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ABSTRACT 

Two papers gi ven by SACLANTCEN personnel at the NATO Advanced Research 
Workshop on Hybrid Formulation of Wave Propagation and Scattering in Castel 
Gandolfo, Rome, Italy on 30 August to 3 September 1983 are published as a 
revi ew of SACLANTCEN I S recent programme in underwater-acoustic mode 11 i ng. 
The fi rst bri efly revi ews the phys i cs of sound propagation in the ocean. 
In it the mathematical foundations of the most widely used acoustic models 
(ray, mode, fast field, parabolic equation) are presented and the areas of 
applicability of the various models are indicated. A few numerical 
examples are included to show the consistency among the different computer 
models in overlapping regimes of validity. A series of computational 
examples is given to demonstrate the applicability of these models to a 
wide range of general wave-propagation problems. The second paper presents 
a new numerical model, of the fast field type, where the depth-separated 
wave equation is solved by a numerical technique very similar to that used 
in finite-element programs. The speed improvement over existing models of 
the same type is considerable, especially in cases with many sources and 
receivers. The model has been used for studying both seismic pulse propa-
gation in shallow water and reflection of pulsed ultrasonic beams from a 
fluid/solid interface. 
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PREFACE 

This report contains two SACLANTCEN contributions to a NATO Advanced 
Research Workshop on Hybrid Formulation of Wave Propagation and Scattering, 
held in Castel Gandolfo, Rome, Italy, on 30 August to 3 September 1983. 
The Workshop was directed by Professor L.R. Felsen, Polytechnic Institute 
of New York, with the scope of bri ngi ng together resea rchers indifferent 
fields of wave propagation (electromagnetics, optics, seismics, underwater 
acoustics) to exchange ideas and approaches to solving complex wave-
propagation problems. 

SACLANTCEN was invited to present two papers: a review of numerical models 
in underwater acoustics (F.B. Jensen), and a recently developed solution 
technique of the fast-field type (H. Schmidt). These two papers are here 
published as a single report, since it is felt that together they give a 
good representat i on of the success ful research programme of SACLANTCEN IS 
Environmental Modelling Group over the past years. 

The full proceedings of the Workshop, containing 24 contributions, is 
available in <1>. 

<1> FELSEN, L. B. 
Scattering. 

ed. Hybrid Formulation of Wave Propagation and 
Dordrecht, Netherlands, Martinus Nijhoff, 1984. 
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NUMERICAL MODELS IN UNDERWATER ACOUSTICS 

Finn B. Jensen 

SACLANT ASW Research Centre 
Viale San Bartolomeo 400 
19026 La Spezia, Italy 

ABSTRACT 

SACLANTCEN SR-83 

The physics of sound propagation in the ocean is briefly 
reviewed. The mathematical foundation of the most widely used 
acoustic models (ray, mode, fast field, parabolic equation) is 
presented and the areas of applicability of the various models are 
indicated. A few numerical examples are included to show the con-
sistency among the different computer models in overlapping regi-
mes of validity. Finally, we show a series of computational 
examples that demonstrate the applicability of these models to a 
wide range of general wave-propagation problems. 

INTRODUCTION 

The modern era of underwater acoustics essentially dates back 
to the beginning of World War II, where considerable effort went 
into improving submarine detection by acoustic means. This effort 
has continued, promoted by naval interests in developing still 
better and more reliable sonar systems. To achieve optimum sonar 
design me· needs to know how sound propagates in the ocean as a 
function of frequency for different source/receiver configurations 
and for different environmental conditions. 

By now the theory of acoustic propagation is well developed, 
providing both a good general understanding and a detailed 
description of how sound travels in the ocean. The theoretical 
basis is the acoustic wave equation, which has to be solved with 
realistic boundary conditions at the sea surface and at the sea 
floor. This .problem is generally too complex for applying analy-

1 
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tical solutions, and hence we must resort to numerical methods. 
Several solution techniques (ray, mode, FFP, PE) have been intro-
duced over the years, with the acoustic models increasing in 
complexity as computers became faster and more powerful. Ray 
theory was the ooly practical technique for solving propagation 
problems until the beginning of the 1970s. Then advances in com-
puter technology made it possible to consider solving more complex 
equations, and, consequently, new techniques (normal mode, fast 
field, parabolic equation) came into extensive use during the last 
decade. 

In this paper we outline the basics of sound propagation in 
the ocean, including important propagation and loss mechanisms, 
and a simplified environmental description for use in numerical 
models. We then proceed to outline the mathematical foundation of 
the most widely used numerical models, and . we demonstrate the con-
sistency and inter-relationship between the various models through 
a few numerical examples for deep and shallow water environments. 
We then indicate the areas of applicability of the various 
acoustic models taking into account both limitations in the 
underlying theory and the numerical efficiency of the actual com-
puter codes. A demonstration of the wide range of applicability 
of these ocean-acoustic models is provided by a series of com-
putational examples, where the models have been applied to some 
general wave propagation problems, including beam reflection at 
fluid/ solid interfaces, propagation from ducts int 0 free-space, 
up- and down-slope propagation involving mode coupling and mode 
cutoff. 

2 SOUND PROPAGATION IN THE OCEAN 

The goal of ocean acoustic modelling is to estimate the spa-
tial properties of the sound pressure field as a function of 
source frequency. To clarify the complexity of the modelling 
problem, let us briefly review the environmental acoustics of the 
ocean. Figure 1 is a schematic of some important sound propaga-
tion paths; two possible sound-source locations are 00 the left 
and sound is propagating from left to right. Two dashed lines at 
o and 80 kin range indicate two of the innumerable ways in which 
sound speed in the water can vary with depth from place to place 
(or from time to time). Lines A, B, C, and D represent four 
possible sound-propagation paths whose shapes are determined by 
the location of the source and the sound-speed structure over the 
extent of the propagation. 

Path A from the shallow source is "surface-duct" propagation, 
because the sound-speed profile is such that the sound is trapped 
near the surface of the ocean. Paths B, C, and D are from the 
deeper source. Ray B, leaving the source at a small angle from 
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Schematic of sound propagation in the ocean 

the horiz ontal, tends to propagate in the "deep sound channel" 
without interacting with the boundaries (surface and bottom) of 
the ocean. At slightly steeper angles (path C) we have 
.. convergence zone" propagation, which is a spatially periodic phe-
nomenon of zones of high intensity near the surface. Here sound 
interacts with the ocean surface but not with the bottom. Path D 
is the "bottom-bounce path", which has a shorter cycle period than 
the convergence zone path. The right-hand side of Fig. 1 depicts 
propagation on the continental shelf (shallow water) where a 
complicated bottom structure combined with variable sound-speed 
profiles result in rather complicated propagation conditions not 
always suited for a ray representation. 

Our ability to model acoustic propagation effectively in the 
ocean is determined by the accuracy with which acoustic loss 
mechanisms in the ocean environment are handled. Aside from 
geometrical spreading loss (spherical, cylindrical, etc.) the main 
loss mechanisms are volume absorption, bottom-reflection loss, 
surface and bottom scattering loss. 

Volume absorption in sea water, caused by viscosity and che-
mical relaxation, increases with increasing frequency. This loss 
mechanism is the dominant attenuation factor associated with path 
B in Fig. 1, since this path does not interact with the boun-
daries.Because there is very little volume absorption at low 
frequencies, deep-sound-channel propagation has been observed to 
distances of many thousands of kilometres. 

When sound interacts with the sea floor, the nature of the 
bottom becomes important. Figure 2 depicts simple bottom-loss 
curves, with zero dB loss indicating perfect reflection. For an 
ideal bottom Without volume absorption (non-lossy) we still get 
severe reflection loss above a certain critical angle 8 c due to 
transmission into the bottom. For a real bottom with volume 
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absorption (lossy) we never get perfect reflection, even though 
the curves look similar. Path D in Fig. 1, the bottom-bounce 
path, often corresponds to angles near or . above the critical 
angle; therefore after a few bounces it is highly attenuated. On 
the other hand, for shallower angles, many more bounces are 
possible; hence in shallow water (path E) most of the energy that 
propagates is close to the horizontal. In reality, much of the 
ocean bottom is layered and also supports shear waves; in this 
case bottom loss becomes a complicated function of frequency and 
grazing angle. The overall effect of bottom loss en sound propa-
gation in the water column is an increasing loss with decreasing 
frequency. 

WATER 
s, 

H, , S~P_I~ENT 

SUBBOTTOM 

Fig. 3 Environmental i nput to ocean acoustic models 
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A rough sea surface or sea floor causes scattering of the 
incident sound. The result is a decay of the mean acoustic field 
in the water column as a function of range (scattering loss), with 
the scattered energy being lost to the ocean bottom through steep- . 
angle propagation. The scattering loss increases with increasing 
frequency, and the propagation paths mainly affected are paths A 
and C (surface scattering loss) and paths D and E (surface and 
bottom scattering loss). 

A consistent mathematical model of sound propagation in the 
ocean must contain the physics that governs the above-mentioned 
propagation and loss mechanisms. A summary of the environmental 
inputs needed for a realistic description of the ocean waveguide 
is given in Fig. 3. In this simplified model the ocean consists 
of a water column of depth Ho limited by a rough sea surface and a 
rough sea floor. The sound speed Co in the water column may vary 
arbitrarily with depth, while density Po and attenuation eo are 
considered constant. Even though real ocean bottoms exhibit a 
complicated layering, we have found that a simple two-layered 
geoacoustic model generally provides the necessary degrees of 
freedom to accurately include bottom effects in numerical models 
for many ocean areas. Hence the bottom may consist of just a 
sediment layer of thickness HI and a semi-infinite subbottom. The 
model should allow for sound speed, density, and attenuation to 
vary arbitrarily with depth in the sediment layer, while the sub-
bottom can be considered homogeneous. It is desirable that the 
model can handle shear-wave propagation in both bottom layers. 
Finally, in real ocean environments the parameters given in Fig. 3 
may all vary with range. 

3 MATHEMATICAL FOUNDATION OF OCEAN ACOUSTIC MODELS 

We briefly present the mathematical foundations of the four 
models discussed in this paper. A more detailed description can 
be found in references <1-10). 

The starting point for all the models is the wave equation 
for a harmonic point source with time dependence exp(-iwt), 

2 
V2cp(x,y,z) + [ w ] 4>(x,y,z) 

c(x,y,z) 

q,exp(-iwt) 

-o(x-xo)o(y-yo)o(z-zo) 
(1) 

(2) 

At any point (x,y,z) in the medium, the velocity potential q, 
satisfies Eq. (1) where c(x,y,z) is the sound speed of the medium 
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and 15 is the Dirac delta function. The source is at the coor-
dinate (xo,yo,zo) where z is the depth coordinate, which is taken 
to be positive in the downward direction from the ocean surface. 

