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A m e t h o d  for  de t e rmin ing  abso lu te  
velocities f r o m  hydrographic  d a t a  

G. Peggion 

Abs t r ac t :  This study describes a procedure for deriving the characteri- 
stics of large-scale climatic currents from hydrographic data of a variable 
depth region of the ocean. The model equations are written on a P-plane, 
using the geostrophic, hydrostatic, and Boussinesq approximations. The 
effects of surface and bottom boundary layers, and turbulent transfers of 
mass and momentun1 are neglected. 

The model is formulated such that the velocities, which are the solutions 
of the thermal wind equations, are referred to the (unknown) bottom ve- 
locities. Within the assigned dynamical constraints, a differe~itial equation 
for the bottom pressure associated with the bottom geostrophic velocities 
can be derived. The equation would hold exactly if the model equations 
exactly described the motion, or if the hydrographic data did not contain 
errors and noise. The misfit, which is assumed never to be zero, is an addi- 
tional unknown component of the problem. To handle the indeterminacy 
of the problem, the absolute velocities are chosen to minimize the variance 
of the misfit over the whole region of interest. The method is illustrated 
by applications. 

Keywords:  absolute velocities o hydrographic data o inverse 
methods o thermal wind equations o variational principle 

Report no. changed (Mar 2006): SR-114-UU



Contents 

1 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
2 . The model equations . . . . . . . . . . . . . . . . . . . . . . . . .  3 
3 . The variational principle . . . . . . . . . . . . . . . . . . . . . . .  6 

. . . . . . . . . . . .  3.1. Formulation of the variational method 6 
. . . . . . . . . . . . . . . .  3.2. A generalization of the method 7 

4 . Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
4.1. The numerical experiments . . . . . . . . . . . . . . . . . .  10 

5 . Summary and conclusion . . . . . . . . . . . . . . . . . . . . .  22 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  References 24 

. . . . . . . . . .  Appendix A . Derivation of the model equations 25 
Appendix B . An estimate of the bottom velocity relative to the 

velocity solution of the thermal wind equations . . . . . . . .  28 

Report no. changed (Mar 2006): SR-114-UU



1. Introduction 

A classical problem in physical oceanography is how to,calculate velocity field pro- 
files from the observed density distribution. The starting point of this problem is 
to describe the large-scale climatic currents averaged over a long-term interval in 
some domain V of the open sea by disregarding the surface and bottom boundary 
layers and the effects of turbulent transfers of mass and momentum. 

The model equations are usually written on a P-plane using geostrophy, and hy- 
drostatic, and Boussinesq approximations. As is well known, the use of geostrophic 
balances defines only the vertical shear of the horizontal velocity, which upon in- 
tegration leaves the geostrophic velocity undetermined by an integration constant 
that generally varies from one location to another. The indeterminacy of the pro- 
blem has been traditionally removed by making a somewhat arbitrary choice of 
a level of no-motion, or by reference to direct observation of the velocity field at 
some depth. Stommel and Schott (1977) computed the absolute velocities from 
the observed density data alone, by further assuming irnnliscibility of the density 
stratification and using a simple linear P-plane potential vorticity conservation law. 
Wunsch (1978) developed a method which considered a limited number of isotherms 
as material surfaces. Within the layers corresponding to the material surfaces, an 
arbitrary number of conservation laws are assigned, and the solution is one of mi- 
nimum energy. Davis (1978) showed the differences and similarities between these 
two methods, and illustrated how errors in the data might be reflected in the solu- 
tion. Stommel and Veronis (1981) kept the multilayer formulation for a variational 
inverse method in which the 'barotropic' energy is minimized subject to constraints 
imposed on the transport of the layers. Needler (1985) and Killworth (1979) showed 
that the velocity field can be determined at any given point by using no informa- 
tion other than that on the potential vorticity and Bernoulli function on isotherms 
and their changes from one surface to another. The method assumes smooth field 
profiles, which is not always the case. Provost and Salmon (1986) developed a fully 
three-dimensional variational method, requiring solutions with minimum energy (or 
minimum roughness) and subjected to dynamical constraints such as geostrophy, 
hydrostatic balance, and Boussinesq approximations. This is a very elegant mathe- 
matical method, but perhaps it places too much emphasis on the 'smoothing' func- 
tional. 

