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ABSTRACT 

A procedure has been developed for the analysis of transmission 

loss curves in which received power is known or expressible as a linear 

function of range. The procedure separates each curve into a sum of 

three components of variability: long term trend, oscillatory, and 

random. Standard procedures are used to perform the separation and 

to make statistical comparison tests with other curves which may be 

companion experimental data or model predictions. Eight cases are 

analysed for example involving several model predictions with two high 

density detailed 300 n.mi shot runs. Application of the analysis 

procedure to transmission loss curves should provide a set of standard 

statistics which should facilitate quantitative statements and 

comparisons. 
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1. INTRODUCTION 

1.1 . BACKGROUND 

A number of computer programs for intensity calculations 
are now widely available to scientists engaged in underwater sound 
studies. These programs produce curves which indicate transmission 
loss as a function of range, comparable to the type derived from 
available experimental data. Some of the more sophisticated models, 
such as TRIMAIN in use at NRL, can handle horizontal variations in 
sound speed and include bottom topography and produce four different 
types of intensity calculations. In research involving experimental 
data and development of such programs, there is a need for a procedure 
comparing these intensity curves in a quantitatively significant 
manner. The objective of the present study was to develop an analysis 
procedure capable of meeting this requirement. 

It can be observed that acoustic intensity curves have 
three basic components: (1) a long-term trend, (2) oscillations 
about this trend and (3) residual random effects. One or more of 
these components may not be present to a significant degree, depending 
on a given physical situation. The procedure we have developed is 
designed to establish the existence of the components, and to isolate 
them for separate examination, and quantitatively estimate their 
contribution. An outline of the recommended procedure follows below 
and ends with conclusions regarding the progress to date in the 
development of the procedure and recommendations for further study. 
Appendix A is devoted to a complete description of the procedure 
which includes specific formulas and a discussion of underlying 
assumptions. The procedure has been exercised ·on acoustic model and 
experimental data, with detailed results given in Appendix B. 

1.2 Outline of the Proposed Analysis Procedure 

Given an intensity curve)( (r), the long-term trend is 
assumed to be of the elementary form XL(r) = A + B log r (Fig. 1). 
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TIle coefficients A, B are determined by least squares formulas. The 
residuals constitute a derived curve, X~(r) (Fig. 2). The 
subsequent tests employed depend upon the presence of significant 
randomness in X'(r), as measured by a turning point test (M. G. 
Kendall [1]). If the residuals are random, the intensity curve, X (r), 
is described by only two components, the long-term trend, XL (r), and 
the random residual, X ~(r). To compare two-component curves of this 
type, similarity tests based on confidence intervals for A, B and an 
estimate of the standard deviation for X\r) can be employed. We can 
also compare curves by examining the distributions of variance between 
the XL (r) and X~{r) components. If the curve X ~(r) fails the test 
for randomness, we conclude that a third significant, oscillatory, 
component exists. In this case, the subsequent comparisons of trend 
coefficients can be made disregarding the oscillatory component with 
a small loss in comparison precision. Alternately, if full compliance 
with statistical assumptions is deemed necessary, the oscillatory 
component can be removed and a second regression made for refined 
trend parameter estimates. 

In a large percentage of cases, transmission loss curves 
are found to possess a strong oscillatory component. We have assumed 
it to be of the form 

1.1 

Calculation of the coefficients raj] is discussed below in Appendix 
A.4. Briefly, it requires the solution of a system of equations 
involving the autocorrelation function for X ~ (r) . The autocorrelation 
function is also used to estimate the principal period of a trans-
mission loss curve, such as the convergence zone period, and further, 
to calculate a zone spacing ratio, designed to compare the oscillation 
periods of two curves.* To show whether the autoregressive scheme is 
complete the residual component X R (r) is obtained as XR (r) = X, (r) 
-X (r)(Fig. 4). At this stage, a turning point test is again 
app~ied to see if X (r) satisfies a randomness criterion. If not, 
refinements are nec~ssary in the autoregressive fit procedure. 

After the separation into components has been accomplished, 
curves for model or experimental data can be compared for the 
distribution of variance among these components. The comparisons 
are quantitative, reproducible, and contain probability thresholds, 
or confidence intervals all of which can be employed for systematic 
comparison of data sets, model sets or data/model tests. 

