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ADAMS & GIELLIS: Analysis of underwater-sound transmission-loss curves 

A TECHNIQUE OF COMPARATIVE ANALYSIS OF UNDERWATER 

SOUND TRANSMISSION LOSS CURVES 

by 

B.B. Adams and G.R. Giellis 
US Naval Research Laboratory 

Washington D.C. 20375 
U.S.A. 

ABSTRACT 

A procedure has been developed for the analysis of transmission 

loss curves in which received power is known or expressible as a linear 

function of range. The procedure separates each curve into a sum of 

three components of variability: long term trend, oscillatory, and 

random. Standard procedures are used to perform the separation and 

to make statistical comparison tests with other curves which may be 

companion experimental data or model predictions. Eight cases are 

analysed for example involving several model predictions with two high 

density detailed 300 n.mi shot runs. Application of the analysis 

procedure to transmission loss curves should provide a set of standard 

statistics which should facilitate quantitative statements and 

comparisons. 
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1. INTRODUCTION 

1.1 . BACKGROUND 

A number of computer programs for intensity calculations 
are now widely available to scientists engaged in underwater sound 
studies. These programs produce curves which indicate transmission 
loss as a function of range, comparable to the type derived from 
available experimental data. Some of the more sophisticated models, 
such as TRIMAIN in use at NRL, can handle horizontal variations in 
sound speed and include bottom topography and produce four different 
types of intensity calculations. In research involving experimental 
data and development of such programs, there is a need for a procedure 
comparing these intensity curves in a quantitatively significant 
manner. The objective of the present study was to develop an analysis 
procedure capable of meeting this requirement. 

It can be observed that acoustic intensity curves have 
three basic components: (1) a long-term trend, (2) oscillations 
about this trend and (3) residual random effects. One or more of 
these components may not be present to a significant degree, depending 
on a given physical situation. The procedure we have developed is 
designed to establish the existence of the components, and to isolate 
them for separate examination, and quantitatively estimate their 
contribution. An outline of the recommended procedure follows below 
and ends with conclusions regarding the progress to date in the 
development of the procedure and recommendations for further study. 
Appendix A is devoted to a complete description of the procedure 
which includes specific formulas and a discussion of underlying 
assumptions. The procedure has been exercised ·on acoustic model and 
experimental data, with detailed results given in Appendix B. 

1.2 Outline of the Proposed Analysis Procedure 

Given an intensity curve)( (r), the long-term trend is 
assumed to be of the elementary form XL(r) = A + B log r (Fig. 1). 
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TIle coefficients A, B are determined by least squares formulas. The 
residuals constitute a derived curve, X~(r) (Fig. 2). The 
subsequent tests employed depend upon the presence of significant 
randomness in X'(r), as measured by a turning point test (M. G. 
Kendall [1]). If the residuals are random, the intensity curve, X (r), 
is described by only two components, the long-term trend, XL (r), and 
the random residual, X ~(r). To compare two-component curves of this 
type, similarity tests based on confidence intervals for A, B and an 
estimate of the standard deviation for X\r) can be employed. We can 
also compare curves by examining the distributions of variance between 
the XL (r) and X~{r) components. If the curve X ~(r) fails the test 
for randomness, we conclude that a third significant, oscillatory, 
component exists. In this case, the subsequent comparisons of trend 
coefficients can be made disregarding the oscillatory component with 
a small loss in comparison precision. Alternately, if full compliance 
with statistical assumptions is deemed necessary, the oscillatory 
component can be removed and a second regression made for refined 
trend parameter estimates. 

In a large percentage of cases, transmission loss curves 
are found to possess a strong oscillatory component. We have assumed 
it to be of the form 

1.1 

Calculation of the coefficients raj] is discussed below in Appendix 
A.4. Briefly, it requires the solution of a system of equations 
involving the autocorrelation function for X ~ (r) . The autocorrelation 
function is also used to estimate the principal period of a trans-
mission loss curve, such as the convergence zone period, and further, 
to calculate a zone spacing ratio, designed to compare the oscillation 
periods of two curves.* To show whether the autoregressive scheme is 
complete the residual component X R (r) is obtained as XR (r) = X, (r) 
-X (r)(Fig. 4). At this stage, a turning point test is again 
app~ied to see if X (r) satisfies a randomness criterion. If not, 
refinements are nec~ssary in the autoregressive fit procedure. 

After the separation into components has been accomplished, 
curves for model or experimental data can be compared for the 
distribution of variance among these components. The comparisons 
are quantitative, reproducible, and contain probability thresholds, 
or confidence intervals all of which can be employed for systematic 
comparison of data sets, model sets or data/model tests. 

*Fig. 3 
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II. Conclusions and Recommendations 

A sequence of known statistical procedures have been gathered 
and employed on the comparative analysis of measured and calculated 
propagation loss data; The procedures have been deliberately kept 
simple to hopefully promote widespread use with a minimum of computer 
or calculator expense. The cases chosen for examples in Appendix 
B, table B-3, show the 95% confidence interval on the mean of the 
sets is on the order of .6 db even though a number of the model runs 
were purposefully flawed for illustration. This sensitivity for 
calibration checks, flux density estimates, hydrophone calibrations, 
etc. was considered surprising. Similarly the exponential decay 
constant 95% confidence intervals, or slopes, were of order .15 
where 2 would be spherical spreading. All the caSes were readily 
distinguishable. The distribution of variance in the tested cases 
shown in table B.9 also showed marked distinctions between model 
types as well as experimental data. The convergence zones of the 
chosen sample data were remarkably periodic so that in the two 
examples the oscillatory and long term trend were near equal in 
power and the final random residual variance was only 6 and 16 percent 
in the two cases. The model results were deliberately not tuned to 
the experimental data so as to better reflect what a first application 
of the methods would produce. As a consequence, most of model outputs 
contained a much larger random residual component which was suppressed 
only in the smoothed cases. This is similarly, in retrospect, not 
unexpected since th~ computer models are comparable to continuous 
wave (very narrow band) data and the experimental results have one 
third octave frequency domain averaging. In table B.7 we see another 
result where comparisons of measured and model convergence cycle 
lengths are listed. As shown, all the model cycle lengths exceed 
all the experimental lengths. The discrepancies are small, 3%, but 
consistent and estimated to result from velocity profile error. 

In summary, the major objective has been to illustrate the 
surprising power of a sequence of comparatively elementary procedures 
and the major recommendation is to employ objective measures such as 
those discussed in general experimental and analytic studies. 
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APPENDIX A 
THE ANALYSIS PROCEDURE -

A DETAILED DESCRIPTION 

A.1 Computation of the long-term trend 

The three fold separation of major contributing components of 
a transmission loss curve initially uses the form~ (r)=A + B 10g(r) 
since over a considerable range, loss is either spherical, cylindrical, 
or transitional. While more complex equations can readily be devised 
which will fit the data and include more of the variance, they were 
judged to add more complexity without increasing comparison testing 
effectiveness appreciably. 

The analysis begins with the assumption that an intensity 
curve X (r) of the type depicted in Figure (1.1) can be represented 
in the form 

A.1 

where [r~] (k=1,2, .... N) is the sequence of range values. An 
app1icat10n of standard methods, Kendall [A1], yields the following 
expressions for estimates of the coefficients, and the residual 
variance. Note the subscript, e, showing the estimate, as distinct 
from the true value, is shown only initially throughout the following 
material. 

~ /c1 (rd X ('t.) .- [ (r 10lJ( r~J)(~ X (t'~)hJ) ] - --_ ..... 
~ ( 10 j ( '.) r,l. - [ ( flo) (I' K) (/ N ] 

A.2 
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A.3 

N 

s~ 
e 

.Ae. 
A.4 

N-1. 

The type of test used to compare intensity curves in regards 
to long-term trend depends upon whether there is a significant 
oscillatory component in the residual curve X~(r). If a test shows 
·the residual values mutually independent, comparison tests based on 
the methods of linear regression analysis will apply. The tests are 
slightly weakened but still useful if significant oscillations are 
present. In special, demanding,cases the techniques of (A.4) can 
be used to remove the oscillating component from the trend residual. 
The random residual remaining may be combined with the initial 
trend estimate and coefficients, A.2, A.3 and A.4 redetermined. 
Before proceeding with the comparison tests, then, it is necessary to 
decide whether the trend residual is a random variable. A statistical 
test, a description of which follows, devised by M.G. Kendall [1] is 
recommended for this purpose, because of its simplicity and 
eff~ctiveness. 

A.2 A Test for Randomness 

The turning point test is based on the statistical hypothesis 
that the values · { X ~(rk) } (k=l, 2, ••.•• n) are mutually independent; 
thus, they could have ocurred in any order, each order being equally 
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likely. An observed valued x(rk ) is called a turning point if 

V(v ) > ·X(.rll ) A ft.-( ... A.S 

Let nT denote the number of turning points which occur in a time 
series of n distinct points. Assuming the above hypothesis, Kendall 
has shown [l,p. 22-24] that for fairly large sample sizes, nT is 
approximately distributed as a normal random variable with mean 

A.6 

and standard deviation 

A.7 

The test procedure is the following: Select a confidence 
level a. Reduce the series by throwing out repeated values, leaving 
n distinct points, without changing their order of occurrence. 
Calculate ~ and ~ using Equations (A.6) and (A.7). Then the 
100(1- a) percent confidence limits for nT are given by 

A.8 

where Za/2 denotes a percentage point of the normal distribution. 
Count the observed number nT of turning points for the series of 
distinct values. If nT is within the interval, we accept the 
hypothesis and conclude that the curve has no significant oscillatory 
component. Therefore, X (r) consists only of a long term trend and 
a residual, random component. This residual series may not be a 
purely random process, but the oscillations it exhibits are not 
significant at ~he selected confidence level to warrant description. 
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If n lies outside the confidence interval, then we reject the 
hypotheses, and conclude that the series X '(r) has a significant 
oscillatory component, which should be measured separately. The 
probability of making this decision when in fact the hypothesis 
is true is a . 

A.3 Trend Comparison Tests 

Let us initially 
residual curve X '(r) 
level. By setting z 
recast in the form 

assume the turning point test has shown the 
to be random at same acceptable confidence 
= log (r) and E{r)= X'{r), (A.l) can be 

x - A + '8 .~t- 1:: A.9 

and we can apply the results of linear regression analysis (see, 
for example, Section 22.9 of Kendall [AI], chapter 11 of Burr [A2]) 
to find confidence limits for A, B and the standard error of 
estimate. At the 100 (I-a) percent confidence level, we can 
calculate these limits as follows: 

+ For B, the confidence limits are Be- LB , where 

-t~ N -1 S e 
:.t ) 

+ For A, the limits are Ae- LA' where 

SACLANTCEN CP-17 42-9 
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Here t a/2, N-2 is a percentage point of the student t 
distribution. 

For the standard deviation of the limits are 

J. 
= ( [ tV -1. 11. 

.)e. _ 1 . A.12 
?(i -~ N-:l-.2. ) -

Here)(2~,n is a percentage point of the Chi-Square distribution. 

In addition to the analytic comparisons described above, a 
visual comparison plays the same qualitatively useful role as in 
traditional data/model comparisons. One such scheme used here is 
to superimpose the regression equation derived from one member of 
a comparison pair onto the data of the other member. To guide such 
visual comparisons, two displaced regression curves are used, 
separated by four residual standard deviations of the regression 
data. Equation A.13 shows the equation with subscript, E, 
indicating experimental bounds, L, as illustrated in Figures A.I 
through A.2: 

-+ ) S 
E (A. 13) 

With the plotted band shown on the figures we have computed an 
elementary overlap type measure called a Band-Fit (BF) coefficient 
as shown in Equation A.14, 

8F (A.14) 

where the PM is the percentage of model points (as in later 
illustrations) which fall within the band superimposed and defined 
by the experimental data. The denominator, P , is the percentage of 

SJI.CLANTCEN CP- 17 42-10 



ADAMS & GIELLIS: Analysis of underwater-sound transmission-loss aurves 

exverimental da ta that is within the four sigma band (Fig. A.I, 
A. .Z). 

A.4 Separa tion into Oscillatory and Random Residual Components 

Aft er the residual curve, X "'(r), has been shown non-
r andom by the turning point test, the oscillatory component must be 
s eparated from the final random residual. An autoregressive scheme 
was chosen to meet this need because of its effectiveness, and the 
s uitability of the auto covariance function. Our discussion of 
autoregressive processes follows that of Ref [4], where complete 
derivations of the equations employed can be found. 

To begin with, an autoregressive process of order m, is 
defined as a second order uniformly sampled stationary random 
process {X (k) } with zero mean, which satisfies the equation. 

Yt k) u.. M Y ( 1<- "") 1"" l 0) 
A.IS 

where { Z(k) lis a purely random process. Here the coefficients 
aI' a Z"" a are constant, and Eq.(A.IS) must hold for all observed 
values k=I,Z~ ... N. We note that an autoregressive process consists 
of two parts. The first, involving the coefficients a. is 
called t he autoregressive scheme, and the second is called the 
residual process. 

An autoregressive process may be generated by selecting 
an order m , a set of coefficients {a.} (j=I,Z, ... m) which 
satis fy a stationary condition, and aJprocess {z (k)} obtained 
for example, from a table of independent normal deviates. 
Conversely, if one is given a process {y (k)}, then one can attempt 
to fit an autoregressive process to {Y(k)} in the following manner. 
Estimates aI' aZ, .... a of the autoregressive scheme coefficients 
are obtaineo as the soTution of the system of m equations 

eyll) 
/ \ 

L ( c'; 1\ c1l-r)t- A 
C y ( I - M) = C,+ t- (\..1. c\ "'" r ' . / 

/\ / \. 
C Y (c) /\ .. 1 ) 

C Y ( 2) -=- (.\. I c.. Y ( I) -l- [\. 1. of- c..\. ""'- C y l ' ... - "'" A.16 
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where c 
Y 

(k) is the sample auto covariance of the process { y (k) J • 
I\; - k 

Cy(~ ) - ~ ]<lj) Y (j 1- k) .-
N .) = I 

) I ) I /,,' - J ) 
A.17 

o 

We note that c (0) will give us an estimate of the variance of 
{ Y (k)} . It may be shown that the variance of the residual 

process may be estimated by 

S 2 
- t: 

) .'\) /\ 
C . ({) - ~t ley (I .- -' -, - (-\. "" 

Y A.18 

To compare these two variances, we will use the normalized mean 
square error, 

A.19 

After the coefficients {aI' a2 , .•.• a } have been calculated, the 
residual process is obtained oy subt~acting the autoregressive 
scheme from {y (k) }. To check whether a valid fit has been 
made, the residual should be tested to determine if it is purely 
random. This can be done by using the turning point test described 
in Article (A.2). 

