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A three-dimensional fast field program (FFP) model based on the global matrix method will be 
presented. Compared to traditional propagator matrix methods, the global matrix method allows 
for a more efficient, and, furthermore, numerically stable computation. The three-dimensional 
expansion does not restrict sources to be on the center axis, but allows for an arbitrary source 
geometry-as opposed to earlier two-dimensional versions. As a consequence, the solution 
includes simultaneously both vertically and horizontally polarized shear waves. A mathematical 
description will be given and the numerical aspects will be discussed. Some of the features of the 
model will be illustrated in two test cases: free-space and shallow water with strongly reflecting 
bottom. The free-space case shows that the three-dimensional solution gives results identical to 
those obtained by the two-dimensional model except for ranges close to the axis =O of a 
cylindrical coordinate system. For the shallow water case, the well-known energy transportation 
in discrete modes above critical wavenumber is first demonstrated. Then the model is used to 
analyze the field radiated by a long horizontal array, and it is shown that different modes will 
propagate in slightly different directions. 

PACS numbers: 43.30.Bp, 43.30.Es, 43.20.Bi 

INTRODUCTION 
It is well known that the use of integral transform tech- 

niques yields an exact solution to the wave equation in strati- 
fied elastic media. ' The field parameters are, however, deter- 
mined by inverse transform integrals. In cases with only a 
few layers, contour integration can be used to reduce the 
numerical computation, involving only a few integrations 
over finite intervals (e.g., see Ref. 1). In general numerical 
models, however, such techniques are inconvenient, and di- 
rect numerical integration has to be used. 

In underwater acoustics the sources are usually con- 
tained within a small volume, in comparison to the volume 
of interest; thus the radiated field is most conveniently de- 
scribed in a cylindrical coordinate system. In this case the 
field is given by Hankel transform integrals which are not 
well suited for direct numerical integration due to the Bessel 
functions involved. In order to overcome this problem, in 
1961 Marsh2 introduced what was later called the fast field 
approximation of the Hankel transform. The field is separat- 
ed into ingoing and outgoing parts by expressing the Bessel 
function in terms of Hankel functions which are then re- 
placed by their large argument approximations. The inte- 
grals are then evaluated by means of the fast Fourier trans- 
form. As shown later by Di Napoli and Dea~enpor t ,~  the fast 
field approximation gives no significant errors at ranges 
longer than a few wavelengths from the axis. 

"'Part of the work was carried out while J .  Glattetre served as a Summer 
Research Assistant at SACLANT ASW Research Centre 

After the introduction of the fast field technique, a num- 
ber of numerical models have been developed based on this 
integration method, and thus are usually called fast field 
programs. In spite of their common name, these models are 
significantly different, especially concerning the approach 
taken to solve the transformed wave equations in a multi- 
layered environment. Traditionally, the depth dependence 
of the field has been determined by means of the Thomson- 
Haskell matrix m e t h ~ d . ~ . ~  The first model was introduced by 
DiNapoli6 who evaluated the solution very efficiently by 
means of recurrence relations for the hypergeometric func- 
tions. However, this approach allows only for fluid layers, 
and in that case, other techniques, like normal mode meth- 
ods, are usually more convenient. The first FFP model, in- 
cluding the coupling between P and SV waves at the boun- 
daries of solid layers, was developed by Kutschale7 also 
using the Thomson-Haskell method. The original model al- 
lowed for only one source/receiver combination for each 
solution. It was later modified by Harrisons to allow for sev- 
eral receivers, but even for o w  computa- 
tions are rather extensive. 

A more direct and computationally more efficient solu- 
tion technique was recently introduced by S ~ h m i d t . ~  The 
field parameters at the interfaces are expressed in terms of 
source contributions and unknown scalar potentials. The 
boundary conditions yield a system of equations in the Han- 
kel transforms of the potentials to be satisfied at each inter- 
face. These local systems of equations are mapped into a 
global set of equations using a technique similar to the one 
used in finite element programs. The computational speed 
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has been improved by an order of magnitude by use of this 
solution technique. Furthermore, configurations involving 
several sources and/or receivers can be treated with one so- 
lution, thus yielding the possibility of computing total fields 
generated not only by single point sources, but also by verti- 
cal source arrays. 

These and similar models have all been two dimension- 
al, thus restricting the sources to be placed on the axis of the 
cylindrical coordinate system. A direct solution of problems 
with horizontally distributed sources has, therefore, not 
been possible, but has required a new calculation for each 
source and subsequent superposition. In this paper the mod- 
el of Schmidt9 has been modified and extended to allow for 
sources displaced with respect to the axis. 