*Fig. 3 
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II. Conclusions and Recommendations 

A sequence of known statistical procedures have been gathered 
and employed on the comparative analysis of measured and calculated 
propagation loss data; The procedures have been deliberately kept 
simple to hopefully promote widespread use with a minimum of computer 
or calculator expense. The cases chosen for examples in Appendix 
B, table B-3, show the 95% confidence interval on the mean of the 
sets is on the order of .6 db even though a number of the model runs 
were purposefully flawed for illustration. This sensitivity for 
calibration checks, flux density estimates, hydrophone calibrations, 
etc. was considered surprising. Similarly the exponential decay 
constant 95% confidence intervals, or slopes, were of order .15 
where 2 would be spherical spreading. All the caSes were readily 
distinguishable. The distribution of variance in the tested cases 
shown in table B.9 also showed marked distinctions between model 
types as well as experimental data. The convergence zones of the 
chosen sample data were remarkably periodic so that in the two 
examples the oscillatory and long term trend were near equal in 
power and the final random residual variance was only 6 and 16 percent 
in the two cases. The model results were deliberately not tuned to 
the experimental data so as to better reflect what a first application 
of the methods would produce. As a consequence, most of model outputs 
contained a much larger random residual component which was suppressed 
only in the smoothed cases. This is similarly, in retrospect, not 
unexpected since th~ computer models are comparable to continuous 
wave (very narrow band) data and the experimental results have one 
third octave frequency domain averaging. In table B.7 we see another 
result where comparisons of measured and model convergence cycle 
lengths are listed. As shown, all the model cycle lengths exceed 
all the experimental lengths. The discrepancies are small, 3%, but 
consistent and estimated to result from velocity profile error. 

In summary, the major objective has been to illustrate the 
surprising power of a sequence of comparatively elementary procedures 
and the major recommendation is to employ objective measures such as 
those discussed in general experimental and analytic studies. 
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APPENDIX A 
THE ANALYSIS PROCEDURE -

A DETAILED DESCRIPTION 

A.1 Computation of the long-term trend 

The three fold separation of major contributing components of 
a transmission loss curve initially uses the form~ (r)=A + B 10g(r) 
since over a considerable range, loss is either spherical, cylindrical, 
or transitional. While more complex equations can readily be devised 
which will fit the data and include more of the variance, they were 
judged to add more complexity without increasing comparison testing 
effectiveness appreciably. 

The analysis begins with the assumption that an intensity 
curve X (r) of the type depicted in Figure (1.1) can be represented 
in the form 

A.1 

where [r~] (k=1,2, .... N) is the sequence of range values. An 
app1icat10n of standard methods, Kendall [A1], yields the following 
expressions for estimates of the coefficients, and the residual 
variance. Note the subscript, e, showing the estimate, as distinct 
from the true value, is shown only initially throughout the following 
material. 

~ /c1 (rd X ('t.) .- [ (r 10lJ( r~J)(~ X (t'~)hJ) ] - --_ ..... 
~ ( 10 j ( '.) r,l. - [ ( flo) (I' K) (/ N ] 

A.2 
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A.3 

N 

s~ 
e 

.Ae. 
A.4 

N-1. 

The type of test used to compare intensity curves in regards 
to long-term trend depends upon whether there is a significant 
oscillatory component in the residual curve X~(r). If a test shows 
·the residual values mutually independent, comparison tests based on 
the methods of linear regression analysis will apply. The tests are 
slightly weakened but still useful if significant oscillations are 
present. In special, demanding,cases the techniques of (A.4) can 
be used to remove the oscillating component from the trend residual. 
The random residual remaining may be combined with the initial 
trend estimate and coefficients, A.2, A.3 and A.4 redetermined. 
Before proceeding with the comparison tests, then, it is necessary to 
decide whether the trend residual is a random variable. A statistical 
test, a description of which follows, devised by M.G. Kendall [1] is 
recommended for this purpose, because of its simplicity and 
eff~ctiveness. 

A.2 A Test for Randomness 

The turning point test is based on the statistical hypothesis 
that the values · { X ~(rk) } (k=l, 2, ••.•• n) are mutually independent; 
thus, they could have ocurred in any order, each order being equally 
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likely. An observed valued x(rk ) is called a turning point if 

V(v ) > ·X(.rll ) A ft.-( ... A.S 

Let nT denote the number of turning points which occur in a time 
series of n distinct points. Assuming the above hypothesis, Kendall 
has shown [l,p. 22-24] that for fairly large sample sizes, nT is 
approximately distributed as a normal random variable with mean 

A.6 

and standard deviation 

A.7 

The test procedure is the following: Select a confidence 
level a. Reduce the series by throwing out repeated values, leaving 
n distinct points, without changing their order of occurrence. 
Calculate ~ and ~ using Equations (A.6) and (A.7). Then the 
100(1- a) percent confidence limits for nT are given by 

A.8 

where Za/2 denotes a percentage point of the normal distribution. 
Count the observed number nT of turning points for the series of 
distinct values. If nT is within the interval, we accept the 
hypothesis and conclude that the curve has no significant oscillatory 
component. Therefore, X (r) consists only of a long term trend and 
a residual, random component. This residual series may not be a 
purely random process, but the oscillations it exhibits are not 
significant at ~he selected confidence level to warrant description. 
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If n lies outside the confidence interval, then we reject the 
hypotheses, and conclude that the series X '(r) has a significant 
oscillatory component, which should be measured separately. The 
probability of making this decision when in fact the hypothesis 
is true is a . 