In selecting a time series model of this type, we are 
carrying out a program originally suggested in a paper by Whittle 
[A3]. He argues that any zero mean, stationary process whose 
spectral density satisfies a certain condition may be represented by 
an autoregression of infinite order. For such a process, a 
reasonably accurate estimate of the residual variance may be obtained 
by fitting a finite autoregressive scheme of sufficiently high order. 
The spectral condition requires that the reciprocal of the spectrum 
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be expandable in a Fourier series (for all practical purposes, that 
the spectrum be nowhere zero), and is usually satisfied in practice. 

Our analysis procedure then, is to calculate autoregressive 
scheme estimates for the different curves under consideration, using 
increasing values for m, calculating the normalized mean square error 
each time. Currently available computer codes (Robinson [A4] Section 
2.8) enable us to do this with a minimum of time and effort. We can 
thus determine a value m for m, such that the reduction in E for 
higher order fits is ins~gnificant in all cases. 0 

For comparison, autoregressive fits of order m are then o used for all curves being analyzed. Granted that this requires 
an excessive number of terms in some cases, it provides a basis for 
comparison, without essentially affecting the estimate of the residual 
variance. 

A.S Measurements for Oscillatory Components 

Suppose now that the curve X~(r) has been expressed as the sum 
of an oscillatory component Xo(r) and a residual component X ~(r). 
The oscillation can usually be attributed to some known physical 
cause such as the convergence zone effect. To study this phenomenon 
quantitatively, we next obtain a measure of this oscillatory 
component. For this, the sample autocovariance function defined by 
Eq. (A.6) is used. Thus, we calculate 

.N A.20 

for k=O,I, .••.. N-I. A typical graph of c (k) would resemble that 
of damped oscillatory motion starting at ~=o, with the variance 
c (0) decreasing in magnitude as k increases. In most cases 
the autocovariance function will be asymmetric or scalloped reflecting 
convergence zones, Lloyd mirror variation, or other origins most of 
which produce periodic but not sinusoidal variation. The principal 
period of the process is simply the distance between peaks of the 
function. To be specific, we will call this quantity the zone 
period, P. If we have oscillatory components for ' curves CI , C2 with zone periods Pl , P2 , then we may consider the zone spacing 
ratio, Z ,definea by 
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z r I 
,.., 
t 2.. 

A.2l 

A positive value of z indicates that the C2 oscillation has a shorter 
period than that of Cl . 

A.6 Distribution of Variances 

Let us briefly review the separation procedure which has been 
proposed for intensity curves: Starting with an initial curve X , 
a long-term trend X L' is removed, leaving a residual curve X, . 
The residual curve is then decomposed as the sum of an oscillatory 
component X 0 and a random residual component X R• We will denote by 
V, V , V', Va and VR the variances of the above curves. Because 
the ~omponent series are uncorrelated, we will have 

A.22 

and A.23 

Thus, the fractions VL/V,V lv, and VR/V will adequately describe the 
distribution of the varienge of the 1nitial curve. One measure of 
the validity of the separation process is the extent to which Equs. 
(A.22) and (A.23) hold. ·In all of the applications of the procedure 
examined values very close to theoretical predictions were observed 
(See Appendix B.4, Table B.8). 
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APPENDIX B 

Bl Results of Comp arative Ana l yses 

In this appendix are presented results obtained from employment 
of t he analysis procedur e for a model/experimental comparison study. 
The objectives are to: 

1. Examine and show for example the practical application 
of the procedure. 

2. Test the resolution of the methods on two similar data 
sets arising from slightly different conditions. 

3. Test t he r esolution of the method in a comparison of 
data vice model performance. 

4. Test t l:.e r esolution on model curves to distinguish 
algori t hum differences. 

The exper i mental da ta were obtained during a controlled run of 
t he USNS MIZAR of 300 nm run directed by excellent satellite navigation. 
The s i gnal sources were small explosive charges carefully timed with 
synchronized WWv clocks for precise range and depth control. The shot 
spac ing was one-half nautical mile and the depth 300 ft. (9l.4m). 
Sound speed profiles were measured at the ends and in the track center; 
detai led ba thymetry was measured throughout the run. For acoustic 
model computation, the simplified profile shown in figure Bl was 
employed . The signa ls were received by hydrophones suspended from 
t wo ships, the R/V KNORR 'and USNS GIBBS, stationed at the beginning 
and end of the track, respectively. The KNORR phones were vertically 
s eparated by 150m, with the lower unit at a depth of 3386m. The same 
arrangement was used for the GIBBS phones, with the bottom unit at a 
depth of 302Om. Transmission loss curves were computed for two 
r elatively low frequency third octave bands, separated by 50 Hz. Table 
B. l, s hows t he labeling systems used for the curves used in the present 
study . 

Curve 

KXUL 
. GXUH 

Ship 

KNORR 
GIBBS 

Hydrophone 

Upper 
Bottom 

Frequency 

Low 
Low 

Table (B.l) Experimental Intensity Curves 
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A series of intensity curves to be used for measured 
and predicted comparisons were generated largely by the computer 
program TRlMAIN using llieasured bathymetry and sound speed profiles, 
along with the appropriate source and receiver depths. Using 
incoherent (I) summation intensity calculations, three curves 
corresponding to the experimental runs were generated. A second 
(II) method using a ray weighting based upon an exponential 
probability distribution function in depth was used on two program 
runs. A third method used a L10ye Mirror (LM) correction for 
proximity to the surface. A listing of the resulting TRIMAIN curves 
used for our analysis is given in Table (B.2). 

Curve Ship Phone Type Frequency 

KTUI KNORR Upper I 
KTUL(LM) KNORR Upper I Low 
GTUI GIBBS Upper I 
GTUII GIBBS Upper II 

Table (B.2) TRH1AIN Model Intensity Curves 

In addition, one run was made with Fast Asymptotic 
Coherent Transmission model (FACT) to obtain the first 250 values 
of the curve KXUH. The FACT Program contains a first order caustic 
computation but is restricted to a single sound speed profile and 
flat horizontal bottom. We denote the intensity curve for this 
case as KFUH and, for comparison, use only the first 250 values 
of the corresponding experimental curve, denoted as KXUH(F). 

In the remaining articles of this appendix, we will 
discuss the results obtained as the analysis procedure was applied 
to the experimental and model curves listed above. We have selected 
t\W gr'-Ol!pS of curves: The first consists of KXUL, KTUI, and KTUL 
(LM) (Figures B.2 a,b,c); that is, an experimental curve for KNORR 
data, with two corresponding TRIMAIN runs, differing in the type of 
intensity calculations used. The second group is a similar selection, 
comprising the curves GXUH, GTUI, and GTUII (Figures B.3 a, b, c), 
based on GIBBS data. 

B.2 Long-TeTm Trend 

Following the discussion of Appendix A, the long-term trend is 
assumed to be of the form A + B log (r), and least squares equations 
A(2), A(3) are used to calculate the coefficients A, B, respectively. 
The residual curves remaining after trend removal are denoted with a 
prime (') superscript. Thus, 

B.I 
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Table (B.3) lists the results of the trend estimation on 
several model and two experimental data suites. The significant 
features of this compilation are the following: 

a. The mean values of the data sets are different and 
ordinarily would reflect systematic bias in an entire suite under 
comparison, a calibration error or possibly a bottom condition at a 
nea r bottomed receiver not adequately modeled. The confidence interval 
f or this mean is included, for statistical comparison, in this grouping. 

b. The regression coefficient, B, shows the estimated 
exponential power decay of the sets. In the first KNORR group, we see 
a distinctly sharper fall (larger exponent) in the two model sets. 
These model runs were included to show how a modeling error, ray drop 
out, purposely produced and plotted Figure B.2b, can produce a definite 
measurable difference. The effect is also reflected in the mean value 
difference. Next, considering the Gibbs suite, we see a case of strong 
smoothing (GTUII) suppressing the growth of the decay constant, B, and 
also increasing the model mean to near the observed set seen in GXUH. 
While the range smoothing has been deliberately over done for 
illustration it is clear that models could be brought into corre-
spondence by this method with data and more discriminating tests for 
spectral content might be required for distinct numeric separation. 

c. In the third set in Table B.3, we have a good 
comparison of the FACT model with data. A slight bottom loss 
adjustment would probably raise the mean and decrease the decay 
constant, B, to near perfect coincidence. One advantage this last set 
shows in model/data comparisons is how range constraint improves the 
quality of the match. The last curve, KTUI(F) , is a TRIMAIN estimate 
run to the same 250 range point limit of the FACT model and 
quantitatively shows at lesser ranges the ray density is quite adequate, 
and the model improves. Generally, as might be expected, long-range 
predictions and comparisons prove the most difficult and are hence 
likely to require the techniques of this report. 

d. The last two columns of Table B.3 show the original 
variance and the remaining or residual variance. This last column, 
in particular, illustrates the effects of smoothing in the GTUI/GTUII 
contrast. A variance comparison test, such as the F test discussed in 
reference AI, is ideal for quantitative smoothing comparisons or 
processing bandwidth comparisons. 

Following a set of qualitative comparisons such as described 
above, let us assume that we have further noted and examined for cause 
the difference in mean and coefficient estimates and noted the 
confidence intervals on each. More detailed comparisons of two data 
suites require the following additional calculations: 
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1. Generally for curve parameter comparison, it is essential 
for the data to be considered as having originated from the 
same population. This can be tested by forming the F 
ratio of the residual variances of each curve pair. 
Approximate similarity is usually sufficient. 

2. Using a pooled residual variance, a standard deviation of 
the difference of the regression coefficient, (decay 
constant) is computed. 

3. A confidence interval in this difference variance is then 
computed using the T distribution. 

While each of the above detailed steps is described in standard 
texts on statistics, a factor not immediately apparent is that these 
three steps can be quite accurately approximated as follows: 

1. If the variances are near the same, assume the populations 
are the same. 

2. Usually most experimental model comparisons will involve 
large numbers (50 or more) points and pooling for more 
accurate variance estimation is marginally useful and 
may be ignored. 

3. The confidence coefficient for the difference in two 
coefficients is simply computed as the square root of 
the sum of the squares of the two subject coefficients. 

As an example of the above procedure, Table B.3 shows Gibbs 
data, GXUH, residual variance is 3.8 dB. The TRIMAIN model with range 
averaging, GTUII, gives 3.4 dB. Let us assume these are essentially 
equal. The 95% confidence interval halfwidth for B is 1.1 in each 
case which gives combined" (root of the sum of the squares) difference 
halfwidth of 1.6. The difference in the coefficients, however, is 4.1, 
that is, 13.6 - 9.5. This greatly exceeds our 95% interval and we 
may say the probability is less than one in twenty that the curves are 
the same. In this instance, the model parameters definitely need 
adjustment. 

The simplified technique can be also used to compare the 
means of two groups. Using the same Gibbs data/model, GXUH/GTUII, 
Table B.3, we have for the 95% confidence interval on the difference 
in means, a root of sums squared of .6 which is not exceeded by the 
.3 dB difference in means. Thus, the smoothing brought the mean 
under control, reduced both the data variance (10.2 to 4.3), and the 
residual variance (9.3 to 3.4), a small amount more than required, but 
definitely rendered the slope unsuitable, (14.8 to 9.5). 

A conclusion of this comparison is moderately clear: less 
smoothing and some physical factor related to mean off set probably 
require consideration. 
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In Table B.4 a tabulation of the Band Fit coefficients is 
shown for simple numeric comparisons as to how well the data trend 
band is encompassing the model estimates. This test is not of the same 
rigor as the regression and variance comparison test, but in conjunction 
with the strong visual appeal of the plots shown in Figures B.2a to 
B.3c is recommended for display and presentation. 

CURVE 
DESIGNATE 

KXUL 
KTUI 
KTUL(LM) 

GXUH 
GTUI 
GTUII 

KXUH(F) 
KFUH 
KTUI(F) 

EXP 
CURVE 

KXUL 
KXUL 
GXUH 
GXUH 
KXUH(F) 
SXUH(F) 

Sf1.CLANTCEN CP- 17 

MEAN 
M 

90.1 
96.8 
98.1 

95.6 
101.5 

95.9 

88.2 
88.9 
91. 3 

Results 

MODEL 
CURVE 

KTUI 
KTUL(LM) 
GTUI 
GTUII 
KFUH 
KTUI(F) 

CONF. 
95%+ 
M -

.5 
.6 
.7 

.4 

.8 

.4 

.8 

.8 

.7 

SLOPE 
B 

12.6 
17.6 
18.5 

13.6 
14.8 

9.5 

16.3 
19.2 
15.1 

TABLE B-3 
for long-term Trend 

EXPERIMENTAL 
BANDWIDTH (dB) 

17.6 
17.6 
15.0 
15.0 
16.5 
16.5 

TABLE B-4 

CONF. Std. 
95% Deviation 
B ~ Data,S Resid,SR 

1.1 6.1 
1.3 7.8 
1.5 8.7 

1.1 5.4 
2 . 7 10.2 
1.0 4.3 

1.8 6.2 
1.6 6.5 
1.6 5.6 

Removal 

BAND 
FIT (COEFF. ) 

.78 

.62 

.64 
1.01 
1.00 
1.03 

4.4 
5.2 
6.1 

3.8 
9.3 
3.4 

4.1 
3.6 
3.6 

Experimental Bandwidth and Band Fit 
Coefficient Results 
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The second phase of the trend analysis pr ocedure requires the 
residual curves, X "'be tested for randomness with the turning point 
test (see Appendix A.2). Based on t he hypothesis that the curve 
is random, confidence limits for the number of turning points are 
calculated, using Eq. (A.8). Table (B.5) gives these limits, and 
the observed count of turning points for the six selected curves 
whose plots we will examine shortly. 

Number of 
Curve Confidence Limits Turning Points 

Lower Upper 
KXUL' 362 401 214 
KTUI' 360 400 357 
KTUL(LM) , 364 404 349 
GXUH' 345 383 272 
GTUI' 363 402 309 
GTUn' 337 374 109 

TABLE (B.5) 

Test for Randomness at 95 Percent 

Confidence Interval 

It can be observed that in each case the number of turning 
points fall outside the limits. Thus, we reject the hypothesis of 
randomness and conclude that each of the above curves has a 
significant oscillatory component. 