It is useful to classify the methods which have been mentioned and other methods 
into three groups: 

(i) Global methods (Stommel and Veronis, Provost and Salmon): the con- 
straints are simultaneously imposed over the whole domain of interest, thus 
preserving the large-scale nature of the solutions. 
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(ii) Column methods (Stornrnel and Schot t): the integration constant from the 
thermal wind equations is computed for each water column, separately. 

(iii) Local methods (Needler, Killworth): the velocity field is computed locally, 
point by point. 

Each group represents the relation between the scale definition and insensitivity to 
noise of the 'smooth' field solution. ' Once the mathematical framework has been 
defined, the selection of a global method implicitly assumes that the smooth field 
has a large scale in comparison with the station spacing, and that the small-scale 
noise in the observations is uncorrelated between stations. The selection of a colu~nn 
method is equivalent to assuming that in the given model the scale of the solution 
is comparable to that of the station grid (Davis, 1978). And finally, the selection 
of a local method considers virtually noise-free hydrographic data. 

In this study we describe a global method for deriving absolute velocities from 
hydrographic data of a variable-depth region of the ocean. The velocities (solutions 
of the thermal wind equations) are referred to the (unknown) bottom velocities. By 
assuming that the density distribution is known and conserved inside the domain 
of interest, a differential equation for the pressure at the bottom relative to the 
geostrophic bottom velocities is derived. The equation would hold exactly if the 
model equations exactly described the motion, or if the hydrographic data did not 
contain errors and noise. The misfit, which is assumed never to be zero, is an 
additional unknown component of the problem. Thus we define as our solution the 
botto111 velocities that minimize the misfit (in the sense of an arbitrarily chosen 
norm), consistent with the data and the assigned dynamics. 
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2. The model equations 

Consider the usual model formulation on a P-plane with a cartesian coordinate sy- 
stem x, y, z chosen such that in the northern hemisphere the x-coordinate increases 
eastwards, the y-coordinate northwards, and the vertical coordinate z is zero at 
a bottom reference level and increases upwards. Assume that the ocean is non- 
diffusive, hydrostatic and incompressible, and the flow geostrophic and inviscid. 
Thus, the model equations are 

(See Appendix A for a complete dimensional analysis of the model equations.) 

The subscripts z ,  y, z denote partial differentiations, and the variables u, v, w are 
the components of the eastward, poleward, and vertical velocity, respectively. The 
variable p is the hydrostatic pressure associated with the density distribution p, 
po is a density constant of reference, g is the gravitational acceleration, and f the 
Coriolis parameter written in the usual P-plane approximation. The bottom of the 
ocean is taken to be at z = h(z, y). 

In the presence of material boundaries there are no fluxes across the boundaries, 
which is the condition most consistent with the model formulation which neglects 
boundary layer dynamics. Thus, in or'der to reduce the distortions due to the model 
approximations as much as possible, we assume that Eqs. (2.1) are satisfied in an 
open region of the ocean, say the domain V : (1x1 5 xo, Iyl 5 yo, h I z 5 H). 
According to the usual formulation of the inverse model, the density distribution is 
known inside the domain V. Pressure and velocity fields are the unknowns of the 
problem. 

Let the pressure p be decomposed as follows: 
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where p(z = h) = p(z,  y, h(z ,  y)) is the pressure at the bottom decomposed into 
the pressure p, (related to a state of rest) and the pressure pb (associated with the 
geostrophic bottom velocities). 

