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DETERMINISTIC PROPAGATION MODELLING I: FUNDAMENTAL PRINCIPLES 

W.A. Kuperman and F.B. Jensen 

NATO SACLANT ASW Research Centre, La Spez i a, Italy 

ABSTRACT The physics of sound p r opagat i on in the ocean is 
briefly reviewed. The wave equation is presented and a set of 
solutions under a variety of approximations are discussed . The 
consistency among these solutions is illustrated. 

INTRODUCTION 

This and the next papers [1,2] form a brief i ntroduct.ion t.O 
ocean acoustic mqdelling. Here we present a basic set of deter-
ministic acoustic models . In the following paper we use 
computer versions of these acoust ic models to provide a deeper 
insight into the physical processes that govern sound propaga-
tion in the ocean. The third paper discusses the additional 
complication of the ocean being a stochastic medium. 

I. SOUND PROPAGATION IN THE OCEAN 

The goal of ocean acoustic modell i ng is to descr i be sound pro-
pagation phenomena in the ocean quantitatively. To clarify the 
complexity of the modell i ng problem, let us briefly review the 
environmental acoustics of the ocean . Figure 1 is a schematic of 
some propagation paths in the ocean; we show two possible loca-
tions of sources of sound on the left and sound is propagating 
to the right. The two dashed lines are sound-speed profiles 
that vary with both depth and range. Lines A, B, C, and D 
represent four possible propagation paths. The shapes of the 
paths are determined by the location of the source and the 
sonnd-speed structure over the extent of the propagation. 
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Representation of sound propagation in the ocean 

Path A from the shallow source is "surface-duct" propagation, 
because the sound-speed profile is such that the sound is 
trapped near the surface of the ocean. Paths B, C, and Dare 
from the deeper source. Ray B, leaving the source at a small 
angle from the horizontal, will tend to propagate in the "deep 
sound channel" without interacting with the boundaries (surface 
and bottom) of the ocean . At slightly steeper angles (path C) 
we have "convergence zone" propagation, which is a spatially 
periodiC phenomenon of zones of high intensity near the surface. 
Here the path interacts with the ocean surface but not with the 
bottom. Path D is the "bottom-bounce path", which has a shorter 
cycle period than the convergence zone path. The right-band 
side of Fig. 1 depicts propagation on the continental shelf 
(shallow waters) where a complicated bottom structure combined 
with variable sound-speed profiles result in rather complicated 
propagation conditions not always suited for a simplistic ray 
picture representation. 

A consistent mathematical model must contain the physics that 
govern all of these paths of propagation. Here we will state 
the mathematical model generally accepted to describe determin-
istic sound propagation in the ocean. We will then present 
various solutions and approximations that are themselves often 
referred to as acoustic models. Greater detail will be found in 
[3 to 11]. 
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II. LOSS MECHANISMS 

Our ability to effectively model acoustic propagation in the 
ocean is aided by studying the loss mechanisms associated with 
ocean sound propagation: aside from geometric spreading there 
is volume attenuation loss, bottom loss, and surface and bottom 
sca ttering loss. 

Volume attenuation increases with increasing frequency. Return-
ing to Fig. l, the loss most associated with path B will in 
general be volume attenuation, because this path does not 
involve interaction with the boundaries . Since there is very 
little attenuation at low frequencies, deep-sound-channel propa-
gation has been observed to distances of many thousands of kilo-
metres. 

When sound interacts with the bottom, the nature of the bottom 
becomes important . Figure 2a depicts simple bottom loss curves 
with zero dB loss indicating perfect reflection. For a "non-
lossy" bottom we still get severe loss above a certain critical 
angle e , which results in loss in the water column due to 
transmis~ion into the bottom. However, for the "lossy" (more 
realistic) bottom we never get perfect reflection, even though 
the curves look s imila r. Pa th D in Fig. l, the bot tom-bounce 
path, often corresponds to angles near or above the critical 
angle; therefore after a few bounces, it will be highly 
attenuated. On the other hand, for shallower angles, many more 
bounces are possible; hence in shallow water (path E) most of 
the energy that propagates is close to the horizontal. In 
reality, much of the ocean bottom is layered and bottom loss 
then becomes a complicated function of frequency and grazing 
angle. Figure 2b displays some model results of loss contours 
of a layered bottom; the more familiar loss vs grazing angle 
curves for a single frequency is obtained from a vertical cut 
through the loss contours. For example, at low frequencies Fig. 
2b indicates a critical angle of about 18° whereas at high fre-
quencies we do not see a critical angle. 