The field parameters are expanded in a Fourier series in 
the angular direction, thus leading to an infinite number of 
two-dimensional problems. By expressing the boundary 
conditions in terms of Cartesian components, rather than 
polar components, the coefficient matrix will be independent 
of the Fourier order, and the Hankel transforms of all the 
expansion coefficients for the unknown potentials can be 
found with only one matrix inversion for each horizontal 
wavenumber. The truncation point of the Fourier series can 
be determined a priori. 

The inversion of the Hankel transform is again per- 
formed by means of the fast field technique, and the angular 
distribution is evaluated from the expansion coefficients by 
means of an FFT technique. In the following the model and 
its mathematical background will be described. In order to 
demonstrate its possibilities, the model has been used to ana- 
lyze the response of a line array in a simple shallow water 
environment. 

I. FIELD REPRESENTATIONS 
The problem under consideration is illustrated in Fig. 1. 

A number of simple sources is placed in a horizontally strati- 
fied environment. All layers are assumed to be homogeneous 
and isotropic elastic continua, either fluid or solid. Each 
source radiates compressional stress waves at the common 
angular frequency w. The resulting stresses and displace- 
ments can then be expressed in complex form with the com- 
mon factor exp( jwt ). This factor will not be included expli- 
citly in the following sections. Since the sources are assumed 
to be distributed within a relatively small region compared 
to the total volume of interest, the field is derived in a cylin- 
drical coordinate system ( r,O,z) , Fig. 1. 

The field in each layer is a superposition of the field 
produced by the sources within the layer in the absence of 
boundaries and an unknown field which is necessary in order 
to satisfy the boundary conditions at the interfaces. The lat- 
ter field must satisfy the homogeneous equations of motion 
and is treated first. 

A. Homogeneous solution 
Let u, = ( u, ,v, ,w, J be the polar displacement compo- 

nents in a solid layer n. The homogeneous equation of mo- 
tion 
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UPPER H A L F -  SPACE 

LOWER HALF- SPACE 

FIG. 1. A general outline of the model geometry. 

where A, and pn are the Lam6 constants and p, is the den- 
sity, will be satisfied if the displacements are expressed in 
terms of three scalar potentials ( 4 ,  , A,, $, ] as'' 

d#n 1 d$n d2An un =- +--+-, 
dr r  d e  drdz 

where the potentials satisfy the homogeneous scalar wave 
equations 

(V2 + h : )4 ,  = 0, 

(V2 + k2,)(An,$,)  = 0, 
h, and k ,  are the wavenumbers of compressional and shear 
waves, respectively, 

h = w2/c:, =pnw2/(An + 2 p ,  ), (7) 
k : = w2/c;,, = p , w 2 / p n ,  (8) 

where c,, and c,, are the velocities of compressional and 
shear waves, respectively. The attenuation in the medium 
can be accounted for by allowing the Lam6 constants, and 
thus, also the wavenumbers, to be complex. 

In order to avoid confusion, the index n referring to the 
layer number will be implied in the rest of this section. The 
following angular expansions of the potentials are intro- 
duced: 
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(lo) where Jm ( ) is the Bessel function of order m and 
m sin(mt9 ) 

$(r*eJ) = x dm(rr )  - coslmB ). (sZ - h 2)1'2, s2> Re[h '), 
m = O  a(s). = 

j(h - s2)'/', sZ<Re[h '), 
(15) 

Substitution of these into the wave equation and use of the 
Hankel transform lead to the following integral representa- ( ~ ~ - k ~ ) ' / ~ ,  s z > R e ( k z ) ,  
tions for the expansion coefficients: ( 16) 

("(rs) = lm [a;(s)e - "(" + YY(S)P(~]  sJm (rs) ds, u are expanded like 
(9), (lo), and (1 I), respectively. If Eqs. (9)-(14) are inserted 
into' Eqs. (2)-(4) the following integral representations are 

(I3) obtained for the expansion coefficients: 

m 

wm(r,z) = 1 [ - a;(s)a(s)e - "(4 + a p ( s ) a ( ~ ) 8 ~ ( ~  + b ;(s)se - 'O'" + b ~ ( ~ ) s 8 ~ ~ ~ ) ] s l ,  (rs) ds, 

The combination of the polar vector components in (1 8) corresponds to the Cartesian components for Fourier order m and is, 
therefore, the natural scalar equivalent of the scalar component wm (see Schmidt and Krenklo). 