According to the decomposition (2.2), let the velocity field be decomposed as fol- 
lows: 

(u,  V ,  w) = (u1.+ ub, v1 + vb, w1 + wb), (2.3a) 

such that 

where Y = (g/po)(px(z = h)h, - p, (z = h)hx). In deriving (2.3) we have used the 
hydrostatic approximation and the relationship (p(z = h)), = px(z = h) + p,(z = 
h) h,, and similar composite derivatives. 

Thus the velocities and u1 and v' are the solutions of the thermal wind equations 

referred to the (unknown) bottom velocities (ub and vb). 

At this point it would have been easy to adopt the terms baroclinic and barotropic 
for the velocity vectors u' and ub, respectively, but much confusion exists in the 
literature with regard to these terms. Thus, we have considered the usual definition, 
whereby the barotropic component is associated with the sea surface displacelnent 
and is constant throughout the water column, and the baroclinic component is 
associated with the solution of (2.4) in which the sea level is taken as the level of 
reference (LeBlond and Mysak, 1978). Thus, the following relationships apply: 
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The mass conservation equation (2.le) gives the coupling mechanism between the 
two velocity fields: 

( U ~ P X  + vbpy + W ~ P Z )  = (U'PZ + V ' P ~  + W'PZ) .  (2.5) 

To close the problem we must now specify the vertical velocities w' and wb. The 
usual boundary condition of no flow through the bottom leads to 

Since the boundary condition (2.6a) involves only the bottom velocities, a natural 
choice for the boundary conditions on w' and wb separately is 

The correct formulation of (2.6b) would be the introduction of a new (and unknown) 
parameter W ,  such that 

However, since Eq. (2.le) is linear in w, the model is independent of W ,  and we 
can set W = 0. Similarly, the term Y in (2.3) may be neglected, and the vertical 
velocities are specified as follows: 

Finally, substitution of (2.3) and (2.7) into (2.5) gives a differential equation for 
the pressure pb, i.e. 

a P b ~  + b ~ b y  = F, (2.8a) 

where 
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3. T h e  variational principle 

3.1. FORMULATION O F  T H E  VARIATIONAL METHOD 

Since we have assumed that density is known from direct measurements in a region 
V of the ocean, Eq. (2.8) can be solved for the unknown pressure at the bottom, 
pb. However, the coefficients of the equation may contain noise in the data and 
errors due to the fact that the initial model formulation (2.1) ignores terms that 
might be dynamically important. Thus a more realistic formulation is to consider 
the equation 

aPbt + bpby - F = R, 
where R represents a residual (unknown) function. 

The differential nature of Eq. (3.1) requires a specification of boundary conditions. 
To retain a simple formulation for the method, let us assume that the velocity 
across the lateral boundary is zero at the bottom: 

To preserve the nature of the problem, which relates to computing large-scale cli- 
matic currents averaged over a long-term period, we define as the solution of the 
problem (3.1)-(3.2) the function pb that minimizes the variance of the misfit over 
the whole region of interest, i.e. we define pb as the solution of the variational 
problem 

for all p, such that p = 0 on dD. 

Integration over depth of (3.3) leads to 

J(P) = (L(a2)P:  + (b2)p; + 2(ab)pXpy - 2(aF)px - 2(bF)py + (F2) dx dy 

H 
(3.4) 

where (. . .) = J,, . . . dz. 

Thus for all h E C r ( D ) ,  the functional J,(pb + ~ h )  has a minimum for E = 0, i.e. 
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(Gelfand and Fomin, 1963). Thus it follows that 

Integration by parts and the boundary conditions assigned to h imply 

where 

From the arbitrariness of the function h it follows that the bottom pressure, pb 
must satisfy the differential problem 

We observe that the operator L is elliptic. This follows from the Holder inequality 
applied to the characteristic equation associated with the operator L, which beco- 
mes singular if and only if the coefficients a and b of (2.8b) are proportional. We 
recall that the assumption pb = 0 on dD does not alter the mathematical formula- 
tion of the variational principle. Other boundary conditions, such as those involving 
derivatives of b, must be carefully treated but are still mathematically acceptable. 
With respect to the dependence of the solution on the boundary conditions, the 
elliptic nature of (3.6) guarantees that regularity properties of the solution and 
its derivatives hold from appropriate regularity properties of the data and domain 
(Miranda, 1970). 