A.3 Trend Comparison Tests 

Let us initially 
residual curve X '(r) 
level. By setting z 
recast in the form 

assume the turning point test has shown the 
to be random at same acceptable confidence 
= log (r) and E{r)= X'{r), (A.l) can be 

x - A + '8 .~t- 1:: A.9 

and we can apply the results of linear regression analysis (see, 
for example, Section 22.9 of Kendall [AI], chapter 11 of Burr [A2]) 
to find confidence limits for A, B and the standard error of 
estimate. At the 100 (I-a) percent confidence level, we can 
calculate these limits as follows: 

+ For B, the confidence limits are Be- LB , where 

-t~ N -1 S e 
:.t ) 

+ For A, the limits are Ae- LA' where 
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Here t a/2, N-2 is a percentage point of the student t 
distribution. 

For the standard deviation of the limits are 

J. 
= ( [ tV -1. 11. 

.)e. _ 1 . A.12 
?(i -~ N-:l-.2. ) -

Here)(2~,n is a percentage point of the Chi-Square distribution. 

In addition to the analytic comparisons described above, a 
visual comparison plays the same qualitatively useful role as in 
traditional data/model comparisons. One such scheme used here is 
to superimpose the regression equation derived from one member of 
a comparison pair onto the data of the other member. To guide such 
visual comparisons, two displaced regression curves are used, 
separated by four residual standard deviations of the regression 
data. Equation A.13 shows the equation with subscript, E, 
indicating experimental bounds, L, as illustrated in Figures A.I 
through A.2: 

-+ ) S 
E (A. 13) 

With the plotted band shown on the figures we have computed an 
elementary overlap type measure called a Band-Fit (BF) coefficient 
as shown in Equation A.14, 

8F (A.14) 

where the PM is the percentage of model points (as in later 
illustrations) which fall within the band superimposed and defined 
by the experimental data. The denominator, P , is the percentage of 
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exverimental da ta that is within the four sigma band (Fig. A.I, 
A. .Z). 

A.4 Separa tion into Oscillatory and Random Residual Components 

Aft er the residual curve, X "'(r), has been shown non-
r andom by the turning point test, the oscillatory component must be 
s eparated from the final random residual. An autoregressive scheme 
was chosen to meet this need because of its effectiveness, and the 
s uitability of the auto covariance function. Our discussion of 
autoregressive processes follows that of Ref [4], where complete 
derivations of the equations employed can be found. 

To begin with, an autoregressive process of order m, is 
defined as a second order uniformly sampled stationary random 
process {X (k) } with zero mean, which satisfies the equation. 

Yt k) u.. M Y ( 1<- "") 1"" l 0) 
A.IS 

where { Z(k) lis a purely random process. Here the coefficients 
aI' a Z"" a are constant, and Eq.(A.IS) must hold for all observed 
values k=I,Z~ ... N. We note that an autoregressive process consists 
of two parts. The first, involving the coefficients a. is 
called t he autoregressive scheme, and the second is called the 
residual process. 

An autoregressive process may be generated by selecting 
an order m , a set of coefficients {a.} (j=I,Z, ... m) which 
satis fy a stationary condition, and aJprocess {z (k)} obtained 
for example, from a table of independent normal deviates. 
Conversely, if one is given a process {y (k)}, then one can attempt 
to fit an autoregressive process to {Y(k)} in the following manner. 
Estimates aI' aZ, .... a of the autoregressive scheme coefficients 
are obtaineo as the soTution of the system of m equations 

eyll) 
/ \ 

L ( c'; 1\ c1l-r)t- A 
C y ( I - M) = C,+ t- (\..1. c\ "'" r ' . / 

/\ / \. 
C Y (c) /\ .. 1 ) 

C Y ( 2) -=- (.\. I c.. Y ( I) -l- [\. 1. of- c..\. ""'- C y l ' ... - "'" A.16 
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where c 
Y 

(k) is the sample auto covariance of the process { y (k) J • 
I\; - k 

Cy(~ ) - ~ ]<lj) Y (j 1- k) .-
N .) = I 

) I ) I /,,' - J ) 
A.17 

o 

We note that c (0) will give us an estimate of the variance of 
{ Y (k)} . It may be shown that the variance of the residual 

process may be estimated by 

S 2 
- t: 

) .'\) /\ 
C . ({) - ~t ley (I .- -' -, - (-\. "" 

Y A.18 

To compare these two variances, we will use the normalized mean 
square error, 

A.19 

After the coefficients {aI' a2 , .•.• a } have been calculated, the 
residual process is obtained oy subt~acting the autoregressive 
scheme from {y (k) }. To check whether a valid fit has been 
made, the residual should be tested to determine if it is purely 
random. This can be done by using the turning point test described 
in Article (A.2). 