For the boundary condition at the ocean surface we take the 
density of air to be negligible compared with that of water; 
hence, the pressure must vanish at the ocean surface 
("pressure-release surface"). At a boundary between two media 
such as the ocean and the ocean bottom, the balancing of forces at 
the interface require that physical quantities such as particle 
velocity and pressure be continuous across the boundary: 

Clcp 
vi = - - ; xi = x, y, or z 

Clxi 

p -iwPCP 

(3) 

(4) 

If the ocean bottom is treated as an elastic medium that can 
support shear motions, there is the additional boundary condition 
that tangential stress must be continuous. Since the water column 
cannot support shear waves, this requires that the tangential 
stress in the ocean bottom vanishes at the interface. 

Four widely used solution techniques for Eq. (1) are schema-
tically represented in Fig. 4. The derivation of the classical 
ray solution can be found in most text books 00 acoustics, as can 
the details of the well-established normal-mode solution. The 
fast-field technique is not yet in standard text books, but it is 
a powerful tool for solving propagation problems in stratified 
environments. The parabolic equation technique is a recent advent 
in acoustic modelling. This method is particularly suited for 
propagation in range-dependent environments. 

We briefly describe the derivation of the above four solution 
techniques, starting with range-independent wave theory. 

high-frequency 
approximation 

range-independent 
wave theory 

range-dependent 
wave theory 

RAY PARABOLIC EQ. 

Fig. 4 Four techniques for solving the wave equation 
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3.1 Fast field solution 

Here we are solving the wave equation for the case where the 
sound-speed profile is ooly a function of depth and the bottom is · 
flat; this type of environment is often referred to as the hori-
zontally stratified ocean. From Eq. 0) we therefore have that 
c(x,y,z) is simply c(z). Because the environment is independent 
of "r", the horizontal coordinates (x,y), ooe possible rrethod of 
solving Eq. (1) is to Fourier decompose the acoustic field into an 
infinite set of horizontal waves: 

cp(x,y,z) = ~lT J d2~ u(~,z) 
+ + 

in- r e (5) 

Substituting Eq. (5) into Eq. (1) we obtain the equation for 
4> (nx,n y ; z), 

a2 u(n x ,n y; z) 2 2 1 
------"--- + [k (z) - n ] u(nx,n y ; z) = - -2lT cS (z-Zo), (6) 

dz2 

where k(z) = w/c(z) and n 2 = n 2 + n 2 is the horizontal wave-x y' 
number of the individual plane waves. 

Using polar coordinates we can rewrite Eq. (5) as 

cp(r,z) 1 
2lT 

ZlT 
J de 
o 

00 

J in rcose n dn u(n,z)e • 
o 

We now integrate over the azimuthal angle to obtain 

cp(r,z) 
00 

J n dn u(n,z)Jo(nr), 
o 

(7) 

(8) 

where J 0 is the zeroth order Bessel function. 
tionship that 

Using the rela-

Jo(nr) = 1/2 [H(l)(nr) + H(2)(nr)] 
00' 

where the HIs .are Hankel functions and noting from Eq. (6) that 
u(n ,z) is even in n, we can rewrite Eq. (8) as 

cp(r,z) 
00 

1/2 J n dn u(n,z) H(l)(nr) 
o ' 

(9) 

where now the integration over n is from -4) to 00. For ranges 
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greater than a few wavelengths from the source, the asymptotic 
form of the Hankel function can be used: 

and, hence, Eq. (9) can be expressed as 

<f!(r,z) 
-ilT/4 e co 

f rr-oo 
1 '-' inr dn ynu(n,z)e , 

where the factor 1/1r indicates cylindrical spreading. 

(0) 

Equation (0) can be numerically integrated to obtain the 
acoustic field at the range r and depth z. · In order to do this we 
must solve Eq. (6) for many n' s to have a sufficient set of u' s 
as a function of n so that the integration over n in Eq. (10) can 
be performed. Given that u has been obtained numerically as a 
function of n, the integration can be done using an FFT algorithm. 
This total procedure is called the Fast Field Program (FFP) 
<11-13), although most of the numerical effort goes into solving 
Eq. (6) for the many n's. For computation we discretize Eq. (0) 
by letting 

with the additional relation 

flrfln = 2lT 
N 

o , 1 ,2 ••• , N-l , (ll ) 

(12) 

and N is an integral power of two. Note that the discretization 
relations of Eq. (11) restricts the solution to outgoing waves. 
Substituting Eq. (11) into Eq. (10) we obtain 

An ;;:;.e_-_ilT_/4_ in orn N-l i2nmn/N 
u e L Xm e , 

M=O 

and hence the input to the FFT is 
imrofln 

Xm = Inm u(nm,z)e • 

(13 ) 

(14) 

Equations (13) and (14) specify the numerical procedure to be 
employed in solving the wave equation using the FFP approach after 
Eq. (6) has been solved numerically for the complete set of u's as 
a function of n. As mentioned above, the main effort in the FFP 
approach is the numerical integration of Eq. (6) and not the final 
implementation of Eqs. (13) and (14), which is a simple FFT com-

8 
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putat ion. ~umerical procedures for integrating Eq. (6) are given 
in references <11-13>. 

The first implementation of the FFP approach was done by 
DiNapoli <11> around 197 0 . His method is for a stratified fluid · 
environment, and the numerical procedure is quite fast, since it 
uses recurrence relations of hypergeometric functions to solve Eq. 
(6) for all the wavenumbers (n's) rather than solve the equation 
for one n at the time. A more general solution technique was 
devised by Kutschale <12> for an arbitrary stratification of solid 
layers. This technique employs the Thomson-Haskell matrix method, 
and Eq. (6) is here solved separately for each wavenumber. This 
solution technique is computationally quite slow and there is no 
efficient way of doing calculations simultaneously for many sour-
ces and receivers. The most recent FFP technique was developed by 
Schmidt <13>. Again the solution is for an arbitrary stratifica-
tion of homogeneous solid layers. Displacements and stresses are 
expressed in terms of three scalar potentials for each layer, as 
described in <14>. Boundary conditions are then matched at each 
interface yield i ng a linear system of equations in the Hankel 
transforms of the potentials. Equation (6) is again solved at 
discrete horizontal wavenumbers; with the coefficient matrices 
being of band form, the equations are solved very efficiently by 
gaussian elimination. This solution technique is considerably 
faster than the Kutschale technique, and it furthermore allows for 
an efficient evaluation of the acoustic field for many sources and 
recei vers at a time. This, in turn, means that the model can be 
applied to a variety of new problems, including beam reflection 
problems as shown in Sect. 5.1. 

The main advantage of the FFP is that it provides the full 
solution to sound propagation in a multilayered solid medium, and 
hence consitutes a benchmark against which other approximate solu-
tions can be checked. Its main disadvantage is that the procedure 
is not easily automated. 

3.2 Normal-mode solution 

The alternative to a direct numerical integration of Eq. (6) 
is to expand u into a complete set of normal modes: 

(15 ) 

where the un's are the solutions to the eigenvalue equation 

(16) 

that satisfies the above-mentioned boundary conditions. In add i-
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tion, we require the un (z) be bounded as Z + "". The normal modes 
un(z) form a complete orthogonal set that satisfies the relation 

Cnm , (17) 

where the density p (z) takes its appropriate value in each layer 
and cnm is the Kronecker-delta symbol. The spectrum of eigen-
values consists of a discrete part and a continuous part, the 
discrete eigenvalues occurring in the interval 

W/C2 < ko < max[w/c(z)], (18) 

where C2 is the highest speed of the system. In the present 
treatment we consider only the di screte .eigenvalues, since, in 
general, the continuous spectrum makes a negligible contribution 
beyond the nearfield of the source (and requires an FFP-type 
calculation in any event). 

We now substitute Eq. (15) into Eq. (6), multiply the 
resulting equation by p(z)um(z), and integrate over z from 0 to "", 
giving: 

1 p(zo)un(zo) 
2n n2-k2 (19) 

n 

Substituting Eqs. (15) and (19) back into Eq. (5) we obtain an 
integral representation of the velocity potential, 

"" cp(x,y,Z) dn x f dn y I: 
-00 n 

un(Zo)un(Z) 

n2-k2 
n 

(20) 

We evaluate the above integral by choosing a path about the 
poles so as to lead to an outgoing wave from the source point 
r = O. Each integral in Eq. (20) is proportional to the two-
dimensional plane-wave representation of the zero-order Hankel 
function of the . first kind <15>, and therefore <I>(x,y,z) can be 
expressed as: 

(21) 

The asymptotic form of the Hankel function can then be used to 
obtain 

10 
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cp(r,z) 
ip(zo) -in/4 un(zo)un(z) iknr 
---e L e 
( 8n r) 1/2 n k 1/2 

(22) 

n 

In addition to the decay of the field due to cylindrical 
spreading, other loss mechanisms such as volume attenuation in the 
water column and bottom are included in Eq. (22) because the 
eigenvalues, kn, have positive imaginary parts <16>, thereby 
resulting in an exponential attenuation of each normal-mode term. 
Equation (22) gives us the important result that the field at a 
depth z is proportional to a sum of the products of normal modes 
evaluated at the source and the receiver depth. The normal modes 
are the "natural vibrations" of the system and if a point source 
is located at the null of a particular normal mode, that mode will 
not be excited. Similarly, if a point receiver is placed at the 
null of a particular mode, that mode contribution to the total 
field will not be sensed. 

In analogy to the FFP procedure, the main numerical effort 
for the normal-mode procedure is the solution of the eigenvalue 
problem defined by Eq. (16) and the boundary conditions. There 
are many techniques to solve this equation (17-18> but they are 
mainly applicable to low-frequency or shallow-water propagation, 
where there is ooly a small number of modes <19>. However, there 
are also techniques to handle deep-water high-frequency propaga-
tion using normal modes <20>. 

The advantages of the normal-mode procedure are, first, that 
once Eq. (16) is solved we have the solution for all source/ 
receiver configurations, and, second, that the whole solution pro-
cedure can be highly automated. In addition, the normal-mode pro-
cedure can be easily extended to slightly range-dependent 
environments using the adiabatic approximation where mode coupling 
is neglected <21-26>; numerical methods for including mode-
coupling effects are present areas of research <27-31>. The 
disadvantages of the normal-mode solution are that conventional 
procedures do not include nearfield effects (the exception is 
Stickler's work <32>, but even there the nearfield is evaluated 
with a procedure similar to the FFP approach) and there are 
restrictions on how one can treat shear propagation in the 
bottom. 