3.2. A GENERALIZATION OF THE METHOD 

The procedure illustrated in Subsect. 3.1 assumes a knowledge of the density di- 
stribution alone. However, the density distribution is usually computed from direct 
measurements of the salinity S and temperature T through an equation of state of 
the form 

P = P(S, TI. (3.7) 

Thus the use of density alone reduces the information contained in a hydrographic 
data set (Olbers et al., 1985). Furthermore, tracer and other seawater property 
distributions are becoming increasingly available and can be used as additional 
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sources of information for the solution of this inverse problem (Fiadeiro and Ve- 
ronis, 1984; Wunsch, 1985). Thus let us assume that N characteristic properties 
C k  (such as tracer and constituent distributions) are known inside the domain of 
interest. Consistent with the assumptions of the model formulation (2.le), the 
properties C k  satisfy the conservation equations 

where X k  are the eventual decay timescales, and Q k  are the sources of the corre- 
sponding constituents. 

Si~nilarly to the decompositions (2.5) and (2.8) ,  Eqs. (3.8) are written as follows: 

where Rk represents the unknown residual function. Therefore, if more than one 
field distribution is known inside the domain of interest we can define pb (the 
solution of the variational problem): 

in which Ok are constants, and cpk are weight functions assigned a priori. Without 
loss of generality, we assume 

Although the weights Ok and pk are not essential to the development of the va- 
riational principle, they may be of importance when assessing the quality of the 
solution. The constants Ok allow us to dynamically rank one constituent equation 
above the others: larger values of Ok should be assigned when smaller values of the 
corresponding misfit are expected. On the other hand, the weight functions pk are 
the mechanisms for correcting and adjusting each data set. Smaller values of the 
functions pk correspond to less reliable data, and zero values are assigned when the 
data are not available. 

Repeating the procedure of the previous section, it follows that the bottom pressure 
must satisfy the differential problem: 

where 

L*(P) = (a*pZ), + (b'p,), + (c'p,), + (c*p,), - F*, 
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4. Applications 

4.1. THE NUMERICAL EXPERIMENTS 

Here we apply our nunierical procedure to show the validity of the method through 
applications. Numerical experiments are performed on a 11 x 11 x 11-point mesh 
where the salinity and temperature distributions are given. Density is computed 
from a simplified linear equation of state (Bryan and Cox, 1972). An exponential- 
in-a: and linear-in-y topography is included, as depicted in Fig. 1. Because of the 
theoretical nature of the data input, the parameters O k  and the functions cpk of 
(3.10) are set equal and constant. Values of the other parameters and constants used 
in the simulations are given in Table 1. Although the model is not undetermined 
with the constituents stratified and horizontally homogeneous (i.e. the solution is 
of no-motion), a small linear poleward gradient is assigned to the data input to 
emphasize the role of the u-velocity. As Fig. 2 shows, the density distribution 
simulates a front of warm, salty water embedded in a region of cold, fresh water. 
These features are an approximation of the Atlantic inflow to the Norwegian Sea. 

Fig. 1: Height above the reference 
level z = 0 of the topography pro- 
file that was used in the numerical 
simulations. [Values are in m.] 
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TABLE 1 
Values of constants and parameters used in the numerical experiments 

PO I cm-3 
f o  lo-' S-I 

P 10-13 cm-l s-l 

9 981 cm' s-' 
x o 3 x l o7  cm 
YO 4 x l o7  cm 
H 1.8 x lo5  cm 
TP 1.2 x 10' cm 
r ,  0.25 x lo- '  ppt cm-' 
rt 0.5 x "Ccm-' 
ES 0.05 ppt 
Et 0.3 "C 
A X  15 x 105 cm 
AY 20 x lo5  cm 
A z lo5 cm 