In selecting a time series model of this type, we are 
carrying out a program originally suggested in a paper by Whittle 
[A3]. He argues that any zero mean, stationary process whose 
spectral density satisfies a certain condition may be represented by 
an autoregression of infinite order. For such a process, a 
reasonably accurate estimate of the residual variance may be obtained 
by fitting a finite autoregressive scheme of sufficiently high order. 
The spectral condition requires that the reciprocal of the spectrum 
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be expandable in a Fourier series (for all practical purposes, that 
the spectrum be nowhere zero), and is usually satisfied in practice. 

Our analysis procedure then, is to calculate autoregressive 
scheme estimates for the different curves under consideration, using 
increasing values for m, calculating the normalized mean square error 
each time. Currently available computer codes (Robinson [A4] Section 
2.8) enable us to do this with a minimum of time and effort. We can 
thus determine a value m for m, such that the reduction in E for 
higher order fits is ins~gnificant in all cases. 0 

For comparison, autoregressive fits of order m are then o used for all curves being analyzed. Granted that this requires 
an excessive number of terms in some cases, it provides a basis for 
comparison, without essentially affecting the estimate of the residual 
variance. 

A.S Measurements for Oscillatory Components 

Suppose now that the curve X~(r) has been expressed as the sum 
of an oscillatory component Xo(r) and a residual component X ~(r). 
The oscillation can usually be attributed to some known physical 
cause such as the convergence zone effect. To study this phenomenon 
quantitatively, we next obtain a measure of this oscillatory 
component. For this, the sample autocovariance function defined by 
Eq. (A.6) is used. Thus, we calculate 

.N A.20 

for k=O,I, .••.. N-I. A typical graph of c (k) would resemble that 
of damped oscillatory motion starting at ~=o, with the variance 
c (0) decreasing in magnitude as k increases. In most cases 
the autocovariance function will be asymmetric or scalloped reflecting 
convergence zones, Lloyd mirror variation, or other origins most of 
which produce periodic but not sinusoidal variation. The principal 
period of the process is simply the distance between peaks of the 
function. To be specific, we will call this quantity the zone 
period, P. If we have oscillatory components for ' curves CI , C2 with zone periods Pl , P2 , then we may consider the zone spacing 
ratio, Z ,definea by 
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z r I 
,.., 
t 2.. 

A.2l 

A positive value of z indicates that the C2 oscillation has a shorter 
period than that of Cl . 

A.6 Distribution of Variances 

Let us briefly review the separation procedure which has been 
proposed for intensity curves: Starting with an initial curve X , 
a long-term trend X L' is removed, leaving a residual curve X, . 
The residual curve is then decomposed as the sum of an oscillatory 
component X 0 and a random residual component X R• We will denote by 
V, V , V', Va and VR the variances of the above curves. Because 
the ~omponent series are uncorrelated, we will have 

A.22 

and A.23 

Thus, the fractions VL/V,V lv, and VR/V will adequately describe the 
distribution of the varienge of the 1nitial curve. One measure of 
the validity of the separation process is the extent to which Equs. 
(A.22) and (A.23) hold. ·In all of the applications of the procedure 
examined values very close to theoretical predictions were observed 
(See Appendix B.4, Table B.8). 
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APPENDIX B 

Bl Results of Comp arative Ana l yses 

In this appendix are presented results obtained from employment 
of t he analysis procedur e for a model/experimental comparison study. 
The objectives are to: 