Both FFP and normal modes are solutions of Eqs. (5) and (6). 
The difference between the two is that the normal-mode method 
restricts the integration to horizontal wavenumbers in the inter-
val corresponding to the discrete portion of the spectrum defined 
by Ineq. (18). From Eq. (20), we see that the integrand has 
poles at n = kn • Hence, the function u in Eq. (10) and Xm of Eqs. 
(13) and (14) should have poles at the same locations. 

11 
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We shall demonstrate the inter-relationship between normal 
mode (NM) and fast field (FFP) solutions through a numerical 
example using the environment given in Fig. 5. The upward-
refracting sound-speed profile defines a surface duct of thickness 
1500 m. We consider propagation for source and receiver both a 
500 m depth, and for a frequency of 25 Hz. Two plots of the FFP 
integrand are shown in Fig. 6. The horizontal axis is the wave-
number (n) and the vertical axis is a normalized absolute value of 
the integrand amplitude. The vertical dashed line in Fig. 6a 
separates the discrete spectrum (defined by Ineq. 18) and the con-
tinuous spectrum. A blowup of the discrete spectrum is shown in 
Fig. 6b. In this particular case there are eleven propagating 
modes. The asterisks on the plot are the locations and the ampli-
tudes of the modes from a NM calculation <18). We see that the 
eigenvalues as calculated from the NM model (Table 1) coincide 
with the peaks (poles) in the FFP integrand, and also that the NM 
amplitudes correspond to the amplitudes of the peaks. (It turns 
out that this one-to-one correspondence in the amplitudes is 
because there is vi rtually no loss in this problem. Otherwise, 
the correspondence would not be as precise because loss shows up 
in the FFP calculation as widths in the peaks; nevertheless, for 
realistic losses the location of the poles would be the same). 

0.0 

500.0 

:r: 1000.0 
~ a.. w 
o 

1500.0 

2000.0 
1450 . 0 1500.0 1550.0 1600.0 

SOUND SPEED (MIS) 

Fig. 5 Sound-speed profile for test problem 
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TABLE 1 

MODAL EIGENVALUES 

Mode no. Wavenumber (m- 1 ) 

1 0.10423 
2 0.10386 
3 0.10356 
4 0.10328 
5 0.10297 
6 0.10261 
7 0.10221 
8 0.10182 
9 0.10142 

10 0.10102 · 
11 0.10064 

Figure 7 displays the amplitudes of the eleven modes plotted 
as a function of depth. The dashed line indicates the 
source/receiver . position. Notice the high excitation of the 
second mode and the low excitation of the third, sixth, and ninth 
modes, and notice the one-to-one correspondence with the FFP 
integrand shown in Fig. 6b. 
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W 
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Fig. 7 Mode-amplitude functions for test problem 
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This particular example shows the consistency between FFP and 
NM calculations. In the next secti.on we show the results 00 

transmission loss when discrete and discrete-pIus-continuous 
spectra are included and we compare them with calculations using 
the parabolic equation technique. 

3.3 Parabolic equation 

If the environment varies both in range and depth, the wave 
equation cannot be separated and therefore direct numerical 
integration is required. At present there are no practical 
methods to perform this direct integration of the three-
dimensional wave equation, which is a boundary-value problem. An 
alternative approach is to derive an approximate wave equation 
that lends itself to practical numerical solution. We now outline 
the derivation of such an approximation, . the Parabolic Equation 
(PE), which was introduced into underwater acoustics in 1973 by 
Tappert and Hardin <17,33>. 

The velocity potential is decomposed as follows: 

~ = ~(r,z) • S(r), (23) 

and we substitute ~ into Eq. (l) in a source-free region: 

That is, we will eventually end up with an equation that 
allows a "marching-in-range" solution and we will have to ini-
tialize the solution in some way (see below). We use the notation 
that 

(25) 

where n is an "index of refraction" equal to co/c, where Co is a 
reference speed. 

Equation (24) may be separated into two differential 
equations by setting the terms in the first bracket equal to -Sk~ 
and the terms in the second bracket equal to ~k2 , where k2 is o 0 
the separation constant. The functions S(r) and ~(r,z) then have 
to satisfy the following two equations: 

(26) 
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( 27) 

The solution of Eq. (26) is the zerot h order Hanke l funct i on, 
Ho(l)(kor), whose asymptotic form has been given in Sect. 3.1. 
Substituting the asymptotic form of the Hanke l f unction into Eq. 
(27) and making the paraxial approximati on 

a 2 1jJ « 2ko a1jJ -, 
arL ar 

(28) 

we obtain 

a 2 1jJ 
2iko ~+ k2 (n2 1) 1jJ 0, --+ -

az2 ar 0 
(29) 

which is the parabolic wave equation. 

The paraxial approximation is a na rrow-angle approximation. 
It implies that the rapid range dependence of Eq . (23) is included 
in S(r), while 1jJ is a function varying more slowly in r. An 
approximation to solving Eq. (29) i s to assume that n is not a 
function of the spatial variabl e s bu t is a constant. It is shown 
elsewhere <33,34> that the error introduced can be made 
arbitrarily small by using numer i cal methods. With rt a constant, 
we can fourier transform 1jJ with r espect to z, 

1jJ ( r,s) 
00 

J 2'1r -00 

1 -i sz 1jJ(r,z )e d z, (30) 

which together with Eq. (29) gives 

(31 ) 

Equation (31) is a first- orde r differential equation with constant 
coefficients and has the s ol u ti on 

(32) 

where the initial condition at r o must be specified. The field as 
a function of depth is the inverse trans f orm of Eq. (30) 
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1jJ(r,z) 

i~r 2 - --s 
2ko iszd • e s (33) 

e 

where ~r = r - roo 

By introduciIJ.&. the symbol f for the fourier transform from the z-
domain and ~-l as the inverse transform, Eq. (33) may be written 
as 

1jJ(r + ~r,z) = e 

i~r 2 
e- 2ko s .j{1jJ(r,z)}1. g4) 

Equation (34) is the so-called "split-step" marching solution 
of the parabolic equation. The fourier transforms are performed 
using an FFT. It is the solution for n constant, but the error 
introduced when n (profile and bathymetry) varies with range and 
depth can be made arbitrarily small by increasing the transform 
size and decreasing the range-step size <33,34>. 

The parabolic equation is not a boundary-value equation as we 
have numerically formulated it above. We can include the surface 
boundary condition by taking an anti-synunetric FFT a'bout the sea 
surface (z = 0). In practice this is performed by taking sine 
transforms. , The boundary conditions in the bottom are simulated 
by including the discontinuity in velocity in the sound-speed pro-
file. There are methods to also include the density discontinuity 
<33>. The radiation condition as z goes to infinity is simulated 
by requiring the field to exponentially tail off for large values 
of z beyond which there would not be any significant acoustic 
interaction. 

As mentioned above, the PE method requires an initial 
starting solution. Two methods have been used for describing a 
point source. The first method is to initialize the field with a 
set of normal modes descriptive of the point source in the 
starting environment. This would not include the continuous por-
tion of the spectrum (see Sect. 3.2), but for long-distance propa-
gation this approximation is adequate. A second approach has 
proved to be simpler and as effective. The point source is 
approximated by two gaussians that are anti-synunetric about the 
sea surface, thereby automatically including the pressure-release 
boundary condition at the surface. Both starting techniques have 
been used in this paper. We will see that by using the gaussian 
starting field part of the continuous spectrum is included in the 
PE solution. 
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Fig. 8 computed transmission losses for test problem 

In Sect. 3.2 we compared FFP and NM, using a simple environ-
ment (Fig. 5) as an example. We now look at transmission loss 
from the point of view of discrete, discrete-pIus-continuous, and 
PE, which does not obviously distinguish between regions in the 
spectrum. Figure 8 shows computed transmission loss from 0 to 6 
km, defined as TL = -20 log (p/PI), where PI is the pressure 
amplitude at 1 m distance from the source. Note that the PE 
tracks the FFP results in the nearfield indicating that at least 
part of the continuous portion of the spectrum is included in the 
PE calculation when using a gaussian starting field. We can also 
see how the three model results converge in the farfield; recall 
that the NM calculation does not include the full nearfield 
contributi.on. This particular example clearly illustrates the 
consistency and inter-relati onship between the three models. 

The advantages of the PE are that it handles a range-
dependent environment and gives the acoustic field in the entire 
water column without additional computational effort. Its disad-
vantages are that the procedure is not easily automated, and it is 
practical only for low-frequency propagation since computation 
times increase with frequency squared. Moreover, there is no 
straightforward way of handling shear propagation in the bottom. 
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The parabolic wave equation as given by Eq. (29) is based 00 

the paraxial approximation, and hence ooly propagation close to 
the horizontal (± 20°) is accurately handled. This angle limita-
tion is of minor importance for a wide class of ocean acoustics . 
problems. However in studying bottom-interacting propagation, the 
narrow-angle approximation becomes a serious limitatIon. It has 
recently been shown <35,36> that a slight modification to Eq. (20) 
can improve the angle coverage to ± 40°, yielding a modified para-
bolic equation, which, however, can no longer be solved by the 
split-step technique. Instead finite-difference solution tech-
niques have been applied <35,37>, and a working computer code is 
already available <38>. 

Numerical PE results given in this paper were all done with a 
model based 00 the standard parabolic equation technique as deli-
neated above. 

3.4 Ray theory 

This paper is concerned mainly with wave theory; neverthe-
less, for completeness, we include a brief description of ray 
theory. In this case we assume a solution of Eq. (1) (with right-
hand side equal to zero) as 

~ = ~(x,y,z) • eiS(x,y,z). (35) 

S(x,y,z) is a phase function that includes rapid variations as a 
function of range, and ~(x,y,z) is a more slowly varying envelope 
function in which geometrical spreading and loss mechanisms are 
included (in the PE, S contains the cylindrical spreading factor). 
Substituting Eq. (35) into the wave equation and separating real 
and imaginary parts, we obtain 

(36) 

We now make the geometrical-acoustics approximation 

(37) 

that is, the amplitude of the phase function varies slowly in 
range with respect to wavelength. Substituting Eq. (37) in Eq. 
(36) gives the eikonal equation, 

The trajectory of the rays is perpendicular to the surfaces of 
constant phase (wavefronts), S, and is expressed by 
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~£ ~ k~~ ! = Vk, (39) 

where £ is the arc length along a ray and X is the coordinate. It 
can be shown that the direction of the average energy flow is 
along these trajectories and the amplitude of the field at any 
point can be obtained from the density of these rays; formally, 
having solved for S, the amplitude is obtained from solving the 
second part of Eq. (36). We also mention here that corrected ray 
theory assumes that I/J is a function of frequency and an expansion 
in powers of inverse frequency is made, the leading term being the 
infinite-frequency solution with the additional terms being 
corrections from the infinite-frequency solution. 