B.3 Oscillatory Residual Curve Analysis 

The turning point test for randomness establishes the 
ex istence of significant oscillations in the trend resi dual. Each 
of the model and experimental residual curves which are given in 
figures (B.4) and (B.5), ex hibit this strong oscillatory component. 
To begin the analysis, .we may express one of the residual curves, 
X ..oCr), 

X ... (r)= X 0 (r)+ XR (r) B.3.l 

Here X (r) is the oscillatory component, and is taken to have the 
form ofoan autoregressive scheme, 

B.3.2 
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The final curve, X R (r), will then be a purely random sequence. 
The procedure for autoregressive scheme fitting, as discussed 

in reference (a 3), involves the choice of an order 1ll, and the 
calculation of the coefficients aI' a 2 , .•• , a as the solution of a 
system of equations defined by the aufocovari~nce function of the 
curve X" (r) • A FORTRAN computer code of · the type devised by 
Robinson (A4, section 2.8) was used for this purpose. To provide a 
measure of completeness, the normalized mean square error, E , is 
calculated as the ratio of the residual variance to the tren~ variance, 
the program estimates Ek for all orders k less than or equal to m and 
calculates the coefficients aI' a 2 , ••• a • To provide an accurate 
estimate of the residual variance for amvariety of curve types, a large 
value for m is recommended. After several trials, the value m = 128 
was selected as being sufficient for essentially all cases while 
requiring less than two minutes of machine time. In running the 
program for this ord:r, the differ:nc:s b:tween values of.Em and Em- l were less than .002 ln all cases, lndicatlng that the resldual varlance 
had reached a very stable level. After the autoregressive scheme fit 
has been made, the final residual component is tested for randomness 
by using Kendall's turning point test. 

Table (B.6) lists the essential information obtained in the 
autoregressive analysis. The first column gives the normalized mean 
square error at m = 128. This is followed by the 95 percent confidence 
intervals for the turning point test, along with the observed number of 
turning points for each residual curve. In each case, this value falls 
within the confidence limits, and we can accept the hypothesis of a 
random residual curve. Figures (B.6) and (B.7) show the autoregressive 
scheme fits which were calculated as the oscillatory component of six 
representative curves. 

Curve 

KXUL' 
KTUI' 
KTUL(LM) , 

GXUH' 
GTUI' 
GTUn' 

KXUH(F) 
KFUH 

SACLANTCEtI CP-17 

Mean Sq. Confidence 
Error 
E128 

Intervals for Observed No. of 

.119 

.606 

.623 

.337 

.518 

.018 

E64 
.153 
.093 

Turning 

361 
361 
365 

359 
365 
336 

150 
l39 

Points 

399 
403 
403 

397 
403 
373 

174 
162 

Turning 

366 
402 
387 

364 
371 
344 

159 
140 

Table (B.6) Separation of Zero- Mean Curves 
into Oscillatory and Residual Components 
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The autocorrelation function calculated as part of the above 
procedure can be readily employed to estimate the principal period 
of the oscillatory component. This interval is calculated from 
tabulation of the correlation function and is the interval between 
successive maxima. Usually several cycle peaks will be clearly 
evident and the average computed will accurately reflect the chief 
periodic phenomenon. In the case of all the present examples, this 
is the convergence zone period. This period can be used to define 
the zone period ratio, ZP = (P 1 . - P 2 ) Ip to provide fractional 
error comparison of the curves with perio~icities. Table B.7 show 
periods in nautical miles and the period ratios for the several 
model runs as compared with the two sets of experimental data. 

Curves Curves 
Exp. PI (nm) Model P2 (nm) ZR 

KXUL 33.1 KTUI 35.1 -.060 
KXUL 33.1 KTUL(LM) 34.1 -.030 

GXUH 32.6 GTUI 34.1 -.076 
GXUH 32.6 GTUlI 34.6 -.061 
KXUH(F) 31.3 KFUH 36.0 -.150 

Table (B.7) Zone Periods and Zone spacing ratios for 
oscillatory components 

The above values indicate that the sample model periods are 
greater than the experimental. It is seen that the Lloyd's mirror 
calculations and Type II representations do not change the principal 
zonal structure, significantly, as this is a fundamental 
characteristic of each measured or predicted curve which is not 
effected even by a heavy smoothing operation. 

2.1.1 Comparison of variances 

At each stage of the separation process, estimates were 
made for the variance of the component curves, using the familiar 

. formula, 

SJI.CLANTCEN CP- 17 
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Here X is the mean of the curve, and N is the number of range 
values. In this manner, we arrived at estimates of the variances, 
V for the initial curve, VL for the long-term trend, VI for the 
trend residual curve, V for the oscillatory component, and VR for 
the final residual. Th~se values for our illustrative set of curves 
are listed in table (B.8) 

Curve V 

KXUL 37.30 
KTUL(LM) 75.43 
KTUI 61.53 

GXUH 29.13 
GTUI 103.36 
GTUII 18.75 

KXUH(F) 38.34 
KFUH 41.56 

V
T 

t=v +V +v) 
LoR 

37.05 
72.49 
59.31 

28.86 
101. 78 

18.72 

38.02 
42.35 

17.99 
38.44 
34.76 

VI 

19.31 
36.99 
26.76 

19.06 
34.05 
24.55 

15.10 14.03 13.76 
17.75 85.61 84.03 

7.40 11.35 11.32 

21.25 17.09 16.77 
29.54 13.01 12.81 

V o 

16.86 
13.28 

9.41 

9.14 
40.39 
11.10 

14.28 
11.56 

Table (B.8) Variances for component curves 

2.20 
20.77 
15.14 

4.62 
43.64 

0.22 

2.50 
1. 25 

thus, if we have separated the initial curves into independent 
components, we should have VI = V + VR' and V = VL + V + VR• 
In practice, the results were ver~ close to the theoret£cal, with 
the largest discrepancy about 8 percent of the amount involved. 
Table (B.9) lists the proportions of the initial variance which 
can be attributed to each of the three components with the fractions 
normalized to the total for each curve. 
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Curve · PL =VL /VTOT Po=Vo/VTOT PR=VR/VTOT 

KXUL .486 .455 .059 

KTUL(LM) .530 .183 .287 

KTUI 

GXUH 
GTUI 

GTUII 

KXUH(F) 
KFUH 

of our 

.586 .159 .255 

.523 .317 .160 

.174 .397 .427 

.395 .593 .012 

.559 .376 .066 

.696 .273 .030 

Table (B.9) Distribution of Variances 

In summarizing the observed three part variance distribution 
sample set, a number of observations can be made: 

1. An elementary point is that the variance distribution 
such as observed above is clearly effected by the 
proximity of the first point to the origin; starting 
at greater ranges the first term would be 
progressively smaller in most all cases. 

2. A strong periodic component, developed from 
convergence zones in the present data, and not 
unusual in other instances, by no means can be 
expected to be always present. Simple bottom limited 
propagation would be a common case not likely to 
show periodic components. 

3. Both ·the experimental data sets show a comparatively 
small amount of residual variance that is only 
approached by the FACT model operating on a 
restricted range of data and the smoothed TRIMAIN 
model on the whole range. In both model instances, 
extreme excursions are controlled, and this feature 
is found to parallel the frequency domain averaging 
that is a feature of typical (1/3) octave propagation 
data acquired with explosive charges. We would 
expect a measurement made with a well controlled cw 
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source to more closely match the random variability of 
model data; (excluding the ray dropout cases included 
here only as negative examples). 

In concluding this appendix section on method application, 
the statement of the guiding nature of these quantitative measures 
must be reiterated. The three summary remarks above all show how 
each of the components as well as their distribution are affected 
by measurement techniques, range, and computational procedures. 
Strong conclusions can be drawn in specific cases and these can be 
supported with rigor and have considerable sensitivity; however 
the methods are not automatic and their application is supportive 
to the analyst who retains responsibility for their correct 
application and results. 
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Connection Between the Solutions of the Helmholtz 

and Parabolic Equations for Sound Propagation 

John A DeSanto, Naval Research Laboratory, 
Washington ~C, and Admiralty Research Laboratory, 

Teddington, England, U.K. 

ABSTRACT 

Using a conformal mapping technique in a rectangular waveguide, 

we present an exact integral relation between the solutions of the Helmholtz 

equation whose sound speed c(x,y) varies as a function of both depth y 

and range x and the solutions of a parabolic equation whose sound speed 

varies in the mapped depth coordinate. The relation of the corresponding 

boundary value problems is also discussed, as well as the use of the 

. parabolic approximation in underwater sound propagation problems. The 

conformal transformation interrelates the sound speeds of the two equations. 

Several examples are discussed. When c(x,y) = c(y) is only a function of 

depth we get the recent result of Polyanskii. Other examples for a general 

conformal transformation are functions c(x»y) which are sinusoidal in 

depth and exponentially decrease to a constant in range. Several alter-

native methods of using these results are also discussed. 
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INTRODUCTION 

We wish to relate the solutions of the Helmholtz equation (an 

elliptic partial differential equation) to the solutions of a related 

parabolic partial differential equation for the problem of wave propagation 

in an inhomogeneous waveguide. Recently, Polyanskii 1 presented a short 

paper on this problem where the sound speed inhomogeneity was assumed to 

vary in only one direction, that of depth. A more general result is 

possible. In particular we present here, using a conformal mapping 

technique, an exact integral relation between the solution of a Helmholtz 

equation, *, whose sound speed c(x,y) varies as a function of depth y 

and range x, and the solution of a corresponding parabolic equation, p, 

whose sound speed varies in the transformed depth coordinate. The method 

further clarifies the use of the parabolic approximation for underwater 
2-4 sound propagation problems. 

In Section 1 we present the notation and derive the exact integral 

relation between", and p. In Section 2 we show that, since p is 

separable, it is possible to derive a separable solution for", in the 

transformed coordinate, while relating the sound speeds for the elliptic 

and parabolic equations via the conformal map. The fact that 1jr must 

satisfy a radiation condition yields a restriction on the available trans-

formations. Hence 1jr can be written in terms of parabolic eigenfunctions 

which depend on the transformed coordinates. 

In Section 3 the use of the parabolic method as an approximation is 

studied using the integral relation and modal representation developed in 

Sections 1 and 2, and asymptotic properties of the Hankel function. Here, 

our main new conclusion is that for multi-mode propagation in cylindrical 

geometry the parabolic approximation can preserve at most one modal 

amplitude. The rest are scaled by an eigenfrequency-dependant fac:tor • . In 
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addition, because of the exact relation between * and p, a given 

incident field in the parabolic boundary value problem yields a different 

incident field in the elliptic problem. 

Section 4 contains several examples, one of which is the result of 

Polyanskii 1. It is possible to assume a general fonn for the confonna1 

transformation compatible with the radiation condition, and a method is 

discussed for constructing the profile in terms of the transfonnation and 

vice versa. The examp,les include profiles which are sinusoidal in depth 

and exponentially decreasing to a constant in range. 

Section 5 concludes with a discussion of several alternative methods 

of viewing the problem and using the results, and a summary. 

1. RELATION BETWEEN ELLIPTIC AND PARABOLIC SOLUTIONS 

The velocity potential * (x,y) describing sound propagation 

satisfies the scalar Helmholtz equation (an elliptic partial differential 

equation5) 

* + * + K ( x ,y) * = 0 xx yy 

in the waveguide region x ~ 0 and 0 ~ y ~ L. Here 2 K(x,y) =[w/c(x,y)] 

( 1 ) 

where w is the circular frequency of the sound and c(x,y) its speed. See 

Fig. 1. Define the coordinate transfonnation 

1; = u(x,y) , Tj ' = v(x,y) (2) 

and use the functional definition 

1> (l;,'J)) = * (x,y). ( 3) 

If we assume that the transformation is conforma1 6, then we can write it as 

(z = x + iy) 

u + i v = f{z) (4) 

wher'e u and v satisfy the Cauchy-Riemann conditions 

u = -v. YX (5) 
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Here f(z) is a regular analytic function and f'(z) ~ 0 in the waveguide. 

Then ~ satisfies the Helmholtz equation 

~l:r: + ~ + K (~, ,,)~ = ' 0 
~~ "" 2 

where . 2 K (l;,,,) = K(x,y)/ If'(z)1 
2 

Next, assume the function p(~,,,~ satisfies the parabolic partial 

differential equation5 

where Ct is a constant and K3 is an arbitrary function of the transformed 

depth coordi nate ". We wi sh to es tab 1 i sh a re 1 ati on between ~ and p. 

If we assume the general forml 

00 

~(l;,,,) = C exp[A(l;)] Jp[g(t),,,]exp[B(~,t)]dt 
o 

where C is a constant, substitute (9) into (6) and integrate by parts 

using (8), then it is easy to show that (9) satisfies (6) provided we choose 

A(~) . = a In(~) , 

B(~, t) = (3l;2t + '(a - 3/2)ln(t) , 

g ( t) . = a. /4 f3t , 

and 

where fJ and a aye constants. Here the surface terms resulting from the 

partial inte9rdtion can be neglected. 

Substitutin9 (10), (11) and (12) into (9) and using (3) yields the 

integral relation 

SACLANTCEN CP-17 43-4 

(6) 

(7) 

(8) 

(9) 

(10 ) 

(11 ) 

(12) 

(13) 



DESANTO: Connection between HeZmhoZta and paraboUc equations 

00 

W(x,y) = C ~a J p (4~t' 0 exp (~2t)ta..a/adt 
o 

between * and p. For ~ = i this can be viewed as a combined Mellin-

Fourier-inversion transformation on the parabolic solution. Combining (7) 

and (13) yields the relation 

(14 ) 

K(x,y) = 1 f'(z) 12 [K3(TI) + a(l - a)/~2] . (15) 

between the sound speeds. 

Thus we have a general exact integral relation between the elliptic 

and parabolic solutions given by (14), where their respective sound speeds 

are related using (15). 