The following boundary conditions at the horizontal interfaces involve the stress components a, ,a,, and a,. If these are 
expanded like (9), (lo), and (1 I), respectively, use of Hooke's law leads to the following expressions for the expansion coeffi- 
cients: 

It should be noted that the use of the Cartesian components 
(1 8) and (20) in the boundary conditions rather than the polar 
components has the effect that all coefficients to the un- 
known arbitrary functions are independent of the Fourier 
order m. This is obviously very important for the efficiency 
of the numerical solution. 

For fluid layers only the potential #(r,B,z) will be pres- 
ent, and the expansion coefficients for the displacements are 
obtained directly from (17) and (18) by setting b 7, b ;", c;, 
and c;" to zero. The shear stresses vanish identically, whereas 
(19) has to be replaced by 

o,"(r,z) = AA2@"(r,z) = - Ah 

+ ay(s)e"(')] sJ, (rs) ds. 
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B. Source field 
A simple compressional source placed at the point 

( r,, B,, z, ) will produce the following field in an infinite ho- 
mogeneous medium": 

where S, is the source strength, which is generally comple 
to account for the actual phase of the source. The factor em, 
due to the expansion of the exponential function in a Neu 
mann series, ' is 
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If more than one source ia - :sent within a layer, the contri- 
butions are simply added to yield 

2 em 6- (i si cos m(O - 0.1 J(r,Ot) = - 4 m  m=o i =  I 

- " ( " ' I .  - .,I 
x Jm (r is)  sJm (rs)  ds, 

a ( s )  
(24) 

where N is the number of sources. The potential J(r,O,z) is 
now expanded like (9) and the coefficients are easily obtained 
as 

- 4~11. - .,I 
X sJ, (rs)  ds. 

4 s )  
The expansion coefficients for the Cartesian displacements 
components again follow from (2)-(4), 

can be treated in exactly the same way, leading to integral 
representations similar to Eqs. (26)-(29) for the field param- 
eters. 

II. SOLUTION TECHNIQUE 
Solution of the problem at hand implies finding the val- 

ues of the potential a, b, and c that satisfy the pertinent 
boundary conditions. At each interface w and uzz must be 
continuous. At solid/solid interfaces we must in addition 
require that u, u, u , ,  and u,, be continuous. At solidAiquid 
interfaces the shear stresses must vanish. 

We express these boundary conditions wit1 1, ( 3 ) ,  and 
(4) and the expressions for stresses obtained by the use of 
Hookes law. These boundary conditions may readily be re- 
formulated in terms of the angular expansion coefficients 
which, when collected in a column vector, become 

/ ~'"I~JJ \ 

1 ,  

( 2 3  
and use of Hooke's law yields the following expansion coeffi- 
cients for the stresses involved in the boundary conditions 

- a(s)lz - zil 

x J, ( ~ r ~ ) ~  SJ, (rs)  ds, 
4 s )  

In the case of a fluid layer, Eq. ( 2 8 )  must be modified to 

- ""'I. - .,I 
X dm (sr)  ds. 

4 s )  
Here, only simple compressional sources have been consid- 
ered, but shear wave sources, involving the potential A or $, 

I I 

I - a  s 0 
P S 
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a, ( r ~ )  + u i , " ( r ~ J  

o : ( ~ J I  - u g ( r . 4  ' I 
The unknown potentials are so defined t h z  
dinatez withinthis layer is 0 at the upper layer interface. The 
boundary conditions at interface n, which is the lower inte- 
face of layer n, may thus be stated: - 

FT(rJn) + ~ T P J , , )  - FT+ (r,O) - Fr+ (r,O) = 0, 
( 3 2 )  

where subscript n denotes the layer number, z, denotes the 
thickness of layer n, and the terms with overbar "-", as 
before, denote source terms. 