Surface and bottom scattering loss is discussed in [2] . 

III. THE MATHEMATICAL MODEL 

The mathematical model we use for sound propagation in the ocean 
is the wave equation (with its associated boundary conditions) 
for a harmonic point source with time dependence exp(-iwt) 

V' 2<p (X,y,Z)+[ w ] 2<p (X,y, Z) = - 6 (x-x ) 6 (Y-Y ) 6 (z-z) (1) 
( ) 

0 0 0 c x,y,z 
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At allY point (x,y,z) in the medium the velocity potential <P 
satisfies Eq. 1 where c(x,y,z) is the sound speed of the medium 
and 0 is the Dirac delta function ; hence the right-hand side of 
Eq. 1 describes a point source at the position (x ,y ,z ). 
Boundary conditions can be derived by requiring contPnuPtyOof 
such physical quantities as particle veloci ty and pressure [4]: 

v. 
1 

p 

a<j> - ax. 
1 

- i wp<j> 

X. 
1 

x,y, or z . (2) 

(3) 

For the boundary conditions we be gin with the ocean surface. The 
density of air is negligible compared with that of water; hence 
the pressure must vanish ("pressure-release surface") at the 
ocean surface. Thus, from Eq. 3, <P vanishes at the ocean 
surface. At a boundary between two media such as the ocean and 
the ocean bottom, the balanc i ng of forces at the interface 
requires that both the normal particle velocity and the sound 
press ure be conti nuous across the boundary; hence, the right-
hand sides of both Eqs. 2 and 3 must be continuous across the 
boundary. Of course these boundary conditions are more compli-
ca ted for elas t ic media, which also support shear waves. 

IV. ACOUSTIC MODELS 

Here we discuss the four acoustic model s displayed in Fig. 3. 

Ray theory is a high-frequency approximation to solving Eq. 1. 
A solution of the fo rm 

<h - G( ) j S( x ,y,z) 
'!' - x,y,z e (4) 

is inserted i nto Eq. 1 and we assume that G does not change much 
within an acoustic wavelength (high-frequency approximation or 

RAY 

high - frequency 
app roximation 

Fig. 3 

r ange -i. ndependent 
..... ave theo ry 

Four acoustic mode l s 

range -d e pe nd e nt 
wave theo ry 

PAR ABOLl C EQ. 

... 



.. 

DETERMINISTIC PROPAGATION MODELLING I 129 

geometrical-acoustics approximation). We must eventually solve 
t he Eikonal equation [4], which leads to the ray equations. We 
give an example of a solution below and in the next paper [1]. 

Range-Independent Wave Theory solves the wave equation exactly 
when the ocean envi ronment does not change in range (in the 
cylindrical coordinate r as indicated in Fig. 1) . One of many 
possible der i vations of this solution technique is to Fourier 
decompose the acouslic field into an i nfinite set of horizontal 
wa ves : 

1 (5) 
( 21T) 2 

where, from Eq. 1, we find that u(~,z) satisfies the equation 

d2u W 
+ [ k 2 (z) -n 2J u = - 8 (z- zo) ; k = c . 

dz 2 
(6) 

It turns out [12] that after further manipulation, Eq . 5 can be 
effectively evaluated using an FFT; however, because of the 
parameter ~, Eq . 6 must be numerically solvp~ for many value s of 
'1. This direct numerical solution is the Fast Field Program 
method (FFP). 