2. MODAL REPRESENTATION 

The parabolic equation (8) is separable. We can write its solutions 

~.s 

j=O (16) 

where the {p·l are constants (and can be determined from the known incident 
J 

field) and where the eigenfunctions Nj(TI) satisfy, in the transformed depth 

coordinate, the ordinary differential equations 

and boundary conditions which are discussed later. 7 The {"-.l are the 
J 

discrete eigenvalueso8 If we substitute (17) into (15) and use the integral 

representation9 
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00 ! exp (itp2 - o2/4t )t-V
- 1 dt 

o 

where H(l) is the Hankel function of first kind and vth ord~r. then. v 
for (3 = i. w can be wri tten as 

Hence (19) is a separable expansion for 1Jr in terms of the transformed 

coordinates E; and 1l. In addition to satisfying boundary conditions at 

x = 0 and y = 0 and L, 1Jr must satisfy a radiation condition as x -:. 00 

(this was the reason for the choice (3 = i). That is, each partial mode in 

(19) must behave like exp(ix A
j ) as x'" co. This holds if we use the 

asymptotic representation of the Hankel function and the requirement that 

as x'" 00.1;"" x. This asymptotic restriction enables us to write the 

transformation as 

(18) 

(19) 

(20) 

where fl(z)'" 0 as z ... 00 in the waveguide, and, since the transfol1nation 

is conformal, fl (z) f -1 also in the waveguide region. Unfortunately we 

can determine no more properties of the transformation simply and it is 

easiest to proceed by considering some examples. We do this in Section 4. 

First, however, we briefly consider the pa'rabolic solution when it is used as 

an approximation. 
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3 •. PARABOLIC APPROXIMATION 

For a. = ik the parabolic solution (16) is 

00 

\' 2 p(x,y) = p(s,n) = ~j PjNj(n) exp (i Xj ~k) 
(21) 

j=o 
This is used as an approximation to the asymptotic value of t which is, 

using the asymptotic representation of the Hankel f~nction in (19) 

00 

w(x,y) - c(nt)1/a ~ Pj(X~)a-1Nj(n) exp (iXjs) (22) 
j=O 

comparison of (21) and (22) shows inmlediately that the parabolic approxi-

mation does not preserve the phase of the asymptotic elliptic solution. This 

is well known, as is the fact that the mode shapes ~ preserved by the 

approximation. 3,4 However, the question of the amplitudes of the modes is 

somewhat different. If a = 1, and the normalization constant C is 

chosen as C = (~i)-1/2, then p preserves all the modal amplitudes of * . 
The case a = 1 is that of cartesian coordinates and is considered as 

Example 1 in the next section. For a # 1, all the modal amplitudes ate not 

preserved by· the approximation because of the X. factor in (22). It is . 
J 

possible to preserve ~ of them, say the mth modal amplitude, by choosing 

C = (~)-1/2(2fXm)a-l. Then all the remaining amplitudes will be scaled in 

the parabolic approximation by the factor (Xm/Aj)a-l. For example, the case 

a = 1/2 is the case of cylindrical coordinates (see Ex. 2 in Sec. 4) which 

is most often used in sound propagation problems. Our conclusions on the 

preservation of the amplitude in the parabolic approximation for multi-mode 

propagation thus differ from the corresponding results in the literature. 10 

For multi-mode propagation the parabolic approximation preserves all the 

amplitudes in cartesian coordinates, but can preserve at most one amplitude 

for cylindrical coordinates, 
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There is a further question having to do with the incident field. 

If we let a = 1/2 and choose cylindrical coordinates (1:;= r, 'r\ = y), then 

the incident parabolic field \'/hich is known at say r = 1 can be used in e21} 

to determine the set [Pj I. Substituting {Pj 1 into (19) and noting that 

(Ex. 2, Sec. 4) the cylindrical field in the elliptic problem is r-l1V(r, y), 

we see that at r = 1, 1jr(l,y) f p(l,y}. Again one point can be matched by 

proper choice of the constant C (which is thereby unavailable to match an . 

asymptotic modal amplitude), but the incident fields and hence the corres-

ponding boundary value problems are different for 1jr and p. The two 

incident fields cannot be chosen independently. 

From the exact relation (14) we thus conclude that for cylindrical 

coordinates the parabolic approximation in general doesn't preserve the 

amplitudes of the asymptotic elliptic solution, nor does it match the 

incident field. 

4. EXAMPLES 

In this section we present some examples of the exact formalism 

developed in Secs 1 and 2. 

(Example 1) 

Choose cartesian coordinates 1; = x and 11 = y, then the transformation 

is f(z} = Zo Then if a = 1, a. = ik, and (3 = i, (14), (15) and (19) yield 

(23) 

00 

1jr (x,y) = ex J p (4~' y) exp (iit) t- l/ 2 dt (24) 

o 

= {25} 
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where C = (ffi)-1/2 in (25) and where we have used the definition ll 

H~U2(Z) . = (21m) 1/2 exp(iz) (26) 

This is the result of Polyanskii~ and by (23) only holds for sound speeds 

which vary in depth. Comparing (21) and (25) shows that the parabolic solution 

preserves all the modal amplitudes. 

(Example 2) 

Again choose cartesi an coordinates 1;. x and 11 = Y so that the 

transformation is f(z) = z. Let a = 1/2. Then (15) becomes 

-1 
K{x,y) = K3 (y) + (4i) 

If we relable x ... r, then the function 1l' defined by 

1l' (r,y) = r- 1/21jr(r,y) 

satisfies the Helmholtz equation in cylindrical coordinates 

Thus the term involving a in (15) is like a centrifugal barrier term in 

potential scattering theory.12 

(Example 3) 

More generally. choose the transformation 

f(z) . = z + f exp{-ez) 0< e:, f < 1 

with 1; = Ref(z) . = x + f COS(ey) exp (-ex) 

11 = Imf(z) = y - f sin(ey) exp (-ex) • 

Further, let a = 0 and K3(1l) = k2 where k = W Ic and c is an 

arbitrary sound speed used in the parabolic equation. Then (15) yields 
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K(x,y) . = k2 [ 1-2e:f cos(e:y)exp(-e:x) + (e:f)2exp(-2s x) J. (31) 

Since K3(~) is constant, the Nj eigenfunctions are by (17) 

Nj(~) .. = D sin (inj n) + E cos (mj'l'l) (32) 

~ 
where mj = (k2 - }..]) • Further, assume the boundary value problem of 

a soft (Dirichlet) surface at y = 0, a hard (Neumann) bottom at y = 1, and 

an arbitrary incident field at x = 0, i.e., 

1( (x,O) . = ° 
~(x L) = ° ay , 

and 1( (O,y) = 1( (0) (y). 

Then since ~ (x,O) = ° and :n (x,L) = L - f sin(e: L)exp{-~x) the boundary 

conditions (33) are satisfied using (19) and (32) provided that 

E = 0 

and 

where 

The choice of }... 
J 

is made to ensure that the outgoing radiation condition 

is fulfilled. Using (34) the parabolic boundary value problem is 

p (l; (x, 0) ,0) . = ° 
~ ~ (x,L) ,L) = ° 

p(~,~) I . = p(f cos(ny/L), y~f sin(~/L» = p{O)(y) 
x=O 
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with l; (x,O) and 1;; (x,L) given by (30). 

If we write (31) in terms of sound speeds using K(x,y) = [w/c(x,y)]2 

then we have 

c(x,y)lc = [1 - (211f/L}cos (rry/L) exp(-rrx/L) 

+ (rrf/L}2 exp(-211)(/L) , J-
1/ 2 

a one-parameter family of sound speed profiles which are sinusoidal in 

depth and exponentially decreasing in range. An example is given in Fig. 2. 

(36) 

Thus for the sound speed (36) the elliptic solution of (1), t, can be 

expressed exactly by (14) as an integral over the solution of the simple 

parabolic boundary value problem (35), or as an exact modal expansion by (19) 

using the transformed eigenfunctions (32) (using (34)) and a set { Pjl 

which can be found by point matching the incident parabolic field in (35). 

(Example 4) 

For a multi-parameter family of sound speeds choose the transformation 

M 

f(z} = z + I fm exp (-e:mz) (37) 

m~1 

where M 

1;; = X + [ fm cos(€mY} exp(-€mx) 
m=1 

and 

If we again choose as in Ex. 3, K3(rl) = k2, the eigenfunctions Nj(n} 

are the same as (32) and the boundary value problem (33) is satisfied 

provided (34) and 8 m = mrr/L hold. The values of r; and n at y = 0 and 

L and at x = ° are found from (37). If a = 0, then (15) and (37) yield 
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M 

K(x,y) . = k2 [ 1 - 2·13 mfm cos{enrv) exp(-emx) 

rM tIn::1 
+ g g f f cos [ {e -e )y] m n m n m n 

In:: 1 ll:: 1 

exp [- (e +e )x 1] m m 

which is an M-parameter family of curves • . Each additional term in the sum 

in (37) introduces an additional turning point in the sound speed curve. 

Example 3 with · M = 1 had no turning points. For M = 2, (38) written in 

terms of sound speeds is 

c(x,y)/c = [1 + (1Tfl/L)2 exp(-21TX/L) 

+ (2nf2/L)2 exp(-41TX/L) 

- (21Tf1/L)(1 - [arf2/LJ eXP(-21TX/LV· 

ocos(ny/L) exp{-1TX/L) 

- (4nf2/L) cos (2ny/L) exp{-2nx/L) . J -~ 

(38) 

(39) 

an example of which is plotted in Fig. 3. Note the fact that the sound 

speeds have one turning point. By multiplying [c/c(x,y)] 2 by cos (muy/L) 

for m = 1,2 and then integrating over y from 0 to L it is possible to 

solve for f1 and f2 and fit them to various ranges. 

Again, for the sound speed (39), 1/r ' is either an exact integral 

relation (14) or an exact modal representation (19) over terms associated 

with the parabolic boundary value problem defined above. 

(Example 5) 

Some additional examples of other tl"ansformations which can be used are, 

from (20) 

(40) 
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where the gm(z) can be finite polynomials (splines), oscillatory 

functions, etc. Indeed fl can be even more general. So long as fl(z) 

has no singularities in the waveguide, and vanishes as z ~ 00 in the 

waveguide, it can be quite arbitrary. This admits ratios of polynomials 

(Pade approximants) as well as functions with more complicated singularities · 

outside the waveguide. Some of these examples are presently being pursued. 

5. SUMMARY 

There are several alternative ways to view the results in this paper. 

Firstly, one could take as the central issue the confonnal transfonnation. 

By choosing various transformations one could construct a library of 

available profiles including those generated using more complicated profiles 

in the parabolic equation, those involving centrifugal barrier terms, and 

those involving more complicated transformation functions. Solution of the 

resulting parabolic boundary value problem in the transformation distorted 

waveguide (as in E9s 3 and 4) and either ~ontinuous (Eq 14) or discrete 

(Eq 19) quadrature yield the solution of the full elliptic problem for the 

various profiles. The numerical solution of the parabolic boundary value 

problem can be accomplished quickly by using a marching algorithm in range 

(although this is complicated by the distortion of the waveguide) whereas 

the elliptic equation requires a much more involved and time consuming 

numerical discretization over a closed bbundary. 

Secondly, one could consider the solution of the parabolic equation 

as central and numerically solve the simplest non-trivial parabolic boundary 

value problem available. This will then lead to the transformation. 

Finally, the profile may be regarded as fundamental. In particular, 

K(x,y} may be given as a discrete set of points and the cor.fonna1 trans-

fonnation is constructed by fitting these points. The transformation then 

yields the parabolic boundary value problem, etc. These three interpretations 
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of the ways to utilize the above results are, of course, intimately connected. 

Thus we have presented an exact relation between the solution of the 

Helmholtz equation whose sound speed varies in both depth and range and the 

solution of a parabolic boundary value problem with sound speed varying in a 

conformally transformed depth coordinate. The relation can be expressed either 

as a Fourier-Mellin-inversion transformation or as a discrete modal sum. The 

sound speeds in both equations are themselves related via the conformal trans-

formation. Several e.xamples were presented, among them profiles which change 

sinusoidally in depth and decrease exponentially to a constant in range. When 

viewed as an approximation the parabolic method was found to preserve at ' most 

one of the modal amplitudes in a multi-mode propagation problem in cylindrical 

coordinates and, because of the exact relation between the two solutions their 

respective incident fields could not be independently chosen to be equal. 
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c (x, y) 
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FIG. 1 THE WAVEGUIDE REGION IN WHICH WE SOLVE THE ORIGINAL ELLIPTIC (HELMHOL TZ) EQUATION FOR 
SOUND PROPAGATION. WE CONSTRUCT EXAMPLES OF SOLVABLE SOUND SPEEDS c (x, y) DEPENDING 
ON BOTH RANGE x AND DEPTH y. 

y= 0 C(X, y)/C 

x= 00 

y=L 
(1. TTf/L)-l 

FIG. 2 AN EXAMPLE OF A 1-PARAMETER FAMILY OF SOUND SPEED PROFILES FOR WHICH THE ELLIPTIC 
EQUATION (1) IS ElCACTLY SOLVABLE. THEY ARE SINUSOIDAL IN DEPTH, EXPONENTIALLY 
DECREASING IN RANGE, AND HAVE NO TURNING POINTS. THE FIGURE REFERS TO EXAMPLE 3 
IN SEC. 4. 

y=O 

-1 
( 

TTf1 - TT/L 2rrf2 -2TT/L) 
1- L e - l e C(x, y)/C 

x = 00 

y=L 

( 
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FIG. 3 AN EXAMPLE OF A 2-PARAMETER FAMILY OF SOUND SPEED PROFILES FOR WHICH THE ELLIPTIC 
EQUATION (1) IS EXACTLY SOLVABLE. THEY ARE SINUSOIDAL IN DEPTH, EXPONENTIALLY 
DECREASING IN RANGE, AND HAVE ONE TURNING POINT. THE FIGURE REFERS TO EXAMPLE 4 
IN SEC. 4 .• 
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COMPUTER MODELS FOR UNDERWATER SOUND PROPAGATION 

F.R. DiNapoli 

Naval Underwater Systems Center 
New London Laboratory 

New London, Connecticut 06320 

ABSTRACT 

The state of affairs of computer mod~ls for underwater sound propagation 

loss estimation is discussed from the viewpoints of two segments of the sonar 

community; i.e., (1) those who develop the models and are primarily concerned 

with the accuracy of the estimations and (2) those who use such models and view 

propagation loss as only one of many areas in which sub-models are required. 