Insertion of ( 17 ) ,  ( 18 ) ,  ( 1 9 )  [ ( 2 1 )  in the fluid case], and 
(20), reduces (32) to a set of integrands which must vanish as 
the boundary conditions must be satisfied for all r. Thus we 
are left with a set of linear equations in the unknown poten- 
tial functions and the source contributions: 

where the unknown potential functions for layer n are 

For a solid layer the matrix A for the upper interface in layer 
n is 

a S 

- S - P  
S P 

(a2- k 2 ) p  h f l ~  
- h a p  - ( h 2 - k 2 ) p  

bff P - ( 2 s 2 - k 2 ) p  s P p  

H .  Schmidt and J .  Glattetre: Global matrix method for waves 21 08 



while for a Nuid Lla, the 
-a O O -  

s 0 0  
An,, (S = -Ah2 0 0 A d Z a  

0 0 0  
0 0 .o 

by (17)-(21) withz=z,, La, 
An,, (S) =An(S)In(S), 

where 
-&*m 0 

-81s)sn 

0 0 
I,(S) = 0 0 

0 0 
0 0 

The source contribution vector is 
I il - s;n(z -3,) 

3 - 11 

' where of course z = 0 and z, for upper and lower boundaries, respectively. Finally, the local sets of boundary equations for N I 

1 layers are mapped into a global set of equations I 

I This global matrix method, as opposed to matrizant  method^,^ was pr-ted for the two-dimensional case in Ref. 9. 
I 

Ill. NUMERICAL STABILITY CONSIDERATIONS 
A commonly known problem with the matrizant meth- 

od, on which earlier FFP models have been based,3 is en- 
countered when dealing with thick layers in the evanescent 
region of the horizontal wavenumber spectrum. In this re- 
gion the growing and decaying potentials can differ signifi- 
cantly in magnitude, and the exponential matrix (38) be- 
comes numerically singular when the difference exceeds the 
number of available digits. In propagator approaches this 
problem requires considerable, purely numerical, modifica- 
tions in order to ensure numerical stability at the cost of a 
significant increase in calculation time. In the present global 
approach, however, unconditional stability can be ensured 
by simple means with no influence on the computation time. 
A detailed analysis is given in Ref 9; only an outline shall be 
given here. Several techniques are utilized to remedy this 
situation. 

2109 J. Acoust. Soc. Am., Vol. 78, No, 6, December 1985 

The matrices An,, and An,, are made dimensionless by 
dividing the stress- and displacement-related coefficients b 
m2pm and k,, respectively. Here,p, and k, denote the den- 
sity and wavenumber, respectively, of an intermediate layer. 
This will ensure that the coefficients are within the same 
order of magnitude. Each layer is described in a separate 
local coordinate system with origin at its upper surface. This 
will ensure that the value of the depth does not exceed the . .  
layer thickness. The order of the unknown functions as de- 
fined by (34) ensures that the coefficients, which attain high 
values due to the abovementioned exponential function 
come close to the diagonal of the global matrix. These reme- 
dies will, together with standard pivoting by columns, en- 
sure that the solution of (40) by means of Gaussian elimina- 
tion will be unconditionally a table.^ 

The above statement must, however, be slightly modi- 
fied when we have a source in a thick layer with evanescent 
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-- -I,, - - . - . - IV. NUMERICAL EXAMPLES 
I 

. A point source in free-space 
I I 

The example of a point source in free-space is a well- 
suited example for verification of the model as the correct 
result is readily calculated as 20 log(r). "Free-space" means a ' , I 
water layer containing source and receiver, surrounded by 
upper and lower half-spaces consisting of water with identi- 
cal parameters. This example is, however, rather a challenge 
for the FFP model, as the integrand easily becomes under- 
sampled due to the branch point arising from the square root 

4 
in the denominator of (28). Here, the integrand is sampled at 
8196 points ranging from 628 X lop6 m-' to 0.465 m-'. 

Figure 2 shows a comparison between model outputs 
with the source located on the center axis and also with the 

RANGE ( KMI source displaced 100 m in the positive x direction from the 
center axis, i.e., the model is run in two- and three-dimen- 

FIG. 2. Transmission loss for a free-space environment. The receiver is 10- sional modes, respectively. ln both cases the frequency is 100 
cated 40 m above the source: (a) source at center axis (r = 0). i.e., two-dimen- 
sional case; (b) source displaced 100 m in positive x direction, i.e., three- Hz and the receiver is located 40 above the The 
dimensional case. three-dimensional case required an angular expansion order 

of 110. Curves a and b show the transmission loss for the 

I 
two-dimensional and three-dimensional cases, respectively. 

propagation conditions. Here, numerical instability due to The region of validity for the computed solution begins at a 
the nonvanishing pertinent row of the right-hand side of (40) greater distance from the source in the three-dimensional 
may occur. This problem is easily circumvented by introduc- case, as the approximation to the higher-order Hankel func- 
ing dummy interfaces just above and below the source(s). tions has larger remainders than what is the case for the zero- 
Coherent sources on both sides of a thick layer may also order approximation. The computed solution is of course 
represent a numerical problem, but as this situation is re- not valid between the source and center axis as only the Han- 
garded as being less important in most physical applications, kel function corresponding to outward propagating waves is 
it is not considered a serious limitation. It is of course possi- included. Figure 3 shows the computed transmission loss in 
ble to solve the problem separately for both these sources and all directions for the three-dimensional example. The line 
suoemose the solutions. markers x=O and y=O are drawn. 