Rather than directly solve Eq. 6 we can make a "normal -mode 
expansion" solution of Eq. 6; let u = L a u (z), where the u IS 

are the solution of the eigenvalue (k ) equa£t.fon: n 

d 2 u 
n = 0 

n 

(7) 

satisfying the boundary conditlons di scusserl in Section III. 
After some considerable ma nipul ation and integration (of Eq. 5), 
the solution to the wave equation hecomes [13]: 

i p (z ) u (z )u ( z ) 
o e -in /4 ~ non 

----~1 w 1 

(8n r) 2 k 2 
n 

e 
i (k r-wt) 

n (8) 

The loss mechanisms appear i n Eg. 8 because the ei genvalues, k 
turn out to have positive imaginary parts [13], thereb9 
resulting in an exponential attenuation in each no rmal-mode term 
of the acoustic field. Equation 8 is a "far - field" solut.ion of 
the wave equa tion and negl ects the "continuous spectrum" of 
modes; therefore we consider only a discrete numher of modes. 
In effect, if we look at a ray picture of the modes we can asso -
ciate a grazing angle at t.he ocean bottom with each of the 
modes : the continuous part of the mod e spectrum corresponds to 
rays with grazing angles greater than the cri ti cal angle ann 
this sound suffers severe loss. 
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Fig . 4 Deep-water convergence-zone propagation 

Since the range-independent wave-theory solution is more or less 
an exact solution of the wave equation and ray theory is a high-
frequency solution, there should be overlapping regimes where 
both solutions are approximately the same. Figure 4 displays 
such an example of deep-water convergence-zone propagation. The 
upper part gives (a) the sound-speed profile and (b) a ray-trace 
result showing periodic focusing of the rays near the surface. 
The lower part displays (c) the shape of the 86 modes numeri-
cally calculated from Eq. 7 and Cd) the propagation loss as 
calculated both by ray-theory methods (using the density of 
rays) and mode methods (performing the summation of Eq. 8). In 
the mode picture, the zones of high intensities arise from the 
interference pattern resulting from the coherent addition of the 
modes. 

The Parabolic Equat i on ~lethod [14] is a far - field narrow-angle 
approximation to the wave equation. It i s most accurate when 
propagation with respect to the hor i zontal is confined within a 
cone of about ± 20°. Essentially we make the approximation that 

<p = G(r, z ) S(r). (9) 

S will satisfy an average propagation equation and will be a 
rapidly varying function in range. The parabolic approximation 
is to assume that because the environment is changing slowly 
with range , (o2G/or 2) « 2k (oG/or) , where k is an average wave-
number. This leads to ag equation for GOwith only the first 
derivative of G with respect to r. This approximation takes us 
from a boundary-value wave-equa t ion problem to an initial-value 
parabolic equation that lends itself to marching-solution tech-
niques. Numerical results will be given in the next paper [1]. 
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Fig. 5 Inter-model com-
parison for shallow-water 
environment 

H 100 m w 
c 1500 m/s w 
cb 

1550 m/s 
3 

Pb 1. 2 g/cm 

Sb 1.0 dB/A 

Since we are essentially attempting to solve the same equation 
(the wave equation), we should find situations where all four 
models give the same results. Figure 5 is a shallow-water 
example where we see that the wave-theory models give virtually 
identical results. The ray model, though it cannot reproduce 
the interference pattern, does yield the same approximate level. 

SOUND SPEED (m/,) 

1500 1550 1600 
0 

E 
::c 500 RAY I-
0-w 
0 

1000 

MODE 

RANGE (km) 

Fig. 6 Correspondence between ray and normal-mode solutions 
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We mentioned earlier that there is some ray-mode correspondence 
and we further illus t ra te this in Fig. 6, which shows a ray 
trace of some up and downgoing rays in a deep sound-channel type 
environment. Figure 6 also shows contoured loss from a normal-
mode model whe re we have limited the modes to correspond to the 
appropriate ray angl es. This same pattern, wh i ch appears in 
both pictures, demonstrates the underlying consistency between 
these models . The near-field differences are well-understood 
wave-di ffrac t ion effects. 