The advantages of ray theory methods are that the com-
putations are rapid and that ray traces give a very physical pic-
ture of the acoustic paths. The disadvantage is that ray-theory 
is an infinite-frequency approximation and therefore does not 
include diffraction and other wave effects. This shortcoming also 
prevents ray theory from adequately describing significant bottom 
interaction and low-frequency ducted propagation. 

4 NUMERICAL MODELS: THEIR APPLICABILITY AND CONSISTENCY 

The four acoustic models described in this paper are a repre-
sentative subset of the many different propagation models in use 
in underwater acoustics today. The reason for developing new 
models is to obtain either more accurate solutions or faster solu-
tions to specific problems. Each model has its area of applicabi-
lity depending on the theoretical limitations in the model and 00 
the numerical efficiency of the computer code. 

A P P LIe A T ION S 
SHALLOW WATER DEEP WATER 

HF LF HF 
R I RD RI RD RI RD 

RI: RANGE-INDEPENDENT ENVIRONMENT 
RD : RANGE-DEPENDENT ENVIRONMENT 

Fig. 9 Applicability of four propagation models 
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To indicate with some precision the type of ocean environment 
for which a given model should be used, we have classified 
environments according to water depth, frequency, and environmen-
tal complexity, as shown in Fig. 9. Here shallow water indicates 
all water depths for which sound interacts significantly with the 
ocean bottom. The separation frequency of 500 Hz between the low-
and high-frequency regimes is arbitrarily chosen. 

When indicating the applicability of a propagation model to a 
given type of environment we take into consideration limitations 
in the underlying theory. Ray models are applicable mainly to 
high-frequency propagation. Only ray and PE models accurately 
handle a range-dependent environment. The normal-mode model 
treats range dependence in the adiabatic approximation. When 
indicating a model's practicality we consider exclusively the com-
putation time, which, of course, depends on the required accuracy. 
The computation time increases with both frequency and water depth 
for wave models (mode, FFP, PE), while the time is relatively 
independent of these parameters for the ray models. Likewise, 
computation time is proportional to the number of profiles in a 
range-dependent environment for both ray and mode models, while a 
PE model takes essentially the same time for range-dependent and 
range-independent environments. 

Full-box shading in Fig. 9 means that a model is applicable as 
well as practical. On the other hand, if a box is only partially 
shaded, it means that the model is applicable with caution 
(theoretical limitations), or that computation times are 
excessive. The above judgements are, of course, relative. For 
instance, in our first evaluation some columns contained no appli-
cable models. In these columns we therefore selected the model we 
felt was the most practical end denoted it by a fully shaded box. 
For a column where more than ene box is fully shaded, the choice 
of model will depend en the actual models en hand, the running 
time, input/output options available, etc. 

Since the various models are approximate solutions of the wave 
equation, it is valuable to check the validity of these approxima-
tions by doing an inter-model comparison for situations where all 
f our models are considered applicable. Returning to Fig. 9, we 
note that . all models should handle a range-independent shallow-
water environment at around 500 Hz, even though the mode and FFP 
models are designated most applicable (fastest). 

An example of a transmission loss computation for shallow 
water is given in Fig. 10. Here an isovelocity water column 
(1500 m/s) is 100 m deep and both source (sn) and receiver (RD) 
are at mid-depth. The bottom is considered homogeneous, with a 
sound speed of 1550 mis, a density of 1.2 g/cm3 , and an atte-
nuation of 1 dB/wavelength. We see from Fig. 10 that the three 
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Fig. 10 Inter-model comparison for shallow-water environment 

wave models (mode, FFP, PE) give virtually identical results both 
for level and for the multipath interference structure as a func-
tion of range. The ray model, though it cannot reproduce the 
interference pattern, does yield the same approximate level 
(dashed line). 

Many consistency tests of acoustic models have to be carried 
out in order to check the complex computer programs within the 
framework of the theoretical limitations particular to each model 
<39>. A positive outcome of an inter-model comparison helps us to 
gain confidence in particular numerical models. However, we 
should remember that the final check on an acoustic model is a 
comparison with experimental data. This demonstrates whether or 
not the model includes all the physics necessary for explaining 
and understanding sound propagation in a real ocean environment. 
A series of model/data comparisons can be found in <40-43>. 
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5 SPECIAL MODEL APPLICATIONS 

This section is dedicated to a study of some general wave-
propagation problems, for which illustrative numerical solutions 
can be obtained in a straightforward manner using one of the 
aforementioned ocean-acoustic models. We shall first address the 
problem of reflection of a gaussian beam of arbitrary width at a 
fluid/ solid interface near the Rayleigh angle, where a leaky sur-
face wave is excited causing a complex reflection pattern with 
beam splitting and beam displacement. This is a well-researched 
problem in both optics and acoustics, which we can easily solve 
with the fast-field program. Next we study propagation in range-
dependent waveguides using the parabolic equation technique. We 
shall address acoustic radiation from a duct into free space as 
well as mode coupling in tapered waveguides. 

5.1 Beam reflection at fluid/solid interface 

Bounded beam reflection near a critical angle is a subject 
that has received considerable attention in the past, both within 
the field of electromagnetics <44-48> and acoustics <49-55>. The 
phenomenon of interest has mainly been the displaced reflected 
beam, while the transmitted field has been studied in much less 
detail. There are basically two different wave phenomena that can 
account for the observed features of the reflected field. One is 
the excitation of a lateral wave at the interface when a beam of 
finite width is incident 00 the interface at grazing angles lower 
than the critical angle. The reflected field is then composed of 
contributions from both the specular reflection and the lateral 
wave field, causing an apparent lateral displacement of the 
reflected beam. In acoustics, the lateral wave phenomenon is 
associated with beam reflection at fluid/fluid interfaces. 

The second phenomenon is associated with the excitation of a 
leaky surface wave, which again complicates the reflection pattern 
when added to the specularly reflected field. This phenomenon 
occurs in acoustics when a bounded beam is incident on a 
fluid/solid interface just below the sh~ar critical angle. 

Various aspects of bounded beam physics have been studied 
theoretically as well as experimentally in the past 35 years. The 
lateral displacement of a reflected light beam was first observed 
by Goos and Hanchen <44>, and the phenomenon is therefore often 
referred to as the Goos-Hanchen effect. Several theoretical 
papers have addressed the beam reflection problem, for instance 
<45-49>, though always with some theoretical limitations, such as 
beamwidth large compared to the wavelength, lossless media, 
parallel beams of particular shape (gaussian), etc. 

We shall here apply the fast-field program (FFP) to numeri-
cally solve the reflection problem, and, as we shall see, this 
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technique treats the complete problem without any of the above 
limitations. We are going to study reflection at a fluid/solid 
interface, where the reflection phenomenon is associated with the 
excitation of a leaky surface wave (Rayleigh wave). However, the 
FFP model could as well be applied to reflection and transmission 
f or a solid plate in a liquid <52-53> or to the transmission 
through a fluid/fluid boundary <54-55>. 

The FFP model <13> provides an exact numerical solution for 
the acoustic field generated by a point source in a multilayered 
f luid/ solid environment (Sect. 3.1). Wave attenuation for both 
compressional and shear waves is included in the theory. We have 
modified the standard code to efficiently solve the system of 
equations for a number of point sources, equidistantly spaced and 
forming a vertical line array. The total acoustic field is found 
by superposition of the contributions from individual point sour-
ces. Hence, in this model the beam is generated by a vertical 
source array, and the beam direction is varied by appropriately 
phasing the source elements. By using a gaussian amplitude 
weighting across the array, a gaussian beam can be generated, pro-
pagating at any angle with respect to the horizontal. By varying 
the array distance from the interface and the number of source 
elements (half-wavelength spacing), a beam of arbitrary width can 
be generated, and we can obtain parallel, diverging, or converging 
beams, as we wish. Hence, the model is very general in concept, 
and should handle the reflection problem accurately for any beam-
width and for multilayered systems (plates) as well as the reflec-
tion and transmission at a single fluid/solid interface. The 
solution is for a plane geometry, i.e. a two-dimensional beam. 

We first consider computational results for a water/steel 
interface. Information on material parameters were taken from 
Breazeale et al <51>, and the FFP results will be compared with 
the theory of Bertoni and Tamir <47>, here named the BT theory. 
Results for reflection at the Rayleigh angle (59.35°) are given in 
Fig. 11 for two different beamwidths. 

Computations were done at 20 kHz, and the acoustic field is 
displayed as iso-loss contours given in arbitrary decibels (low 
values correspond to high intensity). We are considering incoming 
parallel gaussian beams, where the beamwidth is 10 and 64 wave-
lengths respectively. Note in Fig. 11a that the narrow beam, when 
reflected, is being split up in two beams separated by a "null 
strip". The beam to the left is displaced slightly backwards, 
while the rightmost beam is displaced forwards 18 wavelengths. 
This behavior is in complete agreement with the BT theory. With 
increasing beamwidth, the energy shifts to the forwardly displaced 
beam, and we end up (Fig. 11 b) with a single-beam reflection with 
a displacement of 50 wavelengths. The general behavior seen in 
these examples is predicted by Bertoni and Tamir, and the measured 
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Fig. 11 Beam reflection at water/steel interface at the 
Rayleigh angle. 
a) narrow beam of width lOA, 
b) broad beam of width 64A. 

displacement versus beamwidth gives data points that fall exactly 
on the displacement curve computed from the BT theory. 

A more challenging investigation was to explain the 
disagreement between theory (BT) and experimental results for alu-
minium oxide, as reported by Breazeale et al <51>. We proceed to 
calculate .the Rayleigh-wave properties for a water/aluminium-oxide 
interface using the material parameters given in <51>. For a 
water speed of 1490 m/ s, a frequency of 2 MHz, and with realistic 
attenuation coefficients in both media, we found the leaky surface 
wave to have a phase velocity of 5825.6 m/ s corresponding to an 
angle of 75.18°. The leakiness of the surface wave is given by 
the imaginary part of the wave number, which is calculated to be 
23.3 m-l. These Rayleigh-wave properties were determined from a 
separate computer code that finds the poles for the complex 
reflection coefficient. 
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The next step was to generate a parallel beam (plane wave 
front) with a half-width of lfi.6 mm as used in the experiment. 
The computed field at the Rayleigh angle is shown in Fig. 12. 
Again we see that the reflected beam is split in two, and we also 
notice the leading radiated field associated with the surface ' 
wave. In fact, full information about the Rayleigh wave can be 
read off directly from the rightmost contour lines (46 to 54 dB). 
They have a slope of 75.2° with the horizontal (the Rayleigh 
angle), and the field decay is 23.3 Nepers/m (the imaginary part 
of the wavenumber). We found that this property of the reflected 
field is independent of the angle of incidence of the incoming 
beam, and, as we shall see, it is a valid criterion for deter-
mining the Rayleigh-wave properties also for a diverging beam. 