1. Examine and show for example the practical application 
of the procedure. 

2. Test the resolution of the methods on two similar data 
sets arising from slightly different conditions. 

3. Test t he r esolution of the method in a comparison of 
data vice model performance. 

4. Test t l:.e r esolution on model curves to distinguish 
algori t hum differences. 

The exper i mental da ta were obtained during a controlled run of 
t he USNS MIZAR of 300 nm run directed by excellent satellite navigation. 
The s i gnal sources were small explosive charges carefully timed with 
synchronized WWv clocks for precise range and depth control. The shot 
spac ing was one-half nautical mile and the depth 300 ft. (9l.4m). 
Sound speed profiles were measured at the ends and in the track center; 
detai led ba thymetry was measured throughout the run. For acoustic 
model computation, the simplified profile shown in figure Bl was 
employed . The signa ls were received by hydrophones suspended from 
t wo ships, the R/V KNORR 'and USNS GIBBS, stationed at the beginning 
and end of the track, respectively. The KNORR phones were vertically 
s eparated by 150m, with the lower unit at a depth of 3386m. The same 
arrangement was used for the GIBBS phones, with the bottom unit at a 
depth of 302Om. Transmission loss curves were computed for two 
r elatively low frequency third octave bands, separated by 50 Hz. Table 
B. l, s hows t he labeling systems used for the curves used in the present 
study . 

Curve 

KXUL 
. GXUH 

Ship 

KNORR 
GIBBS 

Hydrophone 

Upper 
Bottom 

Frequency 

Low 
Low 

Table (B.l) Experimental Intensity Curves 
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A series of intensity curves to be used for measured 
and predicted comparisons were generated largely by the computer 
program TRlMAIN using llieasured bathymetry and sound speed profiles, 
along with the appropriate source and receiver depths. Using 
incoherent (I) summation intensity calculations, three curves 
corresponding to the experimental runs were generated. A second 
(II) method using a ray weighting based upon an exponential 
probability distribution function in depth was used on two program 
runs. A third method used a L10ye Mirror (LM) correction for 
proximity to the surface. A listing of the resulting TRIMAIN curves 
used for our analysis is given in Table (B.2). 

Curve Ship Phone Type Frequency 

KTUI KNORR Upper I 
KTUL(LM) KNORR Upper I Low 
GTUI GIBBS Upper I 
GTUII GIBBS Upper II 

Table (B.2) TRH1AIN Model Intensity Curves 

In addition, one run was made with Fast Asymptotic 
Coherent Transmission model (FACT) to obtain the first 250 values 
of the curve KXUH. The FACT Program contains a first order caustic 
computation but is restricted to a single sound speed profile and 
flat horizontal bottom. We denote the intensity curve for this 
case as KFUH and, for comparison, use only the first 250 values 
of the corresponding experimental curve, denoted as KXUH(F). 

In the remaining articles of this appendix, we will 
discuss the results obtained as the analysis procedure was applied 
to the experimental and model curves listed above. We have selected 
t\W gr'-Ol!pS of curves: The first consists of KXUL, KTUI, and KTUL 
(LM) (Figures B.2 a,b,c); that is, an experimental curve for KNORR 
data, with two corresponding TRIMAIN runs, differing in the type of 
intensity calculations used. The second group is a similar selection, 
comprising the curves GXUH, GTUI, and GTUII (Figures B.3 a, b, c), 
based on GIBBS data. 

B.2 Long-TeTm Trend 

Following the discussion of Appendix A, the long-term trend is 
assumed to be of the form A + B log (r), and least squares equations 
A(2), A(3) are used to calculate the coefficients A, B, respectively. 
The residual curves remaining after trend removal are denoted with a 
prime (') superscript. Thus, 

B.I 
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Table (B.3) lists the results of the trend estimation on 
several model and two experimental data suites. The significant 
features of this compilation are the following: 

a. The mean values of the data sets are different and 
ordinarily would reflect systematic bias in an entire suite under 
comparison, a calibration error or possibly a bottom condition at a 
nea r bottomed receiver not adequately modeled. The confidence interval 
f or this mean is included, for statistical comparison, in this grouping. 

b. The regression coefficient, B, shows the estimated 
exponential power decay of the sets. In the first KNORR group, we see 
a distinctly sharper fall (larger exponent) in the two model sets. 
These model runs were included to show how a modeling error, ray drop 
out, purposely produced and plotted Figure B.2b, can produce a definite 
measurable difference. The effect is also reflected in the mean value 
difference. Next, considering the Gibbs suite, we see a case of strong 
smoothing (GTUII) suppressing the growth of the decay constant, B, and 
also increasing the model mean to near the observed set seen in GXUH. 
While the range smoothing has been deliberately over done for 
illustration it is clear that models could be brought into corre-
spondence by this method with data and more discriminating tests for 
spectral content might be required for distinct numeric separation. 

c. In the third set in Table B.3, we have a good 
comparison of the FACT model with data. A slight bottom loss 
adjustment would probably raise the mean and decrease the decay 
constant, B, to near perfect coincidence. One advantage this last set 
shows in model/data comparisons is how range constraint improves the 
quality of the match. The last curve, KTUI(F) , is a TRIMAIN estimate 
run to the same 250 range point limit of the FACT model and 
quantitatively shows at lesser ranges the ray density is quite adequate, 
and the model improves. Generally, as might be expected, long-range 
predictions and comparisons prove the most difficult and are hence 
likely to require the techniques of this report. 

d. The last two columns of Table B.3 show the original 
variance and the remaining or residual variance. This last column, 
in particular, illustrates the effects of smoothing in the GTUI/GTUII 
contrast. A variance comparison test, such as the F test discussed in 
reference AI, is ideal for quantitative smoothing comparisons or 
processing bandwidth comparisons. 