A list of propagation models, classified according to the analytical methods 

used in their derivations, is presented. The features and shortcomings of each 

class are then discussed in broad terms. Various sonar applications for which 

knowledge of propagation loss is needed are briefly delineated to indicate their 

diversity. Also, a number of practical considerations (in addition to accuracy) 

are listed that influence the user1s selection of a propagation loss model for a 

particular application. Finally, various aspects of model assessment are 

addressed and a method for the quantitative assessment of comparative model 

accuracy (now in formative stages of development) is presented. The use of 

this methodology is discussed through illustrative examples. 
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COMPUTER MODELS OF UNDERWATER SOUND PROPAGATION 

During the process of writing this paper recollections of a book by the 

American psychologist Lawrence LeShan, entitled The Medium, Mystic, and the 

Physicist (the cover of which is presented in figure l), came to mind and it 

seemed that this would perhaps be an appropriate subtitle for my paper. I am 

positive that certain segments of the sonar community look upon the developers 

of models for underwater sound as being the most outrageous perpetrators of 

mysticism ever encountered. There are still others who believe that confronting 

the model developer with a very straightforward question about his work evokes 

about the same response one would obtain from a medium if he were asked where 

his information comes from. Of course, the model developers believe that the 

situation is the reverse, i.e., in their dealings with the rest of the sonar 

community they feel they have somehow had a mystical experience. 

Clearly, this situation has something to do with the various connotations 

of the term "reality." LeShan observed that serious mystics and modern 

theoretical physicists seem to have a common understanding of reality. To 

prove his point he asks the reader to determine whether statements summarizing 

viewpoints of reality were written by physicists or mystics. Figure 2 contains 

a few of those quotations with the name of the originator and the letter P or 

M to indicate whether he is a physicist or mystic. 

After reading all of the quotations suppl ied by LeShan, I came to agree 

with his contention that there is a general consensus among mystics and pElysicists 

regarding the perception of reality. Although this point is interesting in its 

own right, especially in view of the diverse fields involved, I use the term 
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reality in this paper because it is my contention that different segments of 

the sonar community have (at a minimum) different interpretations of reality. 

This appears on the surface to be a rather obvious point. However, it is often 

overlooked by all concerned parties in the conduct of their daily business and 

a fair amount of confusion results. Perhaps not so obvious is why this fact is 

overlooked. I will expand on this theme as the paper develops by delineating 

two perceptions of reality currently popular in the U.S. It is hoped that this 

discussion will help the reader understand the reason for the confused state 

of affairs. 

Up to this point I have spoken rather vaguely about various sectors of the 

sonar community. The remainder of the paper will deal with computer models of 

underwater sound and with reality in terms of the two types of sonar scientists 

and engineers identified in Figure 3. 

To the left of the figure are those scientists and engineers who are actually 

engaged in the development of models. There are at least two types of models 

that can be discussed. The first consists of models for the individual terms 

in the sonar equation such as propagation loss, ambient noise, reverberation, 

etc., which might properly be termed sub-models. The second emphasizes sonar 

analysis and is concerned with combining the sub-model accounting for medium 

induced effects and sub-models for the system related terms in the sonar equation 

to form a total sonar systems model; henceforth, this will be referred to as 

the generic model. A distinguishing feature of this effort is that the ~pe of 

funding that usually supports it is identified as research or exploratory 

deve l opment . 
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The group at the right of figure 3 might be called the model users or 

customers. (In some instances they may describe themselves as the reluctant 

model users.) It is not uncommon to find the sonar analyst previously 

identified also operating in this sphere. These people are usually involved in 

system analysis, performance prediction, and system design. The funding for 

their work is usually associated with advanced development and engineering. 

Hhereas the perception of reality for the group to the left revolves around 

predictions or estimations, reality for the users is governed by applications. 

In both instances the actual understanding of reality has many aspects that 

are usually not precisely defined. 

Since the model is common to both groups, it ostensibly emerges as the 

bridge connecting two historically distinct and separate groups within the 

sonar community. Recent experience in the U.S. suggests that although the 

concept appears to be sound, the bridge is far from complete (see figure 4). 

One reason for this situation is that a generi c model for mobi.l e sonar 

systems does not currently exist. A major difficulty involved in constructing 

such a model is designing a computer architecture flexible enough to accommodate 

the different and often conflicting understandings of reality by the two groups. 

I will have more to say on this subject later. Finally, there is the difficult 

problem of assessment. Given that a generic model could be constructed and 

that the developer and user have reached a common understanding of what constitutes 

reality, the question remains as to whether the model predictions bear any 

resemblance to the accepted concept of reality. Toward the end of this paper I 

will discuss our current thinking on the subject of model assessment. 
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I would now like to address the subject of computer sub-models of under-

water sound phenomena from the standpoint of the model developer. I should 

first explain that the compilation shown in figure 5 is not meant to be 

comprehensive but, instead indicative of the different types of propagation 

models existing in the U.S. sonar community classified according to the analytical 

methods used in their derivations. I will discuss the features and shortcomings 

of the models in rather general terms, according to class; to do otherwise would 

require examination of each model separately. Such an examination is best done 

by the model developer himself but, unfortunately, model documentation rarely 

contai ns statements about shortcomings. (The reason for tlli s shoul d become 

evident as we proceed.) Thus, a general approach to the subject may be the 

best that can be achieved at this time. 

I have begun the compilation with the semi-empirical/semi-analytical class 

because they are significantly different from the other models on the list. 

A common characteristic of this class is that the models result from an attempt 

to fit, or explain, a rather broad base of experimental data. The perception of 

reality is then intimately related to the scope and quality of the experimental 

data set. In most cases this constitutes a rather limited outlook on underwater 

acoustics. The AMOS experiment, for example, consisted of approximately 100,000 

data points obtained at various locations in the Atlantic, but the primary 

subject of investigation was surface duct propagation. The COLOSSUS II experiment 

was primarily intended to examine shallow water acoustics. This type of model 

development has, for the most part, disappeared for two reasons, one economical 

and one technical. The cost of conducting large scale experimental programs 

such as AMOS or COLOSSUS today is prohibitive. Moreover, advances in computer 

tecnnoloqy have made it possible to obtain detailed results for specific 
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environmental situations that appear to be more attractive to both the user and 

the model developer. 

A summary of the main features and shortcomings of these models is provided 

in figure 6. Although limited in scope, they generally have the attribute that 

answers can be obtained in an extremely short (computer) time. For some appTi-

cations this feature is of paramount importance, eclipsing even the need for 

accuracy. The equations involved are generally very simple expressions involving 

terms that have a semi-analytical flavor, such as the expression labeled 

G (Zt,Zx)' and terms that have an empirical flavor, such as the attenuation 

coeffi ci ent (If • 

The shortcomings stem from the intrinsic natures of the models. One expects 

to find a large variance between the model predictions and data from any single 

experimental run because .the model is an attempt to summari.ze data obtained 

from many runs involving different environmental conditions. One should also 
, 

expect the app 1 i cabi 1 i ty of the models to be governed by the range of the 

parameters associated with the experimental data set. If one found agreement 

between AMOS predictions and surface duct data at 1000 Hz, it would be a 

fortuitous occurrence. 

Another natural shortcoming is the inability to predi.ct the detailed 

features of propagation loss as illustrated in figures 7 and 8. In both cases 

the experimental source was located at a depth of 20 ft and emitted CW pulses 

centered at 3.125 kHz. The receiver depth for figure 7 was 50 ft; i.e., both 

source and receiver were located in the surface duct. Although the AMOS 

prediction seems to adequately portray the mean level of the data, it gives no 
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indication of the rather definitive interference structure exhibited in the 

data. The results shown in figure 8 represent a cross-layer case with the 

source in the duct and the receiver well below the duct. The agreement in this 

case is generally quite poor even in mean level and using the AMOS results to 

obtain an estimate for the detection range would be judged unsatisfactory. 

This is an appropriate time to mention that I have arrived at the short-

comings of this class of models land those that will be discussed shortly) 

from the viewpoint that the primary interest of the sub-model developer is to 

produce accurate answers. If the primary interest is not accuracy, as might 

well be for the model user, the entries on this list would be considerably 

different. 

The understanding of reality for the remaining classes of propagation 

models would appear to b~ the result of a compromise between what the modeler 

would like to achieve (namely, the ability to produce accurate answers for 

propagation loss) and what the state-of-the-art of mathematics and computer 

technology will allow him to accomplish. The basis for all of the remaining 

classes is not experimental data but rather the wave equation shown in figure 9. 

Of course, this equation and the associated boundary conditions also represent 

a limited scope of reality. That is, this equation represents a li.nearized version 

of the fundamental equations, which assume the transmission of energy is a 

purely deterministic process. Also, it is assumed that the source of energy 

is concentrated at a single point in space and continuously puts energy into 

the medium. Lastly, the sound speed profile is assumed to vary only with depth 

and the boundaries are taken to be horizontal and smooth. Although these 

assumptions appear to be restrictive, in some cases they are only the beginning 
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of what appears to some to be a never-ending list. 

The first of these modifications involves the class of models which I 

have termed "ray theory with corrections" (figure 10). One may look upon this 

class of models as an approximate solution for the wave equation, the accuracy 

of which increases with increasing frequency. It is difficult, however, to 

state beforehand under precisely what conditions the solution will break down. 

The practice usually followed at the Naval Underwater Systems Center (NUSC) is 

to compare the results of a ray and non-ray model for the same case. If agree-

ment is found we are then fairly confident in proceeding to obtain additional 

ray theory predictions. Recently, significant advancements have been made in 

automating corrections to the ray theory solution for known artifacts stemming 

from the nature of the approximate solution. This work involves correcting the 

solution in the vicinity of caus t ics. In particular, we have Keller's geometrical · 

theory of diffraction (asymptotic ray theory}, the various modified ray theories, 

and generalized ray theory. Each of these extensions has its own virtues and 

limitations. For example, the various modified ray theories attempt to make 

ray theory valid at caustics but each caustic correction seems to be different. 

The FACT model uses the non-uniform Brekhovskikh caustic correction for smooth 

caustics while the NISSM II program applies the uniform Ludwig correction. When 

these corrections are compared against wave theory results, for which caustic 

corrections are not required, the results are favorable in some cases but not 

all. In addition to the Brekhovskikh and Ludwig corrections there is the Davis 

extended modified ray theory and the corrections made by Levey and Felsen in 

terms of incomplete Airy functions. 
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In spite of such progress, the use of ray theory in a surface duct, in 

shallow water, and at low frequencies generally remains a method of dubious 

accuracy. Another area of concern is the use of ray theory when interaction 

with the sub-bottom is of significance. This is a relatively new application 

in underwater ac·oustics but an old concern for the seismic community. They 

have made considerable progress in extending ray theory for this application. 

However, as Cerveny and Ravindra point out in their book, entitled "Theory of 

Seismic Head Waves," the extensions are ndt generally applicable when interference 

effects become important as in thin layers of thicknesses less than, or comparable 

to, the wavelength. 

Thus, it would seem that additional modifications will be required for 

future applications. It is also clear that a user is likely to have difficulty 

in interpreting the meaning of these mathematical expressions in terms of 

cl ass i ca 1 ray theory. 

In spite of the inherent uncertainties concerning its validity, ray theory 

is widely used and in many instances preferred over other types of solutions; 

this is not likely to change in the near future. One reason is that the ray 

diagram can be easily interpreted in a gross fashion to indicate where high or 

low intensity regions are likely to be found. Furthermore, the ability to provide 

the user with information about the effects of directivity, surface loss, 

reverberation, and the like, seem more easily dealt wHh in terms of ray tn.eory 

than by wave related solutions. Considerable progress has also oeen made in 

reducing the computing time needed to make ray theory predictions. In this regard, 

the FACT program is quite remarkable. The primary motivation oehi.nd the 

development of the NISSI·1 II model was not s.peed but to provide Ute user with 

SACLANTCEN CP-17 44-9 



DINAPOLI: Computer models for underwater-sound propagation 

predictions for boundary and volume reverberation, signal to noise ratios, and 

probability of detection in addition to propagation loss values. As such, it 

is a limited version of a generic model for surface ship sonars. 

Let me now summarize the features and shortcomings of this model class 

(figure 11). One of the reasons for the popularity of ray theory is that the 

ray diagram itself is a conceptually appealing link between the mathematics 

involved and the final plot of propagation loss versus range, which can be 

appreciated by almost every segment of the sonar community. 

Another important feature is the ability to routinely provide more 

information than merely propagation loss to a point receiver. Information 

about travel time, angle of arrival, reverberation and ambient noise levels, 

beamformer output, etc., is viewed as essential by many users. The relative 

speed with which modern ray theory programs provide answers is an important 

feature for many applications. 

The major disadvantage of ray theory is that it is difficult to precisely 

determine when it should not be used because of invalid results. Caution should 

be used in applications to shallow water, surface ducts and low frequencies in 

general and, especially, in cases where sub-bottom interaction may be significant. 

The need for corrections then follows naturally and the second item results 

rather naturally from the first. Corrections have been implemented for two 

and three ray system caustic formations. However, modifications to account for 

such things as the lateral \'lave phenomenon need to be implemented. 
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The perception of reality for the third class of models (see figure 12) is 

based upon the assumption that the solution for the wave equation can be 

adequately represented in terms of normal mode theory. The solution is described 

mathematically in terms of eigenvalues where the eigenvalue spectrum is composed 

of possible complex, but strictly discrete, eigenvalues. Herein is the first 

modification this class imposes in terms of reality because the solution to the 

wave equation (in terms of eigenvalues} generally has both a discrete and a 

continuous spectrum. Proponents of this type of solution would argue that the 

contribution from the continuous portion of the spectrum is of nugatory signifi-

cance. For some applications this is true, but it is generally not true for all 

mobile sonar applications. As was the case with ray theory, it is difficult to 

ascertain a priori the significance of the error incurred by neglecting the 

continuous portion of the spectrum. Therefore, when these programs are routinely 

run, it can only be hoped that the error will be insignificant. 

There is a practical problem involving the numerical location of the 

discrete eigenvalues common to all general purpose normal mode programs. For 

some combination of water depth and frequency, the numerical scheme for deter-

mining the location of the eigenvalues in the complex wave number space will 

eventually break down. It is difficult to ascertain precisely w~en t~is 

breakdown will occur without first running the program for the specific case 

under consideration. Thus, there is a difficulty in determining the ~igh 

frequency limit to which normal mode calculations can be confidently used. 

Once these questions have been dealt with, the solution is essentially 

complete except for the numoer of modes to be included in the final summation. 