The computed intensity distribution in the reflected beam is 
given in Fig. 13, normalized with the amplitude of the incoming 
beam measured at the interface (dotted profile at 75.2°). The 
vertical dashed line corresponds to the position of a ' specular 
reflection. The results are computed 40 cm above the interface, 
corresponding to a horizontal cut through the contour plot 
(outside the frame). Hence, this display differs slightly from 
the experimental results, which were obtained measuring perpen-
dicular to the beam direction. This difference is however minor 
at these angles. We see from Fig. l3 the expected behavior, i.e. 
a single specularly reflected beam when moving 1.5 to 2.0° away 
from the Rayleigh angle. We also notice that the interference 
null is strongest at the Rayleigh angle (75.2°) as predicted by 
the BT theory for parallel beams. Hence these results confirm 
that the Rayleigh angle for the chosen material parameters is 
75.2°. 

Fig. 12 
Reflection of parallel 
beam at water/aluminium-
oxide interface 
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Fig. 13 Reflectivity pattern versus grazing angle for parallel 
beam incident on a water/aluminium-oxide interface 
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We now consider a slightly diverging beam (curved wave front) 
as actually used in the experiment. The beamwidth is again 
16.6 mm, and the divergence measured at the 3 dB down-points is 
2.7 0 at the interface. Our results for the reflected field at the 
Rayleigh angle is given in Fig. 14. We notice that the reflected 
field is now much more complicated, with essentially 3 reflection 
peaks. However, the undisturbed leading edge of the radiated sur-
face wave exhibits the same properties as before, Le. the iso-
intensity contours have a slope of 7S.2 ° with the horizontal, and 
the field decay is 23.3 Nepers/m parallel to the interface. 

The computed field intensity 40 cm above the interface i s 
given in Fig. 15 as a function of the incoming beam angle. We 
notice the many interference lobes now present in the reflected 
beam. In this case the reflection pattern at the Rayleigh angle 
(75.2°) has no particular features, such ·as a pronounced inter-
ference null, that makes it possible to easily determine the 
Rayleigh angle. In fact, when searching for the strongest inter-
ference null, one finds this to occur at approximately 75.8° , 
which is very close to the angle (75.7°) designated the Rayleigh 
angle in the experiment <51>, using the above (wrong) criteri on . 
Hence, we may conclude from this set of curves, that an experimen-
tal verification of the Rayleigh angle can most easily be done by 
measuring the 'slope of the isoloss contours in the undisturbed 
leaky wave field as seen on the cont our plots. 

A detailed comparison between our theoretical result at 75.8 ° 
and the experimental result given in Ref. <51>, shows a clear 
improvement over the prediction obtained from the BT theory . 
However, some disagreement on peak levels still exists, which we 

Fig . 14 
Reflection of diverging 
beam at water/aluminium-
oxide interface 
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Fig. 15 Reflectivity pattern versus grazing angle for diverging 
beam incident on a water/aluminium-oxide interface 
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speculate could be due to inaccurate knowledge of the material 
parameters for aluminium oxide. 

The beam reflection calculations with the FFP model is an 
ongoing project. We are mainly interested in studying the reflec-
tion process for very narrow (focused) beams, where · the reflection 
process is strongly influenced by diffraction effects. 

5.2 Propagation from duct into free space 

The study of sound propagation in a range-dependent environ-
ment is a fascinating subject, to which we will devote the 
remainder of this paper. We have chosen to solve a series of 
relatively simple propagation situations suitable for the parabo-
lic equation technique. As pointed out in Sect. 3.3, the PE 
method is limited to propagation within ± 20 0 with respect to the 
horizontal, and back-scattering is neglected in the solution. The 
PE calculations have been done for a cylindrical geometry~ 

One of the simplest range-dependent problems in acoustics is 
the radiation of sound from a symmetric duct into free space. PE 
solutions to this problem are shown in Fig. 16. The duct is 100 m 
wide with a sound speed of 1500 mls and a density of 1 g/cm 3 • The 
infinitely thick duct wall has a speed of 1550 ml s. There is no 
density change in the problem, and material losses are neglected . 
At a frequency of 50 Hz, there are two propagation modes in the 
duct. 

Figure 16a shows the computed field from a source placed in 
the middle of the duct. In this case only the symmetric 1 st mode 
is excited, radiating symmetrically into free space beyond a range 
of 2 km. The initial modal field for the PE calculation was 
supplied by a normal-mode model. Next we moved the source to a 
depth of 27 m below the center of the duct, which gives equal 
excitation of the two modes. Figure 16b shows that the radiated 
field is now split up into two almost symmetric beams. We would 
expect the radiated field to be determined by the field distribu-
tion across the duct opening. This is confirmed in Fig. 16c, 
where the duct has been truncated at 1.5 km range; we now obtain 
an asymmetric radiation pattern with most of the energy being con-
tained in .the down-going beam. 

The above numerical results provide considerable physical 
insight into the duct radiation problem. The examples were chosen 
so as to facilitate a physical interpretation of the contour 
plots. However, more complex situations could easily be investi-
gated. 
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Fig. 16 Sound radiation from duct into free space 
a) one symmetric mode excited in duct, 
b) two modes excited in duct, 
c) as b) but for a shorter duct. 
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5.3 Up-slope propagation 

We now proceed to study propagation over sloping bottoms at a 
sufficiently low frequency that phenomena such as mode cutoff and 
mode conversion can be investigated in some detail. First we con- · 
sider up-slope propagation for the environment g{ven in Fig. 17. 
The water/bottom interface is indicated on the contour plot by the 
heavy line starting at 350 m depth and moving towards the surface 
beyond a range of 10 km. The bottom slope is 0.85°. The fre-
quency is 25 Hz and the source depth is 150 m. The water is taken 
to be isovelocity with a speed of 1500 mis, while the bottom is 
characterized by a speed of 1600 m/ s, a density of 1. 5 g/ cm3 , and 
an attenuation of 0.2 dB/wavelength. 

Before interpreting the contour plot, let us have a look at 
the simplified sketch in the upper part · of Fig. 17. Using the 
ray/mode analogy, a given mode can be associated with up- and 
down-going rays with a specific grazing angle corresponding to a 
given mode. As sound propagates up the slope, the graz'ing angle 
for that particular ray (mode) increases, and at a certain point 
in range the angle exceeds the critical angle at the bottom, 
meaning that the reflection loss becomes very large and that the 
ray essentially . leaves the water column and starts propagating in 
the bottom. The point in range where this happens corresponds to 
the cutoff depth for the equivalent mode. 
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Fig. 17 Up-slope propagation showing discrete mode cutoffs 

32 



SACLANTCEN SR-83 

To emphasize the main features in Fig. 17, we have chosen to 
display contour levels between 70 and 100 dB in 2 dB intervals. 
Thus high-intensity regions (loss < 70 dB) are given as blank 
areas within the wedge, while low-intensity regions (loss 
> 100 dB) are given as blank areas in the bottom. The PE solution 
was here ' started off by a gaussian initial field~ and there are 
four propagating modes. The high intensity in the bottom at short 
ranges « 10 km) corresponds to the radiation of "continuous 
modes" into the bottom. As sound propagates up the slope we see 
four well-defined beams in the bottom, me corresponding to each 
of the four modes. This phenomenon of energy leaking out of the 
propagation channel as discrete beams has been confirmed experi-
mentally <56>, and a detailed study of this phenomenon using the 
PE method has been reported elsewhere <57>. 

This particular example of mode coupling where discrete modes 
trapped in the water column couple into "continuous" modes propa-
gating in the bottom, has received much attenation recently; 
several theoretical papers <31> and <58-60> have appeared' offering 
solutions to the wedge-propagation problem. 

We now proceed to study the problem of mode coupling within 
the wedge itself. Strong coupling can be achieved either by 
increasing the 'bottom slope or by increasing the frequency. It is 
the latter caSte that will be considered here. Figure 18 shows PE 
calculations for a simple wedge problem. The initial water depth 
is 100 m and the bottom slope is 2°. The water is taken to be 
isovelocity with a speed of 1500 mis, while the bottom has a speed 
of 1550 ml s. There is no density change in the problem, and 
material losses are neglected. The source depth is SO m, and the 
initial field for the PE calculation was supplied by a normal-mode 
model. The two plots are for source frequencies of 50 and 500 Hz, 
respectively. In both cases, ooly the first mode was propagated 
up the slope. 

We notice in Fig. 18a that no mode coupling takes place at a 
frequency of 50 Hz. The contour lines are smooth, indicating that 
the local mode at range zero adapts to the changing water depth 
until it reaches the cutoff depth, where the energy radiates into 
the bottom. This is an example where propagation is well 
described by adiabatic mode theory <21-26>. 

Strong mode coupling occurs when we increase the frequency 
to sao Hz (Fig. 18b). The field within the wedge becomes compli-
cated, and so does the radiation pattern into the bottom. We have 
done no attempt to analyse this complex mode-coupling problem in 
detail, but the PE technique could certainly be used for such a 
study. 
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Fig. 18 Up-slope propagation over a constant 2° slope 
a) 50 Hz, no mode coupling, 
b) 500 Hz, strong mode coupling. 

5.4 Down-slope propagation 

a) 

b) 

We now consider the problem of down-slope propagation as 
illustrated in Fig. 19. The initial water depth is 50 m and the 
bottom slope is 5°. The water column is isovelocity with a speed 
of 1500 m/ s, while the bottom has a speed of 1600 m/ s. The den-
sity ratio between bottom and water is 1.5, and a wave attenuation 
of 0.5 dB/wavelength has been included in the bottom. The two 
contour plots are for source frequencies of 25 and 500 Hz, respec-
tively. The initial fields for the PE calculations were supplied 
by a normal-mode model, and, in both cases, ooly the first mode 
was propagated down the slope. 
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Fig. 19 Down-slope propagation over a constant 5° slope 
a) 25 HZ, no mode coupling, 
b) 500 Hz, strong mode coupling. 