SUMl1ARY 

We have briefly presented a set of acoustic models and at the 
same time tr ied to explain their underlying physica l principles. 
We have also illustrated the consistency between the models . In 
the next paper [1] we shall apply computer versions of these 
models to extract further information about the nature of sound 
propagat ion i n the ocean. 
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DETERMINISTIC PROPAGATION MODELLING II: NUMERICAL RESULTS 

F.B. Jensen and W.A. Kuperman 

NATO SACLANT ASW Research Centre, La Spezia, Italy 

ABSTRACT The most commonly used propagation models are 
presented and their areas of applicability are indicated. 
Furthermore, the use of these models for gaining insight into 
the physical mechanisms governing sound propagation i n the ocean 
is illustrated through a sequence of modelling examples. 

INTRODUCTION 

Thi s is the second of three papers dealing with sound-
propagation modelling in the ocean [1,2] . Here we present some 
numerical results that include comparison with broadband 
experimental data from various ocean environments, simulation 
studies of propagation over sloping bottoms, and a study of 
seismi c propagation in terms of bottom-interface waves. 

I. MODEL APPLICABILITY 

To indicate wi th some precision the type of ocean environment 
for which a given model should be used, we have classified 
environments according to wa ter depth, frequency, and environ -
mental complexity, as shown in Table 1 [3]. Here shallow water 
indicates all water depths for which sound interacts signifi-
cantly with the ocean bottom. The separation frequency of 
500 Hz between the low- and high-frequency regimes is arbi-
trarily chosen. 

When indicating the applicability of a propagation model to a 
given type of environment we take i nto consideration limitations 
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Table 1 Applicability of propagation models 
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in the underlying theory. Thus ray models are applicable 
only to high-frequency propagation, and only some models (ray, 
PE) can handle a range-dependent environment. When indicating a 
model's practicality we consider exclusively the running time. 
Thus the time increases with both frequency and water depth for 
some models (mode, PE), while the time is relatively independent 
of these parameters for the other models. Likewise, running 
time i s proportional to the number of profiles in a range-
dependent environment for a ray model, while a PE model takes 
essentially the same time for range-dependent and range-
independent environments. 

Full box shading in Table 1 means that a model is applicable as 
well as practical. On the other hand, if a box is only par-
tially shaded, it means that the model is applicable with 
caution (theoretical limitations), or that running times are 
excessive. The above judgements are, of course, relative. That 
is, for columns that did not originally have a fully-shaded box, 
we selected the model we felt was the most prac t ical and denoted 
it by a fully shaded box. For a column where more than one box 
is fully shaded, the choice of model will depend on the actual 
models on hand, the running time, input/output options 
available, etc. 

SUBBOTTOM 

Fig. 1 Environmental input 
to acoustic models 

compressional speed 
shear speed 
density 
compressional att. 
shear attenuation 
rms roughness 

• 
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II. MODEL/DATA COMPARISON 
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JO 

To demonstrate the accuracy to which propagation in a compli-
cated ocean environment can be described by a numerical model, 
we present comparisons between model results and some broadband 
experimental data averaged in 1/3 octave bands. Figure 1 shows 
the type of environmental description used as input to the 
numerical model. 

The first data set presented (Fig. 2) was collected in 110 m of 
almost isothermal water in the Mediterranean. The theoretical 
curves given in Fig. 2 were obtained from a normal-mode model. 
We see that there is excellent agreement between theory and 
experiment for two widely different frequencies (Fig. 2a) and 
for two different receiver depths (Fig. 2b). 

The second example (Fig. 3) presents data collected in a range-
independent shallow-wa ter area in the Atlantic. The environ-
menta l input to a normal-mode model is given in Fig. 3a, while 
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the computed loss versus frequency and range is shown in Fig. 3h 
in the form of an iso-loss contour plot. The experimental data 
are displayed in Fig. 3c . We notice an extraordinary agreement 
between theory and experiment. Thus the maximum deviation is 
only a few decibels for data covering as much as seven octaves 
of frequencies and a range of more than 80 km. This result was 
obtained after including shear waves in the bottom and a pro-
nounced sea-floor roughness. 