Reference density 
Coriolis parameter 
Beta parameter 
Gravitational acceleration 
Width of the domain 
Length of the domain 
Maximum depth 
Maximum topography height 
Poleward salinity gradient 
Poleward temperature gradient 
Noise amplitude for salinity 
Noise amplitude for temperature 
x-spacing 
y-spacing 
z-spacing 

(i) Smooth data fields. Let us first analyse the solution obtained by requesting 
the simultaneous minimum misfit for salinity, temperature, and density distribu- 
tions; henceforth, this will be referred to as the General Case. Fig. 3 illustrates the 
central east-west section of the velocity components. The flow indicates the pre- 
sence of a strong poleward jet corresponding to the warm-water core, and a second, 
weaker poleward jet further to the west. Both currents are located in regions where 
the density x-derivative has local maxima. 

Fig. 4 represents the solution, 7 ,  of the differential problem: 

where n and r are respectively the directions normal and parallel to the boundary. 
If the flow were not three-dimensional and not referred on a P-plane, the function 7 
should have been the usual stream function. However, since the vertical velocity is 
an order of magnitude smaller than the horizontal velocity scale, we consider Fig. 4 
to be representative of the barotropic flow, and thus we retain the term stream 
function for the variable 1. 

Fig. 5 represents the amount of energy generated by the solution of the variational 
principle. We observe two regions of local maximum energy input: one is located 
at the highest topography position, the other lies between the two poleward jets. 
Although the former energy input is small in comparison to the energy contained 
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Fig. 2a: a-t distribution for the u p  
per level. 

i& 
X-AXIS Ira) 

Fig. 26: Central east-west section of a-t di- 
stribution. 

- - - 

Fig. 2: Density and constituent distributions 
used in the numerical simulations. 
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X-AXIS (KM) 

Fig. 2c: Central east-west section of the sali- 
nity. [Values are in ppt.] 

Fig. 2d: Central east-west section of the tem- 
perature. [Values are in "C.] 
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Fig. 3s: u-velocity. [Values are in cms-'.I 

Fig. 3b: v-velocity. [Values are in crn s-'.I 

Fig. 3: Central east-west section of the velocity 
field. 
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Fig. 3c: w-velocity (scaled by 10'). [Values 
are in cm s-'.I 

Fig. 4: Stream function for the u p  
per level, normalized with respect 
to its maximum value. 
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in the whole water column, it is generally sufficient to conserve transport over the 
topography variations. We have estimated the residual of the mass conservation 
equation, i.e. the function Tr, such that 

and it has been observed that up to 96% of the total horizontal transport is conser- 
ved. On the other hand, the latter local maximum of energy input is a consequence 
of adopting a 'global method': the solution tries to connect features of the motion 
over the maximum length scale associated with the density field. 

Independent of the pattern of the solution, the energy generated by the solution of 
the variational principle would always be much less than the total kinetic energy 
of the system. In order to clarify this result, an a priori estimate of the bottom 
velocity is derived in Appendix B. The predictions and the results of the numerical 
siniulations are compared in Table 2. For the given density distribution and domain 
geometry, the following values were considered: length scale L = 90 km (defined 
as the extension of the warm front), total depth H = 1800 m, density variation 
( A p ) / p o  = 0.5 x and a Brunt-Viiisda frequency N = s-' . These values 
imply a planetary vorticity factor Po = 0 . 9 ~  a stratification parameter 3 = 4.8, 
and a topographic parameter X = 0.2 (see Appendices A and B for definitions of 
these terms). As Table 2 confirms, the predictions are in good agreement with the 
numerical cornputationa. Indeed the estimate from the analytical model does not 
include an application of the variational principle. 

TABLE 2 
Comparison between predictions and numerical computations for the 
General case1 

Prediction Mu. computed values 

' All the numerical experiments are defined by L = 90 km, A p / p o  = 
0.5 x and N = lo-' (see Appendix A for a definition of the  
terms). The velocity scales U and Ub are given in the c.g.s. system. 