Fig. 19a shows that some energy propagates straight into the 
bottom at short ranges (coupling into the continuous spectrum). 
However, beyond the nearfield, propagation within the wedge is 
clearly adiabatic with the cne propagating mode adapting well to 
the changing water depth. At range 20 km the energy is entirely 
contained in the local first mode, even though as many as 21 modes 
can exist in a water depth of 1800 m. 

By increasing the frequency to 500 Hz (Fig. 19b), 
coupling occurs within the wedge. At long ranges, 
ference nulls are present in the energy distribution 
indicating that the energy is now partitioned among a 
order modes. 
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Fig. 20 Down-slope propagation for: 
a) a 5° slope followed by a flat bottom, and 
b) a smoothly changing bottom slope. 

There are several ways to increase the degree of coupling 
between modes for !lown-slope situations. Bes i de s the increased 
coupling with frequency and slope angle, coupling can als o be 
caused by abrupt changes in bottom slope . This is shown i n 
Fig. 20a, which is the same environment as in Fig. 19a, except 
that the bottom now is flat beyond 5 km. The abrupt change in 
bottom slope at 5 km results in a compli cated contour pattern 
indicating interference between modes and, hence, the initial 
first mode has generated (or coupled into) highe r modes after the 
vertex. In this case as many as six modes can exist in the fla t 
part beyond 5 km. That mode coupling is associated with the sha rp 
change of the vertex is shown in Fig. 20b where we gradually go 
from a 50 slope to a flat bottom. We see that the propagating 
mode now adapts to the changing water depth exhibiting an 
"adiabatic" behavior. 
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6 SUMMARY AND CONCLUSIONS 

We have briefly presented an overview over the most commonly 
used propagation models in underwater acoustics pointed out their 
areas of applicability, and demonstrated their ability to accura-
tely des'cribe acoustic propagation in complicated ' ocean environ-
ments. It has also been shown that a good agreement between 
theory and experimental data can be obtained ooly by including 
such features as bottom layering, bottom rigidity (shear), scat-
tering at rough boundaries, range-varying environments, etc. 
Hence the full complexity of a real ocean environment must be con-
sidered in the numerical models for accurately predicting the pro-
pagation conditions in a given area for a broad range of source 
frequencies. Finally, the general applicability of the numerical 
models has been demonstrated by applying the models to some basic 
wave-propagation problems not tractable by .analytical methods. 
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Numerical . modelling of acoustic pulse propagation in stra-
tified solid media is often found to be impractical due to the 
comprehensive calculations involved. Here a new numerical model, 
of the fast field type, is presented. Instead, of using the 
Thomson-Haskell matrix method, as done in earlier models of the 
same type, the depth-separated wave equation is solved by a 
numerical nechnique very similar to that used in finite element 
programs. The speed improvement has been considerable, especially 
in cases with many sources and receivers. The model has been 
implemented on an FPS164 array processor and used for analysis of 
seismic pulse propagation in a shallow water environment and 
reflection of pulsed ultrasonic beams from a fluid-solid inter-
face. 

INTRODUCTION 

A number of numerical models are available for investigating 
sound propagation in layered media. Each model is based on a set 
of assumptions and approximations and dedicated to specific appli-
cations. In relation to underwater acoustics four types of models 
are of interest, known as ray, normal-mode, parabolic equation, 
and fast field models. Jensen <1> has reviewed and classified 
these models and here we will concentrate on models of the last 
type, the fast field programs (FFP). 

These models yield an exact solution to the depth-separated 
wave equation for horizontally stratified environments. Depending 
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on the geometry (plane or cylindrical) the field is decomposed 
into plane or conical waves. The field corresponding to each 
horizontal wavenumber is then found by matching of boundary con-
ditions at each interface, and the total field is found by super- · 
position. In the case of cylindrical geometry the superposition 
is given by a Hankel transform integral. By replacing the Hankel 
function with its large argument approximation, this is changed to 
a Fourier integral, which after truncation can be evaluated by 
means of a fast Fourier technique. This approximation of the 
Hankel transform was originally introduced by Marsh <2) and is 
usually called the fast field technique. 

The maj or part of the numerical effort is related to the 
solution of the depth-separated wave equation. DiNapoli <3) 
introduced an FFP-code that performed the solution very effi-
ciently by means of recurrence relations for the hypergeometric 
functions. However, his approach allows mly for fluid layers, 
and in such cases other models will often be more convenient, e.g. 
normal-mode models. 

The main advantage of FFP-models are their ability to treat 
problems involving solid layers <1>. The first model to include 
this feature was introduced by Kutschale <4). As shear properties 
are very important for sound propagation in shallow water <5), 
this model has been used extensively for such problems during the 
last decade. Kutschale solved the depth-separated wave equation 
using a Green's-function approach based on the Thomson-Haskell 
matrix method. However, this method allows for mly me source 
and receiver at a time, and even in such cases the computations 
are rather extensive, often the modelling of pulse propagation 
becomes impractical since this has to be carried out by means of 
Fourier synthesis involving many frequency components. 

Here a new FFP-code, called SAFARI, is introduced. Instead 
of using the Thomson-Haskell method, a system of linear equations 
in the unknown potentials is set up and solved at each horizontal 
wavenumber. When the layer series is gi ven, it is possible from 
the boundary conditions to determine a priori a mapping between 
the equations to be satisfied at each interface and a global set 
of equations. A significant number of wavenumber-independent 
expressions can then be evaluated once. The mapping technique is 
very similar to the me used in finite-element programs. 

The source contributions are mapped into the righthand side 
of the global equations, and there is no theoretical limit for the 
number of sources. 

The receiver depth is 
equations, and any number of 
with mly me solution. 

not included in the system of 
receivers can therefore be treated 
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Even with one source/receiver combination, the calculation 
speed has been improved by up to one order of magnitude. This 
gain in speed and performance has made the · FFP-techniQue a more 
realistic alternative to other numerical techniques, and in areas 
where this technique is the only possibility, the range of 
solvable problems has been increased considerably. 

In the following the model and its mathematical background is 
described, and two examples of its use are given. First it is 
used to clarify some of the basic properties of the slow seismic 
interface waves that can be observed in shallow water environ-
ments. Synthetic seismograms are produced and compared qualitati-
vely to experimental data. Then the model is used to determine 
the reflection of a pulsed beam from a water/aluminium-oxide 
interface. 

1 THE MATHEMATICAL MODEL 

The mathematical model is based on the assumption that the 
water column and the bottom consist of a series of range-
independent layers. All materials are considered to be homoge-
neous and isotropic elastic continua with Lame constants An and lln 
and density Pn • The subscript refers to layer number n. The 
damping mechanisms are assumed to be linear viscoelastic. 

A cylindrical coordinate system {r,e ,z} is introduced with 
the z-axis going through the source and being positive downwards 
(Fig. 1). The representation of the cylindrical displacement com-
ponents {u, v ,w} in terms of scalar potentials and the subsequent 
expression of these as Hankel transforms closely follows the pre-
sentation given by Schmidt and Krenk <6); hence, only an outline 
will be given here. If body forces are neglected, the di splace-
ment equation of motion will be satisfied if the displacement com-
ponents in layer n are expressed in terms of three scalar 
potentials {~n'~n,An} as 

u I n 
a~n 1 an a2An --+ ---+ 
ar r ae araz 

vi n 
1 a~n a~n 1 a2An (1) = ---- --+ ---r ae ar r aeaz 

win = a4>n _ (!.. L r az- r ar 
15 1 a 2 

) 
a;+~a62 An , 

where the potentials satisfy the wave equations: 
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(V2 _ a2 
) ~n ---- 0 

C2 at2 ( 2 ) 

Lo 

(V2 _ 1 a2 
('l'n,An) C2 dt2 ) 0, 

Tn 
(3) 

in which CL and ~ are the velocities of the compressional and 
shear waves, respectively: 

c2 An + 2).1n 
Ln Pn 

(4) 

C2 
).In 

Tn Pn 
(5) 

In the present case the field is asymmetric due to the pos i -
tioning of the source on the axis, and the angular displacement v 
vanishes everywhere. It is then clear from Eq. 1 that the poten-
tial 'l'n must be constant and can be excluded. 

In the following, only vibrations with angular frequency w 
will be considered; displacements, stresses and potentials can 
then be expressed in complex form with the common factor exp(iwt). 
This factor will not be included in the following. The 
viscoelastic damping can now be accounted for by allowing the Lame 
constant to be complex. After use of the Hankel transform on the 
wave equations, the following integral representations are 
obtained for the potentials: 

<XI { -zan(s) + zan ( s)} 
tn(r,z) J A-:-(s)e + A (s)e J o( rs) s ds (6 ) 

0 n n 

00 { -zen(s) + zen(s)} An(r,z) = J B-( s)e + B (s)e Jo(rs)s ds, (7) 
0 n n 

where 

J m is the Bessel function of the first kind and order m, 

A-, A+, B- and B+ are arbitrary functions in the horizontal wave-
n n n n 

number S. 
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an(s), en(s) are defined as 

(8) 

(9) 

The wavenumbers ho 
waves, respectively, are 

and kn f or the compressional and shear 
defined by 

w2Pn 

An+2~n 
(10) 

(11 ) 

If Eqs. 6 and 7 are inserted into Eq. 1, the following 
expressions are obtained for the particle displacements: 

-zen B+ zen} () + sB- e + s e s J o rs ds, (12) 
n n 

co 

u(r,z) I J {-s A- -zan 
- s A+ zan 

.= e e n 
0 n n 

+ en B-
-zen 

- en B+ e zen} s Jl(rs)ds. (13 ) e 
n n 

The stress components involved in the boundary conditions 
follow from Hooke's law: 

co 

I J { 2 2 -zan zan 
0zz(r,z) n = ~n (2s -k )(A~ e + A~ e ) 

o 
( -Zen B+ ezen )} + 2sen -B- e + 

n n 
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Q) 

°rz(r,z) In ~n J { 2sa n (A-
-zan 

- A+ e zan) e 
0 n n 

-(2s2-k2 )(B-
-zen zen 

ds. e + B+ e )} s J 1(rs) 
n n n (IS) 

In the case of a fluid layer the shear stiffness ~n vanishes, 
and only the potential ~n is involved. The displacements follow 
directly from Eqs. 12 and 13 by setting B- and B+ to zero. The 
shear stress is identically zero, whereas Eq. 14 has to be 
replaced by 

Q) 

-zan 
-Anh2 J {A- e + zan} + A e s Jo(rs)ds. 

n (16) n o 

The source is assumed to be in layer number m at depth zs. 
In the absence of boundaries, the field produced in layer m would 
be <:7): 

00 -I z-zs 1 am iSw J fIls(r,z) -- e S Jo(rs)ds 
41T am 

, 
0 

(I 7) 

As(r,z) - 0 , (I8) 

where Sw is the source strength. If Eq. 17 is inserted into 
Eq. 1, expressions similar to Eqs. 12 and 13 are obtained for the 
displacements, and again Hooke's law yields expressions like Eqs. 
14 and IS for the stresses involved in the boundary conditions. 