This decision is somewhat analogous to choosing the angular sector examined in 
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ray theory. Pedersen and Bartberger have examined the question of which modes 

are of importance for specific cases and have provided significant insight. 

However, a great advantage of normal mode theory is that once the significant 

eigenvalues have been determined, the solutions for any source and receiver 

combination can be easily obtained. One would like to know the total number of 

eigenvalues that must be located to satisfy all possible source and receiver 

combinations of interest. Various rules of thumb exist, e.g., Gordon suggests 

that the maximum mode number is approximately 1-1/2 times the frequency. 

Williams suggests that for shallow water the rule of thumb is H/X , where H is 

the water depth and X the wavelength. 

In the final analysis, however, the procedure that is most often used is 

to run the program fora given number of different modes and examine the behavior 

of the solution as more modes are added. The same would be true in ray theory 

calculations when trying to determine both the angular sector of rays to be 

traced and the angular difference between rays. There are parameters similar 

to these associated with every model; they lack precise definition and make the 

complete automation of general purpose propagation models a very intricate and 

complex process. From the users · standpoint, the degree to which a model can be 

automated by a non-expert is an important concern. 

Generally speaking normal mode programs can be broken into two sub-

classes depending upon the manner in which the depth-dependent wave equation 

is solved. One technique is to assume that the ocean is stratified with depth 

and that within each stratum the sound speed varies in a predetermined fashion. In 

this case the solution to th~ depth-dependent wave equation within each stratum 

will be given in terms of one of the special functions of mathematical physics. 
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Satisfaction of the continuity of impedance condition at each interface can then 

be expressed in terms of equations that cascade the known impedance condition at 

the surface and at the last boundary to the layer in which the source is located. 

The dispersion equation, or the Wronskian (if Green's function terminology is 

preferred) results from trying to satisfy the source conditions. There are 

then two distinct possibilities for the source and receiver locations. Either 

they are located in the same layer or the receiver is located in a layer that lies 

below the source. The second alternative approach is to make a guess at the 

value for the eigenvalue and then numerically integrate the depth dependent wave 

equation to determine if the boundary conditions are satisfied. Problems related 

to the numerical convergence of the solution are encountered in both approaches. 

Further modifications to the normal mode reality are sometimes made as by 

Kanabis, Ingenito, and others. They assume that the only significant modes are 

those whose associated ei~envalues are purely real. This assumption reduces both 

the required computing time and the applicability of the solution. The advantages 

and shortcomings of this class of models are summarized in figure 13. 

Once one is satisfied that the continuous spectrum can be neglected and that 

the numerical calculations are stable and accurate, the job is essentially 

complete and confidence in the results is extremely high. Unlike ray theory, 

the intermediate steps leading to the final mode summation provide little 

insight except to those who have labored over normal mode theory for some time. 

As was the case with ray theory, it is difficult to say in advance precisely 

when the solution will not be applicable. Finally, information other than 

propagation loss is difficult to obtain and not usually provided. 
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I have called the fourth class of models IItotal field representations ll 

because they come the closest to solving for the initial understanding of 

reality expressed in terms of the wave equation for an ccean having a single 

sound speed profile and flat bottom. An equivalent representation for this 

reality statement is the integral expression for the pressure field shown in 

figure 14. 

The models of Kutschale and Stickler represent solutions obtained in termS 

of eigenvalues that include contributions from both the continuous and discret~ 

portions of the spectrum. Kutschale was the first investigator to develop a 

general model having this capability and it should be noted that the inclusion 

of the continuous spectrum was viewed as a necessity for his work at very low 

frequencies in polar or arctic type environments. Another feature of his model 

is that his strata need not be perfect fluids. This was also necessary to 

explain propagation in the presence of an ice cover and through the sub-bottom 

at seismic frequencies. His assumption that the sound speed within each stratum 

is constant appears to be perfectly adequate at these frequencies. Stickler1s 

model is an all fluid model for which the reciprocal of the square of the sound 

speed varies linearly with depth within each stratum. Since both of these 

programs are essentially eigenvalue solutions one should expect them to have the 

~ame shortcomings mentioned for the normal mode class, i.e., for some comoinatiorl 

of water depth and frequency, problems of numerical accuracy and convergence 

will be encountered. 

The Fast Field Program on the other hand is not an eigenvalue solution out, 

quite simply, a direct numerical evaluation of the field integral which makes 

use of the Fast Fourier Transform algorithm. In order to arrive at this point, 
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the single modification to reality that must be introduced (figure 15) is that 

the Hankel function can be adequately represented in terms of its asymptotic 

expansion. If this approximation is looked at in isolation, one expects to 

encounter difficulties at very low frequencies and very close ranges. We have 

examined such cases, however, and have not been able to detect any significant 

error. The explanation is perhaps that the approximation should not be examined 

in isolation but rather as it effects the integration process. 

The fact that the FFP is not an eigenvalue solution is an important 

distinction; we believe this is the reason it provides accurate answers for 

~ combination of frequency and water depth of interest for mobile sonar 

applications . He have examined the FFP solution for frequencies as low as 

1 Hz to as high as 100 kHz and intermediate frequencies as well. Results 

for a few of the case studies conducted since 1968 that have convinced us of 

the general applicability of the FFP will be discussed below. 

The results shown in figure 16 provide an indication of the error that 

can be incurred by neglecting the continuous portion of the eigenvalue spectrum. 

The profile was taken from the Iberian Basin in a water depth of approximately 
s 

18,000 ft. The source and receiver were located in a subsurface channel overlaying 

a second channel at a deeper depth; three results are shown. The line connecting 

the open circles with dots enclosed and labeled "ARL discrete alone" represent 

Stick1 er l s results when he neg1 ects the continuous spectrum. The 1 ine connecting 

the open rectangles represent his results when the contribution from the con-

tinuous spectrum is added to the normal mode summation. Finally, the line 

connecting the circles that are filled in are the FFP results for the total 

field. The neglect of the continuous spectrum results in a substantial error 
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for ranges less than 3 nmi. It is clear that applications exist for which the 

neglect of the continuous portion of the spectrum could hardly be thought of 

as a minor concern. 

Figure 17 shows the comparison between the FFP predictions and data obtained 

from an active sonar system operating in the Mediterranean Sea. The agreement 

within the convergence zone is quite good. This is not the case, however, in 

the bottom bounce region before the zone. The reason for this is a lack of 

precise knowledge concerning the bottom loss at this location. The disagreement 
, 

along the trailing edge of the zone, especially for the deeper hydrophones, is 

somewhat more difficult to explain. One possibility1is that we are comparing the 

results of two dissimilar sources. The predictions are for an infinite CW 

omnidirectional source, whereas the experimental data source was directional 

and emitting LFM pulses. This line of discussion is somewhat premature because 

such questions are more precisely treated under the heading of assessment. 

However, it should be noted for future reference that the process of overplotting 

either predictions from various models or predictions with experiQental data 

and arriving at a subjective conclusion regarding the agreement is a common 

methodology for assessing the accuracy of model predictions. 

The features and shortcomings of the FFP are summarized in figure 18. The 

FFP is unique in that it is applicable for any combination of frequency and 

water depth. For this reason, various model developers have found it useful 

to employ the FFP as a bench mark program when they are testing new models 

or making improvements to older ones. Physical interpretations or the ability 

to gain insight are difficult· with the FFP because it provides th.e answer for 

the total field. The only intermediate information that can be provided is a 
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plot of the absolute magnitude of the kernel of the field integral. The user 

very often would like to partition the total field in various ways depending on 

his need. This is possible with the aid of the plot of the kernel but many 

questions remain about exactly what interpretation should be associated with 

this partitioning. For this reason, and others, the ability to provide user 

oriented information about reverberation, ambient noise, surface loss, and the 

like, appears feasible but it has not been worked out. 

Reality for all of the models discussed to this point consisted of an 

ocean having a flat bottom and a sound speed profile that did not change with 

range. Since this assumption pertains to the acoustics and not the actual 

environment of the ocean, it is often difficult to determine beforehand when 

the assumption will be no longer valid. The measured sound speed profiles and 

bottom bathymetry for an experimental track from Bermuda to the mid-Atlantic 

ridge are shown in the upper portion of figure 19. The acoustic data for the 

case of both source and receiver in the deep sound channel is at the lower left 

of the figure. A reasonable fit to these data is obtained using an expression 

that has a 10 log r dependence, implying that predictions from the previously 

mentioned models would provide reasonable agreement. To the right, however, 

are the data obtained using a near-surface source and a deep receiver. It is 

apparent that a single cylindrical spreading model fails to agree with the 

data over the entire range. The source was located in a surface duct that 

extended down to approximately 1500 ft near the receiver and gradually decreased 

i"n depth as the range increased. It is suspected that this is the cause for 

the non-cylindrical spreading loss behavior of the data. 
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A considerable amount of data similar to these now exists that suggests 

that, for some applications, the single profile, flat bottom perception of 

reality must be modified. In the past few years considerable progress has 

been made in imp.lementing solutions that accommodate this modification. The 

models identified in figure 20 are based on normal mode theory, a combination 

of mode and ray theory, and straightforward numerical techniques. For the 

normal-mode approach the ocean is usually laterally sub-divided into uniform 

segments and the normal modes for each segment are found. There are two major 

pOints of difficulty using this approach. The first is to properly account for 

the coupling of energy from one segment to the next, including the possibility 

that some energy will travel back toward the source. The second involves the 

treatment of the boundary condition when the ocean bottom interface is not 

horizontal. In order to arrive at a solution, various approximations must be 

made, the validity of which is difficult to determine mathematically. One can 

resort to comparisons with experimental data. However, this is often not a 

totally satisfying process because of the lack of completeness of the associated 

environmental data. More directly, agreement with the data can usually be 

achieved if adjustments are made to model and experimental data parameters, 

the values of which have not been determined. Although good comparisons with 

experimental data are encouraging, more is often learned about the model from 

cases where agreement is poor. Unfortunately, these cases are very seldom 

widely publ idzed. 

It is a bit early to arrive at a meaningful list of advantages and 

shortcomings for this class of models since development work is still in 

progress. Therefore, a few observations of only a general nature would be 

appropriate. Most of the current effort seems to be devoted to accounting 
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for acoustic effects caused by the range dependence in the environmental 

parameters of the water column. This is a natural development considering the 

types of data available. We believe that applications may soon be apparent for 

which range dependence of the sound speed and density profiles within the bottom, 

and the non-parallel nature of the boundaries separating different sub-bottom 

layers, will be more significant than the range dependence of the corresponding 

environmental parameters of the water column alone. 

Other classes of models exist (figure 21) but time constraints prevent 

discussing them in detail. It is worthwhile to mention them however. For 

instance, there is a class of models that, in one way or another, use a combin-

ation of wave and ray theory. The mathematics involved is usually, but not 

always, centered around expanding the kernel for the field integral in terms 

of an infinite series of integrals that correspond to various types of multiple 

reflections. This technique dates back at least to Pekeris and Haskell. 

There has also been recent interest in predicting the received pressure 

waveform as opposed to the usual prediction for the energy of a CW signal. 

General purpose programs have been developed based on both the FFP technique 

and normal-mode theory. 

If by this time the reader is somewhat bewildered at the vast number and 

types of propagati'on models, then he is in the proper frame of mind for the 

remainder of this paper. 

So far, the basis of reality as discussed herein has involved strictly the 

question of accuracy for one sub-model, namely propagation loss. To the sonar 
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analyst interested in developing a generic model (figure 3), this represents 

just one of many concerns. Thus, he may view the discussion about the relative 

merits of one propagation model over another as being somewhat esoteric. To 

provide an understanding for this attitude computer models of underwater sound 

from the sonar ahalysis viewpoint will now be discussed. In doing so, it is 

useful to paraphrase discussions held by the Panel On Sonar Standard Models 

(POSSM), which is a multi-laboratory effort founded by the Naval Sea Systems 

Command (NAVSEA) (Code 06Hl). NAVSEA was concerned about the confusion expressed 

by users concerning the proliferation of models and chartered POSSM to make 

recommendations concerning model usage for NAVSEA programs. The membership 

of the panel was equally divided between those interested in developing sub-

models and sonar analysts in the hope that a common reality would emerge. 

The sonar analysts believed that although models for propagation loss could 

be found in abundance, sub-models for other terms in the sonar equation were, 

in some cases, nonexistent or at best represented very gross estimates. In 

order to provide the remainder of the panel with a glimpse of their version 

of reality the table shown in figure 22, listing the essential ingredients of 

a generic model, was constructed. 

The potential applications for such a model are listed at the left. It 

was felt that, at a minimum, the sonar analysts needed the capability to conduct 

performance prediction calculations for both passive and active mobile sonars. 

The next higher-order use would involve engagement studies employing several 

platforms. Finally, they would like to conduct statistical analyses of a 

number of engagement or single platform studies to quantify the merits of new 

concepts in sonar design. To meet this goal, objective information is required 
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for the medium and system related quantities shown in the columns to the right. 

The most comprehensive sub-models listed in the fourth column pertain to the 

signal, noise, and reverberation fields as well as the target model. To 

adequately model these terms other sub-models, listed in the next column to the 

right, are required. This dependence continues until we arrive at the last 

column, entitled tlEnvironmenta1 or System Data. 1I 

Few would argue with the view that propagation loss is known with greater 

accuracy than most of the other items on the chart. Also apparent is that, 

although accuracy is a concern, it is not the only concern (see figure 23). 

The amount of computer time required to run any sub-model is of obvious 

concern because of the cost involved. Similarly, if the most accurate sub-model 

requires more core storage than is available, the model is useless. If the 

sub-model is not available at a faci1ity~ addi'tiona1 difficulties will be 

associated with its implementation. In some cases this may involve time delays 

that cannot be tolerated. The compatibility of models from one computer to 

another is a concern that could also result in additional cost and time delays. 

There are some sub-models that can be run only by the developer and if he is 

not avai'lab1e for the duration of the study, one might decide to choose another, 

albeit less accurate, model. Very often it may be possible to decrease the 

execution time of a model without seriously effecting its accuracy. This would 

be difficult without extensive documentation. Finally, the sub-model may only 

provide propagation loss from an omnidirectional source to an omnidirectional 

receiver when a beamformer output is required. 
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Of course, these are all practical problems that can be solved with time, 

money, and manpower. However, they are usually at a premium. Given a multi-

tude of candidates for any sub-model, such as propagation loss, the analyst 

must arrive at a decision based upon trade-offs between accuracy (and the other 

items on the list) in the context of the time, money, and manpower available 

to him. 