Following a set of qualitative comparisons such as described 
above, let us assume that we have further noted and examined for cause 
the difference in mean and coefficient estimates and noted the 
confidence intervals on each. More detailed comparisons of two data 
suites require the following additional calculations: 
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1. Generally for curve parameter comparison, it is essential 
for the data to be considered as having originated from the 
same population. This can be tested by forming the F 
ratio of the residual variances of each curve pair. 
Approximate similarity is usually sufficient. 

2. Using a pooled residual variance, a standard deviation of 
the difference of the regression coefficient, (decay 
constant) is computed. 

3. A confidence interval in this difference variance is then 
computed using the T distribution. 

While each of the above detailed steps is described in standard 
texts on statistics, a factor not immediately apparent is that these 
three steps can be quite accurately approximated as follows: 

1. If the variances are near the same, assume the populations 
are the same. 

2. Usually most experimental model comparisons will involve 
large numbers (50 or more) points and pooling for more 
accurate variance estimation is marginally useful and 
may be ignored. 

3. The confidence coefficient for the difference in two 
coefficients is simply computed as the square root of 
the sum of the squares of the two subject coefficients. 

As an example of the above procedure, Table B.3 shows Gibbs 
data, GXUH, residual variance is 3.8 dB. The TRIMAIN model with range 
averaging, GTUII, gives 3.4 dB. Let us assume these are essentially 
equal. The 95% confidence interval halfwidth for B is 1.1 in each 
case which gives combined" (root of the sum of the squares) difference 
halfwidth of 1.6. The difference in the coefficients, however, is 4.1, 
that is, 13.6 - 9.5. This greatly exceeds our 95% interval and we 
may say the probability is less than one in twenty that the curves are 
the same. In this instance, the model parameters definitely need 
adjustment. 

The simplified technique can be also used to compare the 
means of two groups. Using the same Gibbs data/model, GXUH/GTUII, 
Table B.3, we have for the 95% confidence interval on the difference 
in means, a root of sums squared of .6 which is not exceeded by the 
.3 dB difference in means. Thus, the smoothing brought the mean 
under control, reduced both the data variance (10.2 to 4.3), and the 
residual variance (9.3 to 3.4), a small amount more than required, but 
definitely rendered the slope unsuitable, (14.8 to 9.5). 

A conclusion of this comparison is moderately clear: less 
smoothing and some physical factor related to mean off set probably 
require consideration. 
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In Table B.4 a tabulation of the Band Fit coefficients is 
shown for simple numeric comparisons as to how well the data trend 
band is encompassing the model estimates. This test is not of the same 
rigor as the regression and variance comparison test, but in conjunction 
with the strong visual appeal of the plots shown in Figures B.2a to 
B.3c is recommended for display and presentation. 

CURVE 
DESIGNATE 

KXUL 
KTUI 
KTUL(LM) 

GXUH 
GTUI 
GTUII 

KXUH(F) 
KFUH 
KTUI(F) 

EXP 
CURVE 

KXUL 
KXUL 
GXUH 
GXUH 
KXUH(F) 
SXUH(F) 
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MEAN 
M 

90.1 
96.8 
98.1 

95.6 
101.5 

95.9 

88.2 
88.9 
91. 3 

Results 

MODEL 
CURVE 

KTUI 
KTUL(LM) 
GTUI 
GTUII 
KFUH 
KTUI(F) 

CONF. 
95%+ 
M -

.5 
.6 
.7 

.4 

.8 

.4 

.8 

.8 

.7 

SLOPE 
B 

12.6 
17.6 
18.5 

13.6 
14.8 

9.5 

16.3 
19.2 
15.1 

TABLE B-3 
for long-term Trend 

EXPERIMENTAL 
BANDWIDTH (dB) 

17.6 
17.6 
15.0 
15.0 
16.5 
16.5 

TABLE B-4 

CONF. Std. 
95% Deviation 
B ~ Data,S Resid,SR 

1.1 6.1 
1.3 7.8 
1.5 8.7 

1.1 5.4 
2 . 7 10.2 
1.0 4.3 

1.8 6.2 
1.6 6.5 
1.6 5.6 

Removal 

BAND 
FIT (COEFF. ) 

.78 

.62 

.64 
1.01 
1.00 
1.03 

4.4 
5.2 
6.1 

3.8 
9.3 
3.4 

4.1 
3.6 
3.6 

Experimental Bandwidth and Band Fit 
Coefficient Results 
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The second phase of the trend analysis pr ocedure requires the 
residual curves, X "'be tested for randomness with the turning point 
test (see Appendix A.2). Based on t he hypothesis that the curve 
is random, confidence limits for the number of turning points are 
calculated, using Eq. (A.8). Table (B.5) gives these limits, and 
the observed count of turning points for the six selected curves 
whose plots we will examine shortly. 