The final residuals of the density, salinity, and temperature equations are depicted in 
Fig. 6. The highest residual variations are in strong current regions. This suggests 
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Fig. 5: Amount of energy genera- 
ted by the solution of the variatio- 
nal principle. [Values are in cm2 s - a  .] 

Fig. 6a: Density (scaled by 10"). 
[Values are in cm-a S-' .] 

Fig. 6: Vertically averaged residuals 
of the constituent conservation equa- 
tions (3.9),  computed after applica- 
tion of the variational principle. 
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Fig. 6c: Temperature (scaled by 
lo6) .  [Values are in " C  s-'.I 

Fig. 6b: Salinity (scaled by 10'). 
[Values are in ppt s-'.I 
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that in such regions the flow might be non-linear, obeying a dynamics that has been 
neglected in our model formulation. Outside the fronts the residuals have smaller 
gradients, and a range of values that might be representative of mixing processes. 

Other numerical experiments have been performed by requesting the nlini~rlum 
misfit for the density alone, and for the salinity and temperature (without density) 
equations. It has been observed that for the given constituent fields the results are 
not sensitive to the equations chosen for application of the variational principle. As 
expected, the residuals of the minimized misfits were smaller, and the residuals of 
the non-minimized equations were greater, than the corresponding variables of the 
General Case. However, the differences are irrelevant, and therefore the solutions 
are not presented here. 

(ii) Effects of noise. The solution of the General Case was considered noise- 
free, assuming that density and temperature were exactly measured at the station 
locations. In this application white noise generated by a random sequence is added 
to the previous data fields (Fig. 7). The noise has a length scale of the same 
order of magnitude as the grid spacing, and a maximum amplitude fixed a little 
above the instrumental accuracy. In practice, observational noise would corrupt 
the constituent distributions through objective data-analysis smoothing rather than 
through instrumental errors. However, the theoretical approach of this study did 
not allow an accurate examination of this aspect of the problem. 

Fig. 7: The u-t noise distribution 
at the upper level. 
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Although the use of noise with a small amplitude does not alter the general beha- 
viour of the solution, it is considered interesting to examine the differences between 
t,he two cases. Figs. 8 and 9 illustrate the differences between the energy inputs 
and the stream functions respectively. It can be seen that various eddies of sniall 
intensity are superimposed on the circulation path corresponding to the General 
Case. They are generated in two ways: locally (through the thermal-wind rela- 
tionship) and globally (through the solution of the variational problem). However, 
the contaminated solution shows a length scale greater than the length scale of the 
noise in the data, which confirms the tendency of the method to smooth the results 
on a length scale greater than the grid spacing. 

Fig. 8: Difference between the ener- 
gies generated by the solutions for 
smooth and perturbed data fields. 
[Values are in cma s-'.I 
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Fig., 9: Difference between the stream 
functions obtained with smooth and 
perturbed data fields, normalized with 
respect to the maximum stream func- 
tion value. 
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5. Summary and conclusion 

A variational method for computing the cli~natic velocity field from the observed 
density field and other constituent distribution fields in an open, limited region of 
the ocean is proposed. The method is based on three fundamental assumptions: 

(1) A simplified three-dimensional differential formulation of the equations of 
motion (i.e. not a multi-layer model) is considered truly representative of 
the flow dynamics. 

( 2 )  The scale of the motion is a priori large in comparison to the station spacing 
(i.e. it is a global method). 

(3 )  A valid solution is one which as far as possible is 'consistent with all our 
observations and our estimates of the accuracy of the model we were using' 
(Wunsch, 1985). 

Starting from these prerequisites, a solution is given in terms of the minimum rms 
values of the residuals of the constituent conservation equations (3.9) the whole 
region of interest. 