It became obvious that it would be impossible to recommend a single 

standard sub-model that would meet the requirements of all potential users. 

It was thus decided that for each sub-model a matrix of information addressing 

the items shown in figure 23 be constructed. The analyst or user could then 

make the required trade-offs himself and select the candidate sub-model best 

suited for his particular application. 

The assessment of accuracy is the most difficult portion of the matrix 

to complete. One reason for this is that there was unanimous agreement that 

the methodology adopted had to be significantly more objective than the old 

technique of graphically comparing predictions and arriving at a value judgment. 

To accomplish this new ground had to be broken, which was a time consuming 

process. 

The approach currently under consideration is statistical in nature. A 

given data set is characterized by a sample mean and standard deviation that 

are functions of the independent variable (e.g., range, azimuth, and time}. 

Two or more data sets are then compared by a variety of statistical techniques 

yielding quantitative measures of agreement. Although the examples to be 

discussed specifically deal with transmission loss versus range data, the 
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applicability of the comparison method is not restricted to such data. 

Two approaches for finding the range dependent mean have been implemented. 

The first involves a moving average for which a subjective choice must be made 

regarding the number of points to be averaged. In the second approach, the 

entire record is first subdivided into segments based on the presence of 

predominant interference patterns. The data within each segment are then fitted 

with various order polynomials to minimize the mean square error. Examples 

illustrating this approach will be provided in the subsequent figures. All 

examples pertain to a profile found in the Pacific in about 18,000 ft of water 

having a surface duct down to 247 ft. Two source and receiver combinations 

(figure 24) were examined. For one the source and receiver were in the surface 

layer at depths of 50 ft and for the other the source and receiver were below 

the layer at 500 and 300 ft, respectively. Model predictions were obtained at 

frequencies of 50, 500 and 2000 Hz for each configuration. The frequency cases 

are designated 1 through 6. Experimental data were also available for the source 

and recei'ver below the 1 ayer at frequencies of 50 and 400 Hz. These have been 

designated as cases 7 and 8. The models examined are listed in figure 25. 

Raymode IV, FACT and NISSM II predictions were compared to those of the FFP. 

Case 4, with source and receiver below the layer and at 50 Hz, is sufficiently 

representative so that most major points of interest are manifest. The FFP 

prediction (figure 26) begins with a Lloyd Mirror Pattern at close ranges followed 

by a more complex interference pattern in the first bottom bounce region (which 

extends to about 58 kyd). A double-peaked convergence zone extends to 75 kyd 

and is followed by the beginning of the second bottom-bounce interference pattern. 
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The entire range interval was subdivided into five segments. From right 

to left they are the second bottom-bounce region, then two segments within the 

convergence zone, a segment capturing the last major interference pattern in 

the bottom bounce region, and a single segment for the first 35 kyd. The smooth 

curve in each segment is the range dependent mean obtained using the poly-

nomial fit. The fact that the first 35 kyd were treated as a single segment 

whereas it could have been subdivided into as many as 10 segments illustrates 

where subjectivity enters the methodology. The decision as to which features 

have importance should be based on the user determining which is the 

feature of least interest for his application. As it turned out, the choice 

of a single polynomial fit to the FFP for this range interval led to smaller 

differences between the FFP predictions and those of the other models, which 

show much less detail. 

The polynomial fits to the FACT coherent predictions are shown in figure 27. 

Note that the abrupt change in the propagation loss at 86 kyd, which would 

appear to be an artifact, is smoothed by the polynomial fit. The feature between 

40 and 50 kyd is significantly reduced in amplitude compared with the FFP value 

but is, nonetheless, distinguishable. 

The next step in the methodology is to subtract the range-dependent mean 

for FACT from the range-dependent mean for the FFP. The results are provided 

in figure 28. The large difference at about 38 kyd is caused by the fact that 

the features occurring in both models just before the convergence zone are 

displaced from one another in range and have different amplitudes. The two 

peaks between 60 and 70 kyd result because the double-peaked convergence zone 

is more clearly defined in the FFP curve. The differences between 80 and 
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100 kyd are the result of the artifact in the FACT prediction that produced 

the abrupt increase in propagation loss. 

These results serve as a quantitative measure of the difference in accuracy 

between the two predictions. The measure is not completely objective since, 

in some instances, the differences between the two means are caused by 

subjective decisions regarding the subdivision of the data records. In this 

regard it is felt that the use of a sliding average would be more appealing than 

subdividing and fitting with polynomials • . However, a certain amount of sub-

jectivity will always be present regardless of the technique used to find the 

range-dependent mean. 

Although this information is considered to be a vast improvement over the 

purely subjective process of Qverplotting the two predictions, it would have 

more significance to the user if it could be summarized in a manner that could 

be easily interpreted. This is a difficult step because it involves finding a 

link between the realities of the model developer and user. The last set of 

figures represent an initial attempt at such a summary. 

Since it is quite clear that the summary must be range dependent, one can 

find the mean and standard deviation of the difference curves in various range 

intervals specified by the user. For the purpose of illustration, 20 kyd 

intervals have been selected as shown in figure 29. The mean and standard 

deviation have been tabulated for all of the models considered in case 4. Thus, 

for the first 20 kyd, the difference between the mean of the FFP predictions 

and the mean of NISSM II was, on the average, 0.7 dB. Information similar to 

this would be available for all cases considered in the assessment {which, in 
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this instance, was 6). 

Considering that only one profile, two source and receiver combinations, 

and three frequencies have been used (whereas typical user requirements would 

entail many more combinations) it was felt that a summary on a higher level was 

needed. The results shown in figure 30 represent one possible alternative. 

The user should assign degrees of importance, first to the various cases 

and second to the different range intervals, based on the application at hand. 

Given these weights, which will be taken as unity for this example, the absolute 

value of the mean plus the standard deviation for the differences is calculated 

for each case in each range interval. The models are then ranked in accordance 

with these values. The model with the lowest value receives the rank 1, and so on. 

In the event that two or more models have the same sum, each is assigned an 

average rank. 

The upper line in each box shows the rankings for cases 1, 2, and 3, 

respectively; the second line shows the rankings for cases 4, 5, and 6, respec-

tively. The number in parenthesis is the sum of the rankings for the 6 cases. 

The final column provides the sum of the rankings over all cases and range 

intervals. 

It is apparent that, for these cases, the FACT model employing the coherent 

phase addition shows the closest overall agreement with the FFP. In terms of the 

the total ranking provided in the last column, the FACT model using incoherent 

phase addition and the NISSM II model using coherent phase addition are essentially 

equal. The final three models (Raymode IV with coherent phase addition, 

Raymode IV with incoherent phase addition, and NISSM II with incoherent phase 

addition) show significantly less agreement with theFFP model. 
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When coupled with information about the other items in the matrix, data 

of this type should provide the user with a reasonable basis upon which to 

arrive at an objective selection for a sub-model. 

In discussing the state of affairs of computer models for underwater 

sound, it has been helpful to outline the perceptions of reality of those who 

develop such models and those who use them. Such perceptions, unlike those of 

the mystic and modern theoretical physicist, are often in conflict, and a 

fair amount of confusion results. The ideal solution would be either that the 

user acquire an understanding of the detailed mathematics involved in deriving 

the various sub-models or that the developer acquire an appreciation for the 

arts of system analysis and design. A more reasonable alternative would be to 

establish a line of communication between the two groups so that each could 

learn to appreciate the realities of the other. The model, whether it be a 

sub-model or of the generic type, is common to both groups and could serve to 

bridge the gap. Before this can happen, however, an objective methodology for 

assessing models must be developed and tested. Some thoughts on such a method-

ology have been presented, but they are still in the formative stage and require 

additional exposure and use by both groups. Time does not permit a discussion 

of experimental data but there are many reasons, not the least of which is 

relative sparseness, why experimental data cannot be the final reality. Finally, 

there are perhaps some who would like to know how to avoid finding themselves 

in a similar predicament. I can offer no advice in this regard for it almost 

seems inevitable that if you have a computer of any size, you will soon have 

two or more models that give different answers and, most probably, none will 

fully represent the reality you had hoped to model. The model will always bear 

the same relation to reality as a shadow bears to the object that casts it. 
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ASSESSMENT TECHNIQUES FOR COMPUTER MODELS 
OF SOUND PROPAGATION 

by 

David H. Wood 
SACLANT ASW Research Centre 

La Spezia, Italy 

A5STRACT 

Computer models of sound propagation have exactly three drawbacks: 
the model only approximates reality,the computer program only 
approximates the model, and the cost approximates infinity. The 
only way to assess these shortcomings is to compare the computer 
model's performance against data: experimental data, synthetic 
data, and financial data. Examples of these comparisons will be 
featured. Comparison with theoretical examples within the scope 
of the computer model is the best way to assess the relation 
between the model and the computer program. Financial data on 
cost of speed, accuracy, size, and special features is spotty, 
but a few examples will be shown. 
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Computer models of sound propagation have three drawbacks: the model 
only approximates reality, the computer program only approximates 
the model, and the cost and computer requirements approximate 
infinity. The only way to assess these shortcomings is to compare 
the computer program's perfor mance against data: experimental data, 
synthetic data , and financial data. 

Exper imental Data is the final test of the model's relation to 
reality and an abundance of it could measure the other shortcomings 
by statistical methods. Unfortunately, there are too few experiments 
and fewer still with dependable, accurate data. 

Synthetic Data poses the most rigorous test of the programmin& 
of the computer model. As in the last paper, by numerical simulation 
of an ocean experiment, synthetic data can suggest that the model 
reflects r eality. Two sources of synthetic data are computer mode ls 
and theoretical examples. Comparison with theoretical models 
throughout the area of their overlappin? capabilities, whether 
realistic or not, promotes confidence iri the programming of both 
models. Comparison with theoretical examples is the best way to 
assess the relation between the model and the computer program. 
This includes comparison with special models, which are simplified 
and accurate but otherwise impractical, these models being specifi-
cally developed for this purpose. 

Financial Data on the cost of speed, accuracy, size and special 
features is scarce, probably because we don't yet have even one 
dependable model. 

Let me show you (Fig. 1) some of the interrelated concepts that 
we have to work with. Here we have a red disc representing 
reality, partially overlaid with a blue disc representing the 
wave equation. If I had heard Di Napoli's talk before, I would 
have made the red disk much , much larger. Now I place a yellow 
disc representing the model. Notice that part of it lies outside 
the wave equation. Models sometimes have unrealistic features 
such as speeds given by complex numbers. In the orange region, 
we have, for example, absorption, a reality not modelled by the 
wave equation. In the green area, we note that many models can 
deal with unrealistic extreme changes in .speed. In the purple 
area, we note that most models have layering and can only approxi-
mate the very smooth sound-speed profiles that may be found in the 
ocean. In the blue a rea , we might find zero fre quency; in the red 
area, non-linear effects . Let me over lay on this d iagr am the 
computer program in question. I , have deliberately made its 
representation a little spotty. Little, because it cannot fully 
realize the model ; and s potty, because the capabilities, of the 
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program are seldom known -- even to its author. Authors of computer 
models write reports about them. In the reports we see the models 
validated: they are compared with experimental data or with other 
large, general-purpose, sound-propagation computer models. Do they 
agre e? No 1 Of c ourse we would be shocked t o see experimental data 
points fall exact ly on the compute d curves. On the other hand, 
I am shocked to s ee the two mode l s I curves fail to lie exacily 
over each other . I think that the most we can conclude from these 
compar isons is t hat the models do not contain programming errors 
that have a gross effe ct i n the t e st case s h own. Now, I say this 
is not validation . I say that validation has to proceed in two 
separate and distinct phases ~ f irst, we have to be assured that 
the progr am truly represents the model; second, we want to see 
that the program approximates reality . 

Readi ng these r eports, we are expected to assume, that all programming 
e r rors have been e liminated - the authors don't say. It is con-
s idered quite impolite to intimate that a particular program might 
contain error s . However, if the authors have gone to all the work 
of testing their programs as thoroughly as I am about to suggest, 
I am surprised that they don 1 t s ay so . 

In the last paper, Di Napoli told us that in a typical realistic case 
the models typically differed from FFP be more than 5 dB. He 
concludes that the models cannot produce accurate results in this 
test case. I don't necessarily agree. I think that Di Napoli ' s 
comparisons are probably a statistical demonstration that these 
models contain programming errors. I feel that before models are 
compared, we have to be sure that each model is correctly programmed. 
Let me outline the three distinct types of computer programs that 
I think are required to obtain the desired modelling of reality. 

First, we need a type of program, I call an Archer. Typically, this 

Small Pro,ram 
(ARCHER 

Accurate 
Simple 
Unrealistic 
Slow 

is based on a class of theoretical examples. Its main attribute is 
accuracy, but simplicity of programming is important, too. It will 
usually not be restricted to realistic conditions, but that doesn't 
matter. It is not to be used to model reality, it is to be used to 
detect programming error in the next class of computer model. 
Therefore, it is more important that it has capabi lities in common 
with the next model than that it has features in common with reality. 
Its least important feature is speed. It is to be tested against 
theory and against other Archer - type programs, when they have an 
application in common. 
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The second type of program, I call a Weightlifter. Its main 

Large Program 
(WEIGHTLIFTER) 

Po¥erful 
Accurate 
Slow 

attribute is power. It is to cover as much of the abstract model 
as possible, including unrealistic cases, which ofte~ exaggerate 
the effect of previously undetected errors. It is accurate because 
this helps debug the program by comparing it to Archer-type models; 
and because it will be used to check that the third class of model 
retains sufficient accuracy for applications (which is not much). 
Speed is not expected because it is incompatible with the other 
requirements. This is a program that accurately mimics the 
abstract model. As such, it is suitable for comparison with any 
synthetic data or experimental data. 

The third class of program, I call a Sprinter. 

Quick Program 
(SPRINTER) 

Fast 
Small 
Restricted 
Inaccurate 

Speed and perhaps 

size are all-important. If restricting the program to realistic 
problems will make it faster or smaller, fine. We are happy to 
sacrifice quite a lot of accuracy, too, if that will help. This 
program is to be evolved from a weightlifter. It will be free of 
the errors that were eliminated earlier. It is to be compared to 
its weightlifter version to verify that it has not lost too much 
accuracy in realistic cases. And now, finally, it is tested 
against experimental data. 