For each value of the range, r, the boundary conditions must 
be satisfied. In the upper and lower half-spaces the arbitrary 
functions, with superscript - and + respectively, must vanish due 
to the radiation condition. At each interface, w and ozz must be 
continuous, and at all solid/liquid interfaces the shear stresses 
must vanish. At solidI solid interfaces, w, u, 0 zz and 0rz must 
be continuous. This yields a linear system of equations in the 
arbitrary functions, to be satisfied at each horizontal 
wavenumber: 

(19) 

The vector Aj (s) contains all the non-vanishing arbitrary 
functions, eli (s) is the coefficient matrix, and Ri (s) contains 
the contributIons from the source. When the arbitrary functions 
are found, the field parameters at any depth and range can be 
obtained from the Hankel transforms (Eqs. 12 to 16) plus the 
source contributions (if the source and receiver are in the same 
layer). 
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An analytical solution of Eq. 19 is of course possible, 
leading to closed-form expressions for the arbitrary functions; 
but for more than a few layers this procedure would be incon-
venient. Further, the Hankel transforms do not lead to closed-
form solutions, but need numerical evaluation. Thus the most 
general way to proceed is to create a numerical model based 
directly en the system of equations (Eq. 19). Such a model is 
described in the next chapter. 

2 THE NUMERICAL ~:mEL SAFARI 

The numerical evaluation of the Hankel transform necessitates 
a truncation and a discretization in the horizontal wavenumber s. 
As can be observed from Eqs. 8 and 17, the source terms decay expo-
nentially for s going towards infinity. ~s the source terms form 
the righthand side of Eq. 19 the arbitrary functions will behave in 
the same way. It is therefore possible to truncate the integration 
interval in accordance with any accuracy demands. The fast-field 
technique introduced by Marsh <:1) can then be used to evaluate the 
Hankel transforms. 

The Bessel functions are expressed in terms of Hankel func-
tions 

V2 (H(1)(rs) + H(2)(rs») (20) 
m m 

and each integral is split into two. As enly outgoing waves are 
considered, the integrals involving H(1)(rs) are neglected, and m 

H(2)(rs) is replaced by its asymptotic form m 

I 2 . -i [rs-( m+.!..) !..] 
H(2)(rs) ~ (-) e 2 2 

m rs+= nrs 
(21) 

The integration over the truncated interval can now be per-
formed by means of the fast Fourier transform, and the actual field 
parameter is found at a number of ranges equal to the number of 
discrete wavenumbers considered. 

DiNapoli and Deavenport 0) have compared Marsh's method to 
the technique introduced by Tsang, Brown, Kiang and Simmons <8), 
which does not use the asymptotic form of the Hankel function. 
Significant differences were found enly for very short ranges. 

The kernels in the Hankel transforms are now needed enly for 
a limited number of discrete values of s. Kutschale <4) used a 
Green's-function approach based on the Thomson-Haskell matrix 
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method. However, his approach allows for only one source/receiver 
combination at a time. 

In the SAFARI model Eq. 19 is set up and solved directly. 
When the layer se ries is given, it is possible to determine !!.-
priori a mapping between the equations to be satisfied at each 
interface and the global system of equations, Eq. 19. The unknown 
arbitrary functions are mapped into the vector Aj, the coefficients 
into the matrix Cij, and the source contributions into the right 
side Rj of Eq. 19. If more than one source is present, the contri-
butions are simply added. 

The receiver depth is not included in Eq. 19, thus yielding 
the possibility of determining the field at any depth from Eqs. 12 
to 16 with only me solution of Eq. 19. 

The mapping between the local and the global system of 
equations is very similar to the technique used in finite element 
programs. By using this technique the computer code can become 
very efficient since a significant number of calculations can be 
done only once. Furthermore, the code will be straightf orward to 
vectorize, thus making it well suited for implementation on an 
array processor. 

The solution of Eq. 19 is performed by means of gaussian eli-
mination with partial pivoting. 

In cases with ooly one source/receiver combination, SAFARI is 
found to be an order of magnitude faster than Kutschale's model. 
In cases with several sources or receivers the speed gain is of 
course much bigger. 

This surprisingly high speed gain is believed to be due to the 
mapping technique, which partly ensures that a large amount of 
unnecessary calculation is avoided, and partly makes efficient 
programming possible. 

The implementation of SAFARI 00 an FPS164 attached processor 
has given at least me order of magnitude further, and a number of 
problems, which were impractical to treat numerically, can now be 
solved with an acceptable amount of computation time. A couple of 
examples are given in the following. 

3 MODELLING OF SEISMIC INTERFACE WAVES 

The importance of the shear properties of the sea-bed for 
acoustic wave propagation in shallow water is well established <5>. 
Unfortunately the shear parameters are very difficult to isolate 
experimentally. The shear parameters are, however, indirectly pre-
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Fig. 1 Stratified shallow water environment 

sent through the properties of the measurable seismic interface 
waves, and much effort has been put into an experimental investiga-
tion of these <9>, <10>. 

Since no applicable inverse models are available the shear 
properties are determined by "trial-and-error" - methods using 
numerical propagation models (10), (11). Usually several parame-
ters are unknown and, since the calculations needed for each com-
bination are rather comprehensive, the determination of the shear 
parameters in this way can become very expensive in terms of calcu-
lation time. It is therefore important a priori to be able to 
determine approximate values directly from the experimental data. 

With this in view, the SAFARI model has been used to clarify 
some of the propagation characteristics of the seismic interface 
waves for different shallow water environments. A detailed 
description of the investigation is given in <12), and only a 
couple of examples will be given here. 

In order not to obscure the basic principles, a simple 
2-layered model was chosen for the sea-bed, Fig. 1. Below the 
water column of depth dw, a single sediment layer of thickness ds 
covers a half-space of rock or rock-like material. The bottom 
materials used in the examples and their assumed properties are 
listed in Table 1. The complex Lame constants are not given expli-
citly in the table. Instead the compressional and shear velocities 
are shown, together with their respective dampings in dB per wave-
length. 
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Densltv Ha t t!rla l p(g/cm~) 

Wate r 1.0 
Silt 1.8 
Sand 2.0 
Limes t one 2.2 
Ba sa lt 2 . 6 

TABLE 1 

tlATERI AL PROPERTIES 

~~i.ona l Shear C"m~ress ion a 1 
Speed Speed attenuation 

CL (m/s) CT(m/s) YL ( dB/A) 

1500 - -
1600 200 1.0 
1800 600 0.7 
2250 1000 0.4 
5250 2500 0.2 

SACLANTCEN SR-83 

Sh~ar 

attenua t ion 
yT(dB/ A) 

-
2 . 0 
\.5 
\.0 
0 . 5 

The water depth is chosen to be 100 m, and a silt layer of 
50 m thickness is combined with either a limestone or a basalt sub-
bot tom. 

A point source is placed in the middle of the water column at 
50 m depth, and the vertical particle velocity at the top of the 
sediment layer is calculated using a pressure amplitude of 1 Pa at 
a distance of 1 m from the source. Only frequencies below and 
around the cut-off frequency for the first water mode are con-
sidered, which in the present case means frequencies below 10 Hz. 
In the first test case a 50 m silt sedi ment layer covers a 
limestone sub-bottom. Figure 2 shows the modulus of the integrand 
in the Hankel transform of the vertical ve l ocity at the top of the 
sediment layer for a frequency of 1. 5 Hz. No water modes are pre-
sent at this frequency, but two mode-like peaks can be observed at 
wavenumbers corresponding to phase velocities of 300 m/s (peak '1 ') 
and 840m/s (peak '2'). These peaks correspond to interface waves, 
and will be denoted the first and second i nter f ace mode, respec-
tively. The first interface mode i s best excited (highest 
amplitude), but it also has the highest damping (widest peak). 

..... .., 
'0 

o z 
< 
II: 
C!) 
W 
I-;g; 

40~--------------------------------------' 

60 

f - 1.5 Hz 
so- 50 m 
RO-100 m 

80 
HORIZONTAL WAVENUMBER (163 m-1

) 

Fig. 2 Hankel transform o f v ertical parti cle veloci ty at 1.5 Hz. 
50 m s i lt on limestone. 
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Fig. 3 Vertical particle velocity as function of range at 1.5 Hz. 
50 m silt on limestone. 

Figure 3 shows the corresponding vertical particle velocities at 
ranges up to SO km. Due to the high damping of the first interface 
mode, its contribution is significant only for ranges shorter than 
2 km, beyond which the second interface mode becomes dominant. 

If the source is not of stat ionary type, but transient, the 
different velocities of the two interface modes will yield dif-
ferent arrival times, and the presence of the first interface mode 
will be measurable also at larger ranges. The phase and group 
velociti.es of the two interface modes have been calculated in the 
frequency band of interest, 0.1 to 10 Hz, with a resolution of 
0.1 Hz. The results are shown in Fig. 4 together with an excita-
tion measure, which somewhat arbitrarily has been chosen to be the 
particle velocity at 10 km range. 

I 

(/) 1000 L> 2nd interface -200 ,..... 
II) 

w ..... 
t= : I mode E 
C3 ...... ~ 

.... 
800 ..... \'] \./ ...... -220 ..... 

0 ... ..... 
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> \l ~ >-a. . 600 :: ;1 -240 ~ ::>,..... C3 O~ J\ a:E 0 
(!) ..... 400 -260 -' w 
.'0 > 

C W <U 1st interface \ " -' 
w 200 -280 () mode . -.", .... - t= (/) ................... 
~ 

....... a: 
J: ~ a. 0 -300 a. 
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Fig. 4 Excitation and dispersion curves . 50 m silt on limestone. 
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There is ooly ooe interface mode at frequencies below 1 Hz. 
It is slightly dispersive, with phase and group velocities 
approaching those of a Rayleigh wave on a limestone half-space. At 
1 Hz a very sharp transition zone appears, where the velocities 
drop dramatically to values approaching those of a Scholte wave at · 
a water/silt interface. At 1.8 Hz the group velocity reaches a 
minimum of 100 mis, i.e. half the shear speed in silt. The second 
interface mode has a sharp cut-off at the transition frequency, and 
after a distinct minimum of the group velocity it appears as a 
logical continuation of the low-frequency part of the first inter-
face mode. Above 2 Hz the excitation (solid line) of the second 
interface mode decreases due to the increased distance in terms of 
wavelengths of the source from the silt/limestone interface, along 
which the second interface mode propagates. The sharp peak on the 
excitation curve around 4.5 Hz is the first propagating water 
mode. 