The contour plots in Fig. 3 demonstrate the existence of an 
optimum propagation frequency around 250 Hz. The optimum fre-
quency is a general phenomenon associated with ducted propaga-
tion, and it occurs as a result of competing propaga tion and 
at tenua tion mechani sms at high and low frequencies. In the 
high-frequency regime volume and scattering loss simply increase 
with frequency. At lower frequencies the situation is more 
complicated. With increasing wavelength the efficiency of the 
duct to confine sound decreases. Hence propagation and attenua-
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tion mechanisms outside the duct (e.g. in the sea floor) affect 
the intensity of sound in the duct. In fact, the increased 
penetration of sound into the ocean bottom with decreasing fre-
quency causes the overall attenuation of sound in the water 
column to increase with decreasing frequency. Thus we get high 
attenuation at both high and low frequencies, while intermediate 
frequencies have the lowest attenuation. In typical shallow-
water areas the optimum frequency is found to be a few hundred 
hertz, but it depends strongly on Lhe environment. 

In the next example (Fig. 4) we present some deep-water data for 
a range-varying environment. A ray-trace result superimposed on 
measured sound-speed profiles is shown in Fig. 4a. We see how 
sound is trapped in the surface duct out to a range of about 
10 km. At this point the surface duct disappears, and almost 
all energy leaks down in the main body of the water column. 
Propagation-lo~s data for two different frequencies are compared 
with both a PE and a ray solution. We see that the model 
results are in excellent agreement with the data. 

III. PROPAGATION OVER A SLOPING BOTTOM 

In this section we demonstrate the range-dependent capability of 
the PE model by studying sound propagation over a sloping bottom 
[4,5]. First we consider up-slope propagation for the environ-
ment given in Fig. 5. The slope is 0.85° and the frequency is 
25 Hz. The water is taken to be isovelocity with a speed of 
1500 mis, while the bottom is characterized by a speed of 
1600 mis, a density of 1.5 g/cm3 , and an attenuation of 0.2 
dB/wavelength. 

Before interpreting the contour plot, let us have a look at the 
simplified sketch in the upper part of Fig. 5. Using the 
ray/mode analogy, a given mode can be associated with up- and 
down-going rays with a specific grazing angle. The sketch 
indicates a ray corresponding to a given mode. As sound 
propagates up the slope, the grazing angle for that particular 
ray (mode) increases, and at a certain point in range the angle 
exceeds the critical angle at the bottom, meaning that the 
reflection loss becomes very large and that the ray essentially 
leaves the water column and starts propagating in the bottom. 
The point in range where this happens corresponds to the cut-off 
depth for the eqUivalent mode. 

To emphasize the main fea tures in Fig. 5, we have chosen to 
display contour levels between 70 and 100 dB in 2 dB intervals. 
Thus high-intensity regions (loss < 70 dB) are given as blank 
areas within the wedge, while low-intensity regions (loss> 
100 dB) are given as blank areas in the bottom. In this parti-
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cular case four modes are excited at the source. As sound 
propagates up the slope we see four well-defined beams in the 
bottom, one corresponding to each of the four modes. Thi s 
phenomenon of energy leaking out of the propagation channel as 
discrete beams has been confirmed experimentally [6]. 

We now consider the problem of down-slope propagation as illus-
trated in Fig. 6. Water and bottom properties are as i n the 
former example. The initial water depth is 50 m, and the bottom 
slope is 5° out to a range of 10 km. Beyond 10 km the bottom is 
flat. Only one mode i s excited at the source, while as many as 
11 modes can exist in the deep part beyond a range of 10 kID . 
The regularity of the contour lines out to 10 kID indicates that 
only one mode is excited while propagating down the slope . 
Beyond 10 km the contour lines be come more complicated, indi-
cating that the abrupt change i n slope at 10 km causes a re-
distribut ion of energy among existing modes . Thus mode coupling 
seems to be associated with abrupt changes in bottom slope 
rather than with the slope itself. 