Even though the method does not ask for more than a knowledge of the density 
field (which implicitly requires direct measurements of temperature and salinity), 
the incorporation of more constituent equations is advised. Tracers and seawater 
properties obey a complex dynamics in which both advection and mixing in a 
turbulent environment are important mechanisms. Although mixing may be quite 
different from one constituent to another, advection and turbulence depend on the 
dynamical structure of the flow. Consequently, they are likely to share some of 
the information contained in each individual constituent. Thus the use of many 
constituent fields is liable to yield additional information which would improve 
the quality of the solution. However, 'there is never a guarantee that some new 
observations will not appear inconsistent with the solution' (Wunsch, 1985). 

Comparison between the solution and a diagnostic estimate of the velocity field 
shows that the method is consistent with the original model formulation. Thus the 
solution obeys the third of our considerations, and is valid as long as the model 
equations adequately describe the dynamics of the flow. The model formulation is 
widely used in the presentation of this inverse problem (Killworth, 1980; Zhdanov 
and Kamenkovich, 1984; Needler, 1985). The assumptions of geostrophy and hy- 
drostatic balance are traditional, and the thermal wind relation in the interior of 
the ocean has often been observed. The conservation equations (2.le) and (3.8) 
are the aspect most likely to fail. Moreover, errors and noise may corrupt the 
quality of the hydrographic data. Therefore we consider it correct to act on the 
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weakest approximations in the model, imposing on the solution the mo.st reliable 
assumptions. However, certain mechanisms that might be dynamically important 
are neglected. Perhaps the o~nission of the influences of the relative vorticity of 
the flow, and of the boundary layer activities is the major limitation of the mo- 
del. As has been observed (Fig. 6 ) ,  the inclusion of nonlinearity may increase the 
quality of the solution in regions dominated by strong currents, where a high level 
of turbulence should also be expected. On the other hand, the absence of upper 
and lower boundary layers in the model precludes consideration of processes (such 
as atmospheric forcing, dispersion (gain) of heat, evaporation, and dissipation by 
bottom friction) with effects that might penetrate well inside the inner region of 
the ocean. 

Furthermore, the choice of a global method does not allow a correct application of 
the model to regions characterized by different, almost-independent regimes (such 
as coastal open ocean areas). For such a region it could happen that one of the 
regimes does not obey the model formulations and the solution could try to connect 
independent features and end up smoothing the differences between the features of 
the regimes. 

With respect to the mathematical framework, the solution of the model is unique, 
once the norm for the variational principle and the lateral boundary condition for 
the bottom pressure have been fixed. The calculation of a minilnum rms residual 
is a standard, common choice in geophysical inverse theories. On the other hand, 
the assumption that the flow across the boundary is zero at the bottom is a more 
arbitrary decision. However, specification of different boundary conditions for the 
problem (3.6)  (but still consistent with the estimates of Appendix B) does not alter 
the order of magnitude of the bottom flow. 

There is of course, much more to be done before real data may be applied with 
a reasonable degree of confidence. We have begun a study on the implen~entation 
of the method. The use of the variational principle allows us to add coarse, direct 
velocity measurements, in the formulation of the problem as side conditions im- 
posed on the admissible solution. Finally, it is our belief that the inclusion of the 
boundary layer dynamics (perhaps specifying upper and lower boundary conditions 
from estimates and parameterizations of turbulent boundary layers) should be one 
of the first steps to be taken. Our expectation is to be able to extract information 
on the mixing coefficients themselves. 
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Appendix A 
Derivation of the model equations 

Assume that the ocean is hydrostatic, Boussinesq, incompressible, and inviscid. To 
describe the motion it is convenient to introduce the departures p and p from the 
static equilibrium states of pressure p~ and density p~ respectively (LeBlond and 
Mysak, 1978): 

PT = PB(Z) + P ( x , Y , ~ , ~ ) ,  

PT = PB(.Z) + ~ ( 2 ,  Y, z, t ) ,  
where the subscript T indicates the total fields. Thus the governing equations, 
written with the same notations used in Sect. 2, are as follows: 

Ut + UU, + vuy + wu, - f v = - P , / ~ ~ ,  (A.la) 

vt + UV, + vvy + WV, + f u  = -py/PO, (A.lb) 

0 = -PZ - gp, (A.lc) 

212 + vy + W, = 0, (A.ld) 

Pt + + vp, + w ( p +  PB), = 0, (A.le) 

f = fo +by.  (A.lf) 

The imposition of no flux across the bottom leads to the boundary condition: 

The variables are nondimensionalized by assuming geostrophic and hydrostatic ba- 
lances, i.e. 