FIG. 3. Polar plot of transmission loss for a 
point source in free-space, the source dis- 
placed 100 m in the positive x direction. 

- I ,  

' 49 d 
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V A C U U M  study will concentrate on the water layer and on one occa- 
0  .. -- -- .- - . - -. - -- - sion take us 125 m below the ocean-bottom interface. The 

WATER compressional wave acoustic impedance ratio at the ocean- 
3 

Q = I g ~ c m  bottom interface is approximately 7.8, thus giving strong 
P - w a v e :  v e l . :  1 4 0 0  r n / s  a t t . :  :U bottom reflections. 
S - w a v e :  v e l :  0  

7 5  ", . . 

S H A L E  S A N D S T O N L  1. Point source 
3 

Q = 2 . 5 5  q l c m  
P-wave: v e l . :  4 5 0 0  m l s  a t t . :  0 . 5  d B l A  
5 - w a v e :  v e l . :  2 2 5 0  m l s  a t t . :  1 . 9  d B / A  

9 7 5  rn 

3 
Q = 2 . 7  q l c r n  
P-wave:  v e l . :  5 3 0 0  m l s  a t t . :  0 . 3  d B l A  
S-wave:  v e l . :  2 6 5 0  m l s  a t t . :  1 . 1  d B 1 A  

1 9 7 5  m  --- 

3 
L, = 2 . 8  q l c r n  
P-wave: v e l . :  5 8 0 0  m l s  
5 wave:  v e l . :  2 8 0 0  r n l s  

FIG. 4. The environmental conditions of the test case. 

B. Shallow water propagation 
We will further demonstrate some of the model's capa- 

bilities by applying it to some propagation problems related 
to the shallow water environment shown in Fig. 4. 

Below a 75-m-deep homogeneous water layer are three 
solid layers with increasing density and wave velocities. Our 

We will first look into the basic wave propagation mech- 
anisms by studying the frequency versus horizontal wave- 
number response of a point source, at 10-m water depth, up 
to a frequency of 50 Hz. Figure 5 shows the dispersion rela- 
tion for the pressure component at 70-m water depth. The 
vertical axis is linear with an arbitrary scale. The curves in 
Fig. 5 are actually the modulus of the integrand entering the 
FFT approximation to the Hankel transform. 

The six line markers radiating from the origin show the 
loci of the critical horizontal wavenumbers for compres- 
sional and shear waves at the boundaries. They are, as ap- 
pearing in increasing horizontal wavenumber order: 
compressional critical wavenumber for boundaries at 1975, 
975, and 75 m; shear critical wavenumber for the boundaries 
at 1975,975,75 m. The spikes, associated with the compres- 
sional critical wavenumbers, represent head waves. Above 
the shear critical wavenumber for the 75-m-deep water-bot- 
tom interface, we can, as expected, observe that the group 
velocity of the modes approaches the phase velocity asymp- 
totically. 

Figure 6 shows the same integrand as Fig. 5 in a depth 
versus horizontal wavenumber plot for a frequency of 35 Hz. 

FIG. 5. Modulus of pressure integrand 
shown as frequency versus horizontal wave- 
number. Line markers are, as appearing in 
increasing horizontal wavenumber order: 
compressional critical wavenumber for 
boundaries at 1975, 975, and 75 m; shear 
critical wavenumber for the boundaries at 
1975,975, and 75 m. 
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I For depths larger than 75 m, i.e., down into the bottom, the 
I 
I actual parameter is stress a,,. In a solid, it represents the 
I compressional wave component modified by shear compo- 

nents. Line markers indicate the same horizontal wavenum- 
bers as in Fig. 5 and also the water-bottom boundary at 75 m. 

