small grazing angles, the grazing-angle dependent perturbation parameter 
remains small even for roughness amplitudes of the order of the acoustic wavelength. 
For this reason and also because of the absence of facet reflections, perturbation the- 
ory should be most reliable at small grazing angles. On the other hand, reverberation 
from long distances is due to backscattering at low grazing angles. For the purpose 
of predicting reverberation by means of numerical modelling, knowledge of the de- 
pendence of the backscattering coefficient, especially on small grazing angles, is of 
great importance. The perturbation theory predicts the backscattering strength to 
be independent of the k-dependence of the roughness spectrum at these angles, but 
dependent on the sound velocity within the sediment. 

The presented perturbation theory yields scattering coefficients also for forward 
scattering. The experimental finding of maximum scattered energy around the angle 
of specular reflection is in agreement with theory. The longest wavelengths of the 
roughness field, which in general contain most of the variance, are responsible for 
nearly specular scattering. 

Finally, it should be mentioned that a better understanding of the scattering process 
may yield information on sea-floor parameters from reverberation measurements by 
means of inversion techniques. 
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Appendix 
Model of surface roughness 

The purpose of this appendix is to show that the assumptions 011 the scattering 
roughness spectrum are reasonable. Assuming that the spectrum extends from a min- 
imum wavenumber to infinity, the variance of bottom roughness becomes (cf. (3.7)) 

k, has to be chosen in accordance with acoust.ic frequencies involved. For the spe- 
cial case of backscattering from km at a grazing angle of 45", the vertical acoustic 
wavenumber is equal to half of the minimum bottom-roughness wavenumber, and 
the perturbation parameter turns out to be small, 

For acoustic frequencies exceeding the corresponding minimum by more than a factor 
of 10 the assumption of the perturbation approach begins to fail. 

The autocovariance function is the cosine transform of the wavenumber spectrum, 

Figure 6a displays the theoretical wavenumber spectrum and the corresponding auto- 
correlation function (normalised autocovariance function). The scales are arbitrary. 
The minimum wavenumber k, = 0.63 m-l corresponds to a wavelength of 10 m. 
The autocorrelation function shows an oscillating behaviour, and statistical depen- 
dence occurs for wavenumbers exceeding the first zero-crossing at a lag of about 
1.6 m.  

In order to visualize the bottom structures involved, synthetic representations of 
a random sea-floor are derived, with the properties stated above. Assuming an 
isotropic spectral distribution, roughness is only investigated as a function of dis- 
tance. Synthetic series of bottom roughness are obtained from normally distributed 
white noise filtered in accordance with the assumed wavenumber dependence and 
normalized to the total variance. Filtering is performed in the wavenumber space. 
The length of the series are chosen by 10 m,  i.e. the spectral resolution is k,, the 
number of data points is 256, extending the spectral range to 128km in accordance 
with the theoretical spectrum of Fig. 6a. 
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Figure 8a Variance spectrum and 
autocorrelation (theoretical). Upper panel: 
variance spectrum G(k) = 0.0lk-j .  
Lower panel: respective autocorrelation 
function. 

10 

Wave number 

t .O 

i :::-'\-- Figure 8b Variance spectrum and 
autocorrelation (from simulated data). "4 Upper panel: estimated mean variance 
spectrum. Lower panel: estimated mean 

-1 .o autocorrelation function. 
I 

I 2 3 4 

I Lag (m) 

Report no. changed (Mar 2006): SR-194-UU



Fig. 6b displays a mean roughness spectrum and a mean autocorrelation function, as 
derived by averaging over 10 synthetic representations of the sea-floor. The rough- 
ness spectrum is derived from the Fourier coefficients of the space series and the 
autocorrelation from an estimator, periodically continuing the finite series, in order 
to allow comparison with the theoretical autocorrelation function of Fig. 6a. 

The linear procedures of transforming white noise into frequency space, multiplying 
by a filter function and backtransforming represents a kind of infinite moving av- 
erage process. The whole set of random data influences each point of the resultant 
roughness series. This explains statistical dependences, as shown by the autocorre- 
lation function. Differences between Fig. 6a and Fig. 6b, both in the spectra and in 
the autocorrelation functions, are due to the finite length of the synthetic series. For 
the spectra, a flattening occurs at low wavenumbers. 

Ensemble averaging, as introduced by perturbation theory, is in practice, replaced 
by spatial averaging, assuming different parts of the illuminated area yielding sta- 
tistically independent contributions to scattering strength. Thus, the illumination 
should extend over areas with large diameters compared to the correlation length of 
bottom roughness. To be cautious, the correlation length in our model is assumed 
to be about the length of the space series, which is determined by the minimum 
wavenumber k,. To allow the averaging mentioned above the illuminated area has 
to extend over a number of subareas, each of which may be described by a model as 
discussed above. 

Refering to grazing angles below 40°, acoustic frequencies in the range 75-100 Hz 
are backscattered from the roughness wavelength of 10 m, corresponding to the 
minimum wavenumber k, . With the spectrum (A .I),  the perturbation parameter 
remains small up to a frequency of about 1000 Hz. In order to obtain sufficient 
st atistically independent scattering, the diameter of the illuminated area should be 
of the order of 100 m. The presented results may be applied to other length and 
frequency scales by introducing a normalization factor. For example, by reading 'cm' 
instead of 'm' in Figs. 6a-b, the corresponding frequencies have to be increased by 
a factor of 100. 

Figure 7 displays three representations of bottom roughness, derived from differ- 
ent sets of white-noise data. Over the total range of 10 m, amplitudes of bottom 
roughness are of the order of 0.2 m. Occasionally, steep slopes occur, which are not 
unlikely in a rough sea-floor. 
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Figure 7 Synthetic representations 
of sea-floor roughness, corresponding to 
the roughness spectrum of Fig. 6b. 
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Initial Distribution for SR-194 
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NLO Denmark 
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