The existence of mode transition zones is well known from the 
theory of vibration of elastic plates, Mindlin <13>, where they 
appear near the thickness-shear frequencies. These are the fre-
quencies at which an infinite elastic plate can perform free shear 
vibrations with vanishing vertical displacements. Now consider the 
silt layer as an infinite elastic plate in welded contact with an 
infinite rigid · half-space. The first thickness-shear frequency 
would then correspond to that of a free silt plate of the double 
thickness, Mindlin <13>: 

CT fTS = 
4dS 

(22) 

where CT is the shear velocity and dS is the thickness of the 
layer. If the parameters for silt are applied to Eq. 22, we obtain 
f TS equal to 1 Hz, which is very close to the observed transition 
frequency in Fig. 4. 

Since the transition frequency can be observed in experimental 
results, its correlation with the thickness-shear frequency could 
yield a direct IOOthod of determining the shear-wave velocity in a 
single sediment layer overlying a rigid half-space. 

To summarize the general propagation characteristics for this 
test case (Fig. 4), the computed particle velocity at 10 km range 
is entirely associated with the first interface mode below the 
transition frequency (1 Hz). This interface mode is strongly 
related to a Rayleigh wave 00 a limestone half-space below 1 Hz, 
while it becomes an interface wave connected with the water/silt 
interface at frequencies above 1 Hz. In this frequency regime the 
second interface mode appears, and it is mainly related to the 
silt/limestone interface. Finally, the first water-borne mode 
appears at around 4.5 Hz. 
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Fig. 5 Excitation and dispersion curves. 50 m silt on basalt. 

A silt layer 00 basalt was also studied in order to analyze 
the effect of different sub-bottom materials. In this case 
(Fig. 5) the low-frequency part of the first interface mode is 
excited only slightly, but the transition zone can again be 
observed near 'the thickness-shear frequency of 1 Hz. Above 1 Hz 
the dispersion curves are very similar to those obtained earlier 
for a sub-bottom of limestone (Fig. 4). 

Synthetic seismograms have been produced for the two test 
cases in order to illustrate the time-domain effect of the features 
described above. The source is assumed to be half a sine wave of 
1.5 Hz sent through an ideal 0.5 to 3.2 Hz band-pass filter. This 
frequency range has been chosen as it contains frequencies 00 both 
sides of the transition frequency for a silt-sediment layer of SO m 
thickness. The transfer functions were calculated to a resolution 
of 0.01 Hz and multiplied by the spectrum of the source. The time 
series were then created by means of the fast-Fourier transform at 
ranges of 1, 2, 3, 4 and 5 km. 

Figure 6 shows the result for test case 1, i.e. a SO m silt 
layer on a limestone half-space. The first weak arrival 
corresponds to a compressional wave in the limestone, whereas the 
first significant arrival corresponds to the Rayleigh wave velocity 
of the limestone (900 m/s). This arrival consists of the low-
frequency parts of the first and second interface modes. A clear 
dispersion can be observed corresponding to the distinct minimum in 
the group velocity of the second interface mode in Fig. 4. The 
slow highly damped wave corresponding to the first interface mode 
above the transition frequency propagates with group velocities 
between 100 and 180 ml s, again in good agreement with Fig. 4. At 
ranges greater than 4 km this arrival has negligible amplitude. 
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Stacked synthetic s eismograms . 
50 m silt on basal t. 

As described above, the low-frequency part of the first inter-
f ace mode will not be significantly excited if the sub- bottom is 
basalt. The maximum excitation at 10 km range lies at 2.5 Hz 
(Fig. 5) and is due to a strong excitation of the second mode. 
These properties are also reflected in the synthetic seismograms 
(Fig. 7). The fastest arrival, apart from the weak compressional 
wave, has its maj or frequency content above 2 Hz and corresponds 
mainly to the high-frequency end of the second inter face mode. The 
severe dispersion of the corresponding arrival in Fi g . 6 is not 
present here, and the slow part of the first interface mode is well 
separated, travelling at group velocities between 100 and 200 m/s. 
The synthetic seismograms in Figs. 6 and 7 are, at least qualitati-
vely, very simi lar to those observed during experiments, Fig. 8 
<15>. 

With 4096 sample points in the wavenumber space the calcula-
tion time on an FPS164 array processor, was 9 secnds f or each fre-
q uency or 40 minutes in total for the synthetic se i smograms in 
Figs. 6 or 7. 
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TIME (5) 
Fig. 8 Stacked experimental seismograms, <15>. 

4 REFLECTION OF A PULSED BEAM AT A FLUID/SOLID INTERFACE 

As mentioned above, the solution technique used in SAFARI 
yields the possibility of treating problems in which many sources 
and receivers are involved. 

Jensen (I>, used the model to treat the problem of reflection 
of narrow ultrasonic beams at a water/aluminium-oxide interface at 
grazing angles near the Rayleigh angle, i. e. the angle where a 
leaky interface wave is excited. A monochromatic analysis was per-
formed in order to clarify the influence of beam divergence on the 
reflection pattern, and excellent agreement was obtained with both 
experimental and theoretical results reported in the literature. 
In addition, some apparent discrepancies between experimental and 
theoretical results were resolved. 

One of the results from <1> is shown in Fig. 9. A parallel 
gaussian beam is generated by a linear vertical source-array of 649 
elements, spaced half a wavelength apart. The mid-point of the 
array is placed 40 cm above the interface, the frequency is 2 MHz, 
and the grazing angle of the beam is 75.2°, corresponding to the 
Rayleigh angle for water/aluminium-oxide. The splitting of the 
reflected beam is easily observed. The specularly reflected beam 
and the beam caused by the leaky interface wave are separated by a 
strip of low intensity. 
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Fig. 9 
Reflection of a 
2 MHz beam from 
a water/aluminum-
oxide interface 
at the Rayleigh 
angle. 

As pointed out by Bertoni and Tamir <14> this zero-strip is 
due to destructive interference between the two parts of the 
reflected field '. If the surfaces of equal phase are plane and per-
pendicular to the direction of propagation, which is the case for 
parallel beams, the two reflected beams thus have to be 180 0 out of 
phase. 

This feature can of course be demonstrated by making a cut 
perpendicular to the propagation direction, but if the continuous 
beam is replaced by a pulsed beam, the phase shift will yield an 
amplitude inversion of the pulse in the two beams, independent of 
the position of the receivers within the beams. Furthermore, a 
pulse calculation will yield information 00 arrival times for the 
pulse at different receivers. 

To demonstrate this the pulse version of SAFARI was used to 
calculate the ,received signals at five different receivers, all 
situated 20 cm above the interface as indicated in Fig. 9. 

As pulse calculations in SAFARI are performed by means of 
discrete Fourier synthesis, it is very important to choose the time 
window correctly in order to avoid time-domain aliasing. 

The approximate arrival times were therefore determined using 
a narrow-banded source pulse (1.8 to 2.2 MHz). The time window was 
chosen to be 0 to 1 ms, yielding frequency steps of 1 kHz. The 
calculated time series for the five receivers are shown in Fig. 10. 
The vertical scale is arbitrary, but is the same for all five 
receivers. 
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Fig. 10 
Received narrow-band pulses 
at receivers I-V. 

The pulse arrives at t he reference receiver (I) at t - 140 ~s. 
As could be expected from Fig. 9, no significant arrivals appear at 
receiver II, whereas the ref l ected pulses arrive at the three last 
receivers at times between 410 and 440 ~s approximately. 

A closer analysis is now possible using time windows of 125 ~s 
width. In order to obtain short pulses, the bandwidth is increased 
to 1.5 MHz to 3.0 MHz. The results are shown for receiver I, III 
and IV in Fig. 11. The time scale shows the time relative to the 
expected arrival times. These are determined by geometrical means. 
A plane wave of grazing angle 75.2 0 that passes the reference 
receiver I at t = 139.30 ~s will be reflected and pass receiver III 
at t = 416.00 ~s. The calculated pulse at this receiver is seen to 
correspond exactly to this behaviour; the specularly reflected beam 
has no phase shift. The loss in amplitude is due to the fact that 
some of the energy is transferred into the leaky Rayleigh wave. 
The expected arriva l at receiver IV is determined in a slightly 
different way. A ray at a grazing angle of 75.2 0 is assumed to 
pass the reference receiver at t = 139.30 ~s. When it reaches the 
interface it travels at the speed of the Rayleigh wave 
(5825.55 m/s) along the i nte r face, and finally it travels upwards 
at angle of 75.2 0 to receiver IV. The arrival time determined by 
these assumptions is 424 .60 ~s, aga i n in excellent agreement with 
the numerical result in Fig. 11. The 180 0 phase shift is easily 
observed, thus verifying the explanation for the zero-strip given 
in <14). 

59 



RECEIVER I 

to' 139.30 ps 

RECI'IVER III 

to' 416.00}Js 

RECEIVER IV 

to • 424.60 )'9 

SACLANTCEN SR-83 

~~"-""J 

-~ -3 -2 - I 0 I 2 3 ~ 

t-tO(}JS)-

Fig. 11 Arrival of broad-band pulses at receivers I, III and IV 
related to expected arrival time t . 

o 

With 512 sampling points in the wavenumber space, the calcula-
tion time on the FPS164 was 8 seconds for each frequency, in total 
40 minutes for Figs. 10 and 25 minutes for Fig. 11. 

CONCLUSIONS 

A new fast field program, SAFARI, has been developed. The 
program is meant for modelling sound and stress wave propagation in 
horizontally stratified fluid and solid media. By introducing a 
more efficient solution technique, the computational speed has been 
improved by an order of magnitude, in some cases even more, com-
pared with earlier models of the same type. Furthermore , the 
SAFARI model is capable of treating several sources and receivers 
with only one solution of the wave equation, thus making it 
feasible to treat problems, in which the field is generated by ver-
tical source arrays. 

The model is basically monochromatic, but the increase in 
speed, together with the fact that the model is well suited for 
implementation on an array processor, has yielded the possibility 
of treating pulse propagation by means of Fourier synthesis with 
limited demands on computation time. This has been demonstrated by 
a couple of examples, but the range of problems that could be 
treated is of course much wider. 
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