IV. SEISMIC PROPAGATION 

This last section demonstrates the capability of the FFP model 
in handling propagation in a multilayered environment where 
shear properties are i ncluded in all layers. If the bottom can 
support shear waves there will exist a surface wave that travels 
along the water/bottom interface. Indeed, a surface wave will 
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exist at the interface between any two media if at least one of 
them can support shear waves . An important feature of these 
surface waves is that they have no frequency cut-off, whereas, 
for a particular water depth, waterborne propagation cuts off 
below a frequency that is a function of the environmental condi-
tions. 

We are go i ng to i nvestigate this phenomenon theoretically using 
the FFP model . Figure 7a displays a typical shallow-water en-
vironment: there is a 5 m sediment layer of fairly compact sand 
overlying a sedimentary rock basement. Hence, from the discuss-
ion above , two surface waves should exist: one at the water/ 
sand interface and the other at the sand/rock iqterface. 
However, due to the high shear attenuat i on in the sand (1.5 
dB/wavelength) it turns out that only the wave at the sand/rock 
i nterface gives appreciable contribution to the acoustic field 
at the water/bottom interface. 

In Fig. 7b is shown the computed loss versus frequency at a 
range of 10 km for both the se i smic and the waterborne paths. 
We see that the waterborne sound propagates well above 50 Hz, 
while s eismic sound propagates well below 10 Hz . In the inter-
med i ate frequency range around 20 Hz the propagation is poor . 
Thus , for a r eceiver located on the ocean bottom, seismic 
propagation paths are important only at very low frequencies. 
Also this phenomenon has been verified experimentally [7]. 

SUMMARY 

We have briefly presented an overvi ew over the most conunonly 
used propagation models, pointed out their areas of applicabi-
lity, and demonstrated the particular features of the various 
models through a series of examples that included comparison r 

with exper i mental data and simulation studies of particular 
propagat i on phenomena. 
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DISCUSSION 

Comment: L. BJ0RN0. 

In the figure showing the up-slope propagation you did not 
include shear waves i n the propagation calculation . Which in-
fluence wo uld you anticipate from s hear waves on the patterns of 
inte rsity distributions ? 

Reply : F . JENSEN. 

Our study of sound propagation in a wedge shaped ocean was done 
with the PE model, which cannot handle shear waves in the bottom . 
I do not know of any numerical model that can solve the problem 
for a sol id bottom , but it is definitely an interesting question . 

Conunent : W.J. VETTER. 

Can you comment on the subbottom depths which have practically 
important effects on the propagation (in range) ? 

Reply: F. JENSEN. 

We have studied this problem in some detail (F . B. Jensen "The 
effect of the ocean bottom on sound propagation in shallow 
water". In "Sound propagation and Underwater Systems", R. H. 
Clarke (ed.) . Imperial College , London , 1978), and it is gene-
rally sufficient to know bottom properties to a depth of one t o 
two acoustic wave l engths . 

Comment : P . SCHULTHEISS. 

How sensitive is the model to precise knowledge of bottom para-
meter s? 

Reply: F . JENSEN . 

In cases where sound interacts strongly with the ocean bottom 
(shallow water ) the model O'.ltput is very sensitive to bottom 
parameters s uch as sound velocity and attenuation . Even an 
"inte lligent" guess of these parameters can lead t o prediction 
e rror s of 10-20 dB at longer ranges . 

Conunent: A. WASILJEFF. 

I s it possible to include rough boundaries in some of your 
mode l s ? 



142 F. B. JENSEN AND W. A. KUPERMAN 

Reply: F. JENSEN . 

Rough-boundary scattering loss is included in most of the models. 
However , this particular feature of the models has not yet been 
well tested due to a lack of experimental data . 
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