(EP Y) = L(2, fi), = Hz, (u,  v) = U ) ,  w = (UH/L)G, 

Introduce the parameters 

E = U/ foL [the Rossby number] (A.3a) 

N~ = ( - ~ ( P B ) Z / P ~ )  [the square of the Brunt-Viiisdii frequency] (A.3b) 

8 = (N H/ f o ~ ) ~  [the stratification parameter] (A.3c) 

Po = PLlfo '  [the planetary vorticity factor] (A.3d) 

r = WILT (A.3e) 
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and assume the following: 

( i )  E c c  1 

( i i )  T << 1 

[to explore the departure of motion from geostrophy] 

[the local time derivative is smaller than the advective 

time] 

(iii) E << Po [(relative vorticity)/(planetary vorticity) < 11 
(iv) E << = S ~ O / E  

(v) c << A = d/€ 

Since 6 << 1, each variable is expanded in its asymptotic €-expansion, with the 
other parameters directly related to the Rossby number as given above. Dropping 
the tilde, the 0th-order momentum equations, are 

From Eqs. (A.4a,b) and the continuity equation (A.ld), the 0th-order potential 
vorticity equation follows: 

0 w! = Pov . (A.4c) 

From the boundary condition (A.lg) it also follows that 

wO = xw; + pow;, 

where wf is a function that is independent of z ,  and w! is a function such that 
w!(z = h) = 0. Thus the mass conservation equation is expressed as follows: 

Equations (A.4) are the nondimensionalized form of the model equations (2.1). We 
observe that conditions (iv) and (v) are equivalent to assuming that 

[condition (iv)] 

[condition (vi)] 

where 

LD = (NHIfo) [the internal Rossby radius of deformation] 

LR = ( u / @ ~ ) ~ / ~  [the stationary planetary Rossby wavelength] 

LT = ( H  U/ f0)'12 [the stationary topographic Rossby wavelength 

(with H representing the topography scale)] 
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Therefore the ratio of the parameter A to the parameter Z expresses the relative 
importance of topography and Coriolis parameter variations. 

Finally, although the conditions (iv) and (v )  are necessary for a complete formu- 
lation of the problem as given in (2.1) ,  they are not dynamically dependent. The 
  nod el is still valid even though one of the parameters A or /3 is zero, provided that 
the di~nensionless vertical velocity scale is O(1) with respect to the parameter c. 
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Appendix B 

A n  es t imate  of t h e  b o t t o m  velocity relative t o  
t h e  velocity solution of t h e  the rma l  wind 
equations 

With the same notations used in Sect. 2 and Appendix A,  the assumptions of 
geostrophy and hydrostatic balance imply that the velocity scale U of (A.2) must be 
associated with the solution of the thermal wind equations. Furthermore, since the 
inverse formulation of the problem assumes knowledge of density and its derivates, 
it follows from (A.2) that 

where Ap is the variation of density on the length scale L. Thus the velocity vectors 
ub and u' can be nondimensionalized in the following manner: 

From Eqs. (2.7)  and (A.4) the vertical velocity scale follows: 

where the nondimensionalized variables are O(1) with respect to their €-expansion. 
Thus, the nondimensionalized equation (2.5) is 

Let 

where J,, is the jacobian operator. Thus, we deduce 

where O(*, *) indicates the higher order between the 0 's  of each parameter, sepa- 
rately. However, since the horizontal variations of density are usually not strongly 
dependent on depth above the thermocline, and are almost zero at the bottom, we 
can consider the parameter p to be generally small, and the velocity scale Ub to be 
dependent on topography and stratification. 
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