Number of 
Curve Confidence Limits Turning Points 

Lower Upper 
KXUL' 362 401 214 
KTUI' 360 400 357 
KTUL(LM) , 364 404 349 
GXUH' 345 383 272 
GTUI' 363 402 309 
GTUn' 337 374 109 

TABLE (B.5) 

Test for Randomness at 95 Percent 

Confidence Interval 

It can be observed that in each case the number of turning 
points fall outside the limits. Thus, we reject the hypothesis of 
randomness and conclude that each of the above curves has a 
significant oscillatory component. 

B.3 Oscillatory Residual Curve Analysis 

The turning point test for randomness establishes the 
ex istence of significant oscillations in the trend resi dual. Each 
of the model and experimental residual curves which are given in 
figures (B.4) and (B.5), ex hibit this strong oscillatory component. 
To begin the analysis, .we may express one of the residual curves, 
X ..oCr), 

X ... (r)= X 0 (r)+ XR (r) B.3.l 

Here X (r) is the oscillatory component, and is taken to have the 
form ofoan autoregressive scheme, 

B.3.2 
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The final curve, X R (r), will then be a purely random sequence. 
The procedure for autoregressive scheme fitting, as discussed 

in reference (a 3), involves the choice of an order 1ll, and the 
calculation of the coefficients aI' a 2 , .•• , a as the solution of a 
system of equations defined by the aufocovari~nce function of the 
curve X" (r) • A FORTRAN computer code of · the type devised by 
Robinson (A4, section 2.8) was used for this purpose. To provide a 
measure of completeness, the normalized mean square error, E , is 
calculated as the ratio of the residual variance to the tren~ variance, 
the program estimates Ek for all orders k less than or equal to m and 
calculates the coefficients aI' a 2 , ••• a • To provide an accurate 
estimate of the residual variance for amvariety of curve types, a large 
value for m is recommended. After several trials, the value m = 128 
was selected as being sufficient for essentially all cases while 
requiring less than two minutes of machine time. In running the 
program for this ord:r, the differ:nc:s b:tween values of.Em and Em- l were less than .002 ln all cases, lndicatlng that the resldual varlance 
had reached a very stable level. After the autoregressive scheme fit 
has been made, the final residual component is tested for randomness 
by using Kendall's turning point test. 

Table (B.6) lists the essential information obtained in the 
autoregressive analysis. The first column gives the normalized mean 
square error at m = 128. This is followed by the 95 percent confidence 
intervals for the turning point test, along with the observed number of 
turning points for each residual curve. In each case, this value falls 
within the confidence limits, and we can accept the hypothesis of a 
random residual curve. Figures (B.6) and (B.7) show the autoregressive 
scheme fits which were calculated as the oscillatory component of six 
representative curves. 

Curve 

KXUL' 
KTUI' 
KTUL(LM) , 

GXUH' 
GTUI' 
GTUn' 

KXUH(F) 
KFUH 

SACLANTCEtI CP-17 

Mean Sq. Confidence 
Error 
E128 

Intervals for Observed No. of 

.119 

.606 

.623 

.337 

.518 

.018 

E64 
.153 
.093 

Turning 

361 
361 
365 

359 
365 
336 

150 
l39 

Points 

399 
403 
403 

397 
403 
373 

174 
162 

Turning 

366 
402 
387 

364 
371 
344 

159 
140 

Table (B.6) Separation of Zero- Mean Curves 
into Oscillatory and Residual Components 
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The autocorrelation function calculated as part of the above 
procedure can be readily employed to estimate the principal period 
of the oscillatory component. This interval is calculated from 
tabulation of the correlation function and is the interval between 
successive maxima. Usually several cycle peaks will be clearly 
evident and the average computed will accurately reflect the chief 
periodic phenomenon. In the case of all the present examples, this 
is the convergence zone period. This period can be used to define 
the zone period ratio, ZP = (P 1 . - P 2 ) Ip to provide fractional 
error comparison of the curves with perio~icities. Table B.7 show 
periods in nautical miles and the period ratios for the several 
model runs as compared with the two sets of experimental data. 