As phase velocities increase with depth, it is apparent 
I that the effective depth of the propagation channel will in- 

crease with decreasing horizontal wavenumber. Further- 
I more, as losses are introduced in the solid layers, the propa- 
I gation channel will show greater dissipative losses at lower 
1 1  wavenumbers. Below the critical horizontal wavenumber 

for shear waves at the basement interface, 0.079 m- ', energy 
I leaks out into the basement and we do not have a well-de- 
I 
I fined propagation channel. Thus, starting from the upper 

wavenumber end of Fig. 6, the first two modes propagate in 
the water layer and, consequently, have low losses. The third 

I mode also propagates in the water layer, but dissipation oc- 
I curs due to evanescent energy injection into the ocean bot- 

tom. From the fourth mode and below, we observe transition 
to a continuous spectrum, where the losses are caused by 

I both dissipation and energy outflow. 
I 

I ' ,  

2. Linear array 
1 In order to exploit the three-dimensional capability of 

the model, we introduce a linear array consisting of 101 ele- 
ments equispaced at 18.6 m. The array is aligned with the 
axes 8 = 0, z = 45 m and centered about the axis r = 0. The 

I elements are excited so as to produce a "narrow" horizontal 
I 

I 1  
wavenumber spectrum in the direction 8 = 0 corresponding 
to mainlobes at 8 = f 60 in the horizontal plane when the 
array is in an all-water environment. 

Figure 7 shows a polar plot of the pressure level in a 
t horizontal plane at 47-m water depth. It can be seen that 

energy is propagating in several distinct directions at azi- 
I 
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muthal angles in the order of 60" and less. One could initially 
assume these directions to be sidelobes of the array. There , .I 
are, however, three points that contradict this assumption: 
The azimuthal dependence is not in accordance with what 
should be expected from a 101-element array, attenuation 
versus range is significantly different in various azimuthal . 
directions, and one does not see a range-dependent interfer- ' 
ence pattern as would normally be caused by multimode in- 
terference. 

Further insight is gained by depicting the pressure level 
versus depth and azimuthal angle as in Fig. 8, where we are 
able to identify the mode structure which was illustrated in 
Fig. 6. The propagating energy concentrated at azimuthal 
angles in the order of + 60" and less is clearly split up into 
slightly different directions, each being characterized by a 
unique mode and thus a unique horizontal wavenumber. 
The first-order mode is visible when observing the positive 
azimuthal angle part of Fig. 8. The characteristic contours I 

of the higher-order modes become visible "on the far side of I 

the mountain," i.e., when observing the negative azimuthal 
angle part of the figure. 

The physical explanation for the mode separation is that 
the array will produce a continuous horizontal wavenumber 
spectrum ranging from o / c  at 8 = + 60" to w/2c  at 8 = 0". 
However, as we remember from Fig. 6, our stratified medi- 11 
um will support energy transmission at discrete components 
of horizontal wavenumber. Thus, as we see from Fig. 8, ener- I 
gy is transmitted at the angles where the horizontal wave- 
number of the array is matched to the discrete values of hori- 
zontal wavenumber corresponding to the discrete modes. 

I I 
In returning to Fig. 7, we see that the four single mode 

beams are pointing towards us, while for the other side of the 
array, i.e., in the positive x and y direction, we can see the 
second-, third-, and fourth-order modes. It is clear that the 
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FIG. 7. Polar plot of pressure at 47-m 
water depth. Isolines spaced 10 dB. 

FIG. 8. Pressure at 2.8-km range shown 
as azimuthal angle versus depth. 
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third- and fourth-order modes suffer greater transmission 
loss as discussed above. 

V. CONCLUSIONS 
A three-dimensional FFP model based on the global 

matrix method has been presented. The global matrix meth- 
od allows for a more efficient and, furthermore, numerically 
stable computation. The three-dimensional expansion does 
not restrict sources to be on the center axis, but allows for an 
arbitrary source geometry, as opposed to earlier two-dimen- 
sional versions. As a consequence, the solution includes both 
vertically and horizontally polarized shear waves simulta- 
neously. A mathematical description is given and the nu- 
merical aspects are discussed. Some of the model's capabili- 
ties are illustrated in two test cases: free-space and shallow 
water with a strongly reflecting bottom. The free-space case 
shows that the three-dimensional solution gives results iden- 
tical to those obtained by the two-dimensional solution ex- 
cept for ranges close to the axis r=O of a cylindrical coordi- 
nate system. For the shallow water case, it has been 
demonstrated that energy is transported in discrete modes 
above the critical wavenumbers, and that, when excited by a 
long linear array, different modes will propagate in slightly 
different directions. 
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