Curves Curves 
Exp. PI (nm) Model P2 (nm) ZR 

KXUL 33.1 KTUI 35.1 -.060 
KXUL 33.1 KTUL(LM) 34.1 -.030 

GXUH 32.6 GTUI 34.1 -.076 
GXUH 32.6 GTUlI 34.6 -.061 
KXUH(F) 31.3 KFUH 36.0 -.150 

Table (B.7) Zone Periods and Zone spacing ratios for 
oscillatory components 

The above values indicate that the sample model periods are 
greater than the experimental. It is seen that the Lloyd's mirror 
calculations and Type II representations do not change the principal 
zonal structure, significantly, as this is a fundamental 
characteristic of each measured or predicted curve which is not 
effected even by a heavy smoothing operation. 

2.1.1 Comparison of variances 

At each stage of the separation process, estimates were 
made for the variance of the component curves, using the familiar 

. formula, 

SJI.CLANTCEN CP- 17 

V= 1 

N-l 

N 

B.4.l 
k=l 
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Here X is the mean of the curve, and N is the number of range 
values. In this manner, we arrived at estimates of the variances, 
V for the initial curve, VL for the long-term trend, VI for the 
trend residual curve, V for the oscillatory component, and VR for 
the final residual. Th~se values for our illustrative set of curves 
are listed in table (B.8) 

Curve V 

KXUL 37.30 
KTUL(LM) 75.43 
KTUI 61.53 

GXUH 29.13 
GTUI 103.36 
GTUII 18.75 

KXUH(F) 38.34 
KFUH 41.56 

V
T 

t=v +V +v) 
LoR 

37.05 
72.49 
59.31 

28.86 
101. 78 

18.72 

38.02 
42.35 

17.99 
38.44 
34.76 

VI 

19.31 
36.99 
26.76 

19.06 
34.05 
24.55 

15.10 14.03 13.76 
17.75 85.61 84.03 

7.40 11.35 11.32 

21.25 17.09 16.77 
29.54 13.01 12.81 

V o 

16.86 
13.28 

9.41 

9.14 
40.39 
11.10 

14.28 
11.56 

Table (B.8) Variances for component curves 

2.20 
20.77 
15.14 

4.62 
43.64 

0.22 

2.50 
1. 25 

thus, if we have separated the initial curves into independent 
components, we should have VI = V + VR' and V = VL + V + VR• 
In practice, the results were ver~ close to the theoret£cal, with 
the largest discrepancy about 8 percent of the amount involved. 
Table (B.9) lists the proportions of the initial variance which 
can be attributed to each of the three components with the fractions 
normalized to the total for each curve. 
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Curve · PL =VL /VTOT Po=Vo/VTOT PR=VR/VTOT 

KXUL .486 .455 .059 

KTUL(LM) .530 .183 .287 

KTUI 

GXUH 
GTUI 

GTUII 

KXUH(F) 
KFUH 

of our 

.586 .159 .255 

.523 .317 .160 

.174 .397 .427 

.395 .593 .012 

.559 .376 .066 

.696 .273 .030 

Table (B.9) Distribution of Variances 

In summarizing the observed three part variance distribution 
sample set, a number of observations can be made: 

1. An elementary point is that the variance distribution 
such as observed above is clearly effected by the 
proximity of the first point to the origin; starting 
at greater ranges the first term would be 
progressively smaller in most all cases. 

2. A strong periodic component, developed from 
convergence zones in the present data, and not 
unusual in other instances, by no means can be 
expected to be always present. Simple bottom limited 
propagation would be a common case not likely to 
show periodic components. 

3. Both ·the experimental data sets show a comparatively 
small amount of residual variance that is only 
approached by the FACT model operating on a 
restricted range of data and the smoothed TRIMAIN 
model on the whole range. In both model instances, 
extreme excursions are controlled, and this feature 
is found to parallel the frequency domain averaging 
that is a feature of typical (1/3) octave propagation 
data acquired with explosive charges. We would 
expect a measurement made with a well controlled cw 
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source to more closely match the random variability of 
model data; (excluding the ray dropout cases included 
here only as negative examples). 

In concluding this appendix section on method application, 
the statement of the guiding nature of these quantitative measures 
must be reiterated. The three summary remarks above all show how 
each of the components as well as their distribution are affected 
by measurement techniques, range, and computational procedures. 
Strong conclusions can be drawn in specific cases and these can be 
supported with rigor and have considerable sensitivity; however 
the methods are not automatic and their application is supportive 
to the analyst who retains responsibility for their correct 
application and results. 
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