My thesis, then, is that we need three distinct types of programs. 
Certainly, if we want fast, realistic programs, we will have to 
have powerful programs and accurate programs . All three types 
should be equally documented and distributed. One model developer 
I know publishes weightlifter programs, but never has anything to 
say about his archer programs. As a matter of fact, I have one 
that I cherish that I got out of his wastepaper basket. At the 
very least, any organization that is interested in evaluating 
sound propagation models ought to have a collection of all three 
types. At SACLANTCEN we are creating a super computer model, 
SOLMAR, that includes many models of all three types under a common 
user-oriented input- output language. I believe that is an important 
step towards the da y whe n we can have meaningful comparisons 
between models. 
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r want to show you a few e xamples, but let me apologize in advance. 
r show the results of these three models not because they are good 
examples of the thre e types of programs r spoke of . They are ----
only rough approximat i ons of an Archer model, a Weightlifter model, 
a nd a Sprinter mode l . 'However, they are models that are running 
at SACLANT CEN, and i llus trate typical results in comparison of 
models . 

Figure 2 shows the geometry of the example ~ a u niform layer of 
water over a plane, ri~id bottom . r will s how four comparisons, 
using four f requenc i es. Everything else i s h eld constant: only 
the fr e quency changes. 

1) At a radian frequency of 160 (Fi g . 3), an Archer-type 
mo de l, based on the exact s olution of the wave equation given by 
Brekhovskikh, generates the monotonic curve for random phase 
a ddition and the humped cur ve f or coherent phase addition. 
A Weightlifter-type mode l, a n ormal mode program by F . Jensen 
of SACLANTCEN, gives a curve for the coherent field indistinguishable 
from Brekhovs kikh . The FACT mode l , a Sprinter-type model, gives the 
same r e sult for both coherent and incohe rent phase additions, some 
3 o r 4 dB below Brekhovski kh ' s r andom phase curve. 

2) At a radi an frequency of 800 (Fig o 4), we obtain the 
same type of results . 

3) At a radi an frequency of 2130 (Fig. 5), the coherent 
field i s much more intense than the random phase approximation. 
J ensen ' s mode program no longer agrees exactly with Brekhovskikh . 
Th e FACT model again gives the same result for the coherent and 
r andom phase fields . 

4) At a radian frequency of 2131 (Fig. 6) -- recall the 
l ~ st e xample was at 2130 - the coherent field has dropped down 
much closer to the random phase approximation. Jensen ' s normal 
mode model again agrees with Brekhovskikh. The FACT prediction 
is unchanged . 

So even in these simplest examples, we see that the comparisons 
are puzzling enough to demonstrate the need for maintaining three 
distinct types of computer models: accurate Archer models, powerful 
Weightlifter models, and fast Sprinter models . 
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DISCUSSION.. Sonar Mode ts 

DISCUSSION ON SESSION 8 

Reported by D. Wood 

People often ask why we can't compare [the parabolic 
equation model] to exact solutions of the wave 
equation to check programming. 

That's nonsense. 

That's nonsense, that's outside of the validi ty of 
the mode l. 

Should be tested against exact solutions of the 
parabolic partial differential equation. 

Why shouldn't we test against closed-form solutions 
of the eltiptic equation? 

You are asking a diff erent question. 

But what it is you are presenting. 

But you see, we a re asking two questions: First, is 
the program correctly programmed? So we see, "Can it 
sol ve a parabolic equation?" And then we ask 0 ••• 

That leads us into a whole different area. [ Wood 
compared] •••• propagation loss of the normal mode 
solution and an exact solution, wherever that came 
from, but the exact wiggles didn't agree at all , you 
said that's bad agreement, but that depends on what 
question you want to ask. Perhaps I don't care what 
the exact propagation loss is at 27.3 km. The fact 
one program gave that propagation loss at 27.3 km and 
one gave it at 27.2 km is not of interest to my 
question at all. For example, my question may be ' 
"What happens when you put a fluctuation, a time 
varying fluctuation, on that system, what happens to 
each one of those points ?" It may agree quite well 
with all those programs where detailed deterministic 
values are displaced by small amounts. We have to be 
car eful which question you are asking when you assess 
the progr am . 

Fred, [ ni Napoli], do you want to respond to that? 

Yes , I'd agree perfect ly with Stan [Flatte]. And that's 
precisely what led us to try to find some range-
dependent meap for comparison of models ; and work with 
that. Not totally satisfied with that either. For 
applications , it seems to be better way to do it than 
a point-to-point comparison between models which •••• 
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Fla t te: But if you compare range-dependent mean, you will wash 

out whatever fluctuations might be imposed by some 
time varying system on both models. You will not get 
a comparison if you are interested, for example, in 
fluctuation. 

Williams: I want to disagree completely with both of you. 
(Laughter). I think, if there is a bug in the program 
that you ought to detect it, find it, and cor'rect it. 
I think that bugs in programs can have - not show up 
for a couple of years - I've had that kind of problems. 
Once you detect it - I hope we are not at the stage 
when we have these programs, we know there's bugs in 
there, and don't care whether there's bugs or not. 
I really think what we ought to stay with building 
perfectly the program. 

Flatte: Well, I disagree with you. I really disagree, because 
we can never get all the bugs out of a program that's 
really very large; you never verify that you've gotten 
all the bugs out of the program. 

Williams: That's different than o ••• 

Flatte: ••.. what their effect are on the questions •••• what 
the answers are you're going to get to the questions 
you're asking. 

Williams: All I'm saying is that once you detect a bug it seems 
like you'd want to get it out. You don't know the 
ramifications of a bug. 

Flatte: •••• spend a year detecting all possible bugs which 
have nothing to do with the q¥estidns you are asking. 

Williams: Well, how do you know that? 

Flatte: That's a different assessment technique. Depends on 
the question. 

Blatstein: I think it is an iterative process. I think Dave [Wood] 
is reacting to a normal inclination to display models 
on top of each other. I react to what he says by 
saying, "Inevitably, if you are going back to laying 
models on top of each other, you'd better be pretty 
sure that one or the other is right." Our experience 
with ray-tracing models is that we get them from some-
body else; we have 6 months getting it going on our 
computer; then another 6 months finding bugs by running 
profiles that we have run before. Yet every time I give 
it to somebody else, first profile they run, bombs. 
And it shouldn't 1 It is just that when you get what 
you call a •••• program, it's general enough so that 
it's invariably going to have bugs. Its just that a 
program is a limited being •••• it can be covering 
only a finit~ set of conditions. Phinagle1s law says 
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that the next person you give it to is going to give it 
a set of conditions it wasn't designed for. You can 
check it with exact solutions and think you have 
to - but then you are interested in realistic cases, 
and that's where you really c ompromise the model - to 
get it running in realistic cases o We haven't reached 
the point where we can give somebody the model and with 
it a guarantee certificate, you know~ "Double your 
money back if this bombs", b e cause that's unrealistic. 
Dave [WoodJ, to a certain extent I have the same 
objection you do: you're always told how good the 
model is ~ not how bad it is. Then when it doesn't 
run, you're shocked: and you shouldn't be. 

So this little discussion can be summarized by saying 
that the program will undoubtedly have bugs , but Stan 
[FlatteJ feels that maybe you can statistically 
demonstrate that it's unimportant to get them all out. 
Certainly I have to agree with him~ I could never get 
out all the bugs of a general-purpose-computer model. 
I think that we have to say that on the other hand, 
we ought to try to get all that we possibly can out. 
As Bruce [WilliamsJ says ~ because we never know when 
suddenly there will be a physical circumsta~ce that 
will make the effect of a bug noticeable for the first 
time. 

Just like exercising a computer. There are diagnostics 
for a computer; and certainly they don't exerci se 
everything. But I think maybe what we're getting to 
is a general approach to make assessments rather than 
just trying different profiles and see where they fai~ . • 

Propagation loss, per se, is only one question I might 
want to ask. There might be many properties that are 
more important to me. I don't know that question I'll 
ask tomorrow. I could write down twenty questions 
I might want to ask someday; and if someone could tell 
me "If you really want to ask that question, you ought 
to go to this model." ••• • care about propagation loss, 
you do it-on-the back of an envelope, don't bother with 
a computer •••• It seems to me that what we have missing 
is a discussion of the utility of the various models 
and the features that we think are best modelled •.••• 
one model does this, another does that. If I ' m 
interested in the convergence-zone width, I might be 
very interested in the characteristics of convergence-
zone models. What model is best for that particular 
parameter? It seems to me just the mean or •••• doesn't 
give me an answer. Nor does comparing to the Fast Field 
Program given an answer. Thus, [ifJ I say that the Fast 
Field Program is our best program, then I don 't need 
an answer to the other question; I'll just use that •••• 
I'm interested in what's the best program 
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Di Napoli: •••• as far as the broad features, that's why we went 
to a sort of r ange- dependent mean. As to the fine 
scale fluctuation, that can be affected by how you 
put it on the computer. I don't think that anyone 
should believe that, certainly not on a point-to-point 
basis . And it i s que sti onable whether if you treated 
that deterministic predi ction in some sort of a 
statistical fashion whether those statistics would 
have any relationship to the rea l world. I think that 
question is open •••. 1'd like t o know about all this 
fluctuation that we've heard about: "What part of 
the curve does it really affect ? " Does it affect the 
broad features like the convergence zone significantly 
e ••• or is it affecting the fine fluctuation? 

Wood: Can I ask a question? Fred [Di Napoli], when I read 
your manuscript, I felt there was a calibration missing. 
I know you wouldn't go to sea without calibrating your 
hydrophones. Did you look at some special case with 
all of these models to verify that they all g~ve the 
same result? 

Di Napoli: 

Wood: 

Di Napoli: 

Wood: 

Di Napoli: 

Wood: 

Di Napoli: 

Wood: 

Di Napoli: 

Wood: 

I didn't have time, and I did not present it in the 
written manuscript •••• this profile has experimental 
data associated with it. I didn't say anything about 
experimental data. But that's just not a benchmark 
if you are interested in this fine-grain prediction. 
If you are interested in broad features this is perhaps 
in some cases useful. 

Let me ask this then: Did you ever look at any profile 
where the models agreeded extremely well? 

yes •••• 

One profile that all the models agreeded on? 

Yes, we did. 

What profile was it? 

We picked a Mediterranean summer profile. We had data 
to go along with it - at 35 kHz - by •••• at Woods 
Hole. And I think that most of the models that I 
mentioned, if you put in the proper input information, 
you will get what most systems people - users - • 
I'm talking about certain users - would be sure to 
say was excellent agreement. 

How close? 

For them it doesn't have to be that close. 

For me it does. (Laughter). 
about computer programs now. 
systems applications. 

You see, I'm talking 
I'm not talking about 
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I don' t d isagree with that, Dave, I think that we're 
both saying the same thing: that first you have to 
specify what sort of accur acy you're interested in. 

One dB means zero significant figures in agreement. 
yau don't compute the fie ld with a model in dB , you 
compute the field and then take its logarithm and 
multiply by 10. You compute the field. Now I except 
one significant figure from al l t he models for some 
profile. ----

I really don't understand your point. 

I'd like to make a c omment on the question of fine 
structure. All o f us have seen propagation-loss diagrams 
coming out of various models - normal mode, parabolic 
equation, or what e ver - in which the propagation loss 
looks like practically a black band from wiggles going 
up and down on it. Now that is a physical effect; it 
is really there. It is there, very understandably, 
from the multipath i nterference phenomenon. If you 
are questioning whether the peak of each one of those 
sharp spikes is occurred in exactly the right place, 
I agree with you. I don't expect any progvam to get 
that. But if you're questioning whe-ther the separation 
between those spikes is uncer tain, t h en I would disagree 
with you. That's just given by rays that are coming 
together at a certain angle to get t he multipath 
interference, a very well-understood phenomenon that 
our computer p r ograms are perfectly capable of calcu-
lating. 

Do you believe it ? As representative of a real world? 

Yes, I do, in terms of the variability in a local 
reion: In terms of a propagated intensity pattern in 
a local region. Another program may have that shifted 
a little bit, may have it stained a little bit, but 
not significantly for the conclusion you want I a draw. 

Yes, but, say you have two programs, you're saying 
they're shifted; but I'm saying in the real world, if 
you believe the programs •••• fine scale •••• real world 
•••• what evidence do you have. 

Well, the evidence I have is we can't go into all 
the mathematical derivations of these things - but as 
I said, you've got the ray's propagation system, 
you've got rays that cross, producing this interference 
patter n. 

I think what he's saying, is the accuracy of your input 
sufficient ? ••• the program that you're going to know 
that your output is going to match r eality. I don't 
see how you can say that since you have inaccuracy 
inherent in the model and it' s inherent in the data. 
(Several people speak at once) 
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McCoy; 

Williams: 

Blatstein: 

Wood: 

Flatte: 
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•••• he's going to test the computer. Sometimes it 
makes sense to go to a controlled environment to 
test •••• we're not so worried about whether the 
controlled environment is reality ••.• Dr Wood ••.. 
seem to say if you want to test a computer program, 
the first step is to test it under very, very 
controlled •••• pass that test, go on to •••• 

I think that's the point. 

The only problem with that, I think, is now I agree 
with it, I think most people do, •••. but when you do 
that, the implication is that you have the bugs 
out •••• that exact case. 

Every time I purpose a new exact case to a computer 
program, I detect another bug. 
(Inaudiable exchange between Cox and Di Napoli 
occasionally interrupted by laughter). 

•••• the question was how you test.... Let me give you 
an example of how we tested, numerically, to give you 
a feeling for why it's not something you can hope •••• 
associated with numerical error. Some of you have seen 
Fred Tappert's picture of what the parabolic equation 
contours of intensity look like as functions of range 
and depth know that they are extremely complicated and 
give you intensity contour maps which look like this 
(draws several small, crowded irregular closed curves 
on blackboard) where these scales - I'm talking about 
1 dB contours - occur every 10 metres, 100 metres , 
in a system which we're propagating for a 100 kilo-
metres. Now, how do you decide whether that stuff 
is valid or not: If you've seen the pictures, you've 
seen "in fact the contours come together to give you 
the caustics where they're supposed to be, the 
convergence zones where they're supposed to be. To 
be more accurate, suppose you do , the following -
something I have done with my prbgram. This is given 
with a certain sound speed profile. If you take -
actually this isn't all the information, this is the 
intensity and you also have phase - now take a vertical 
section through this system. At each of these points 
you have the amplitude and phase, given by this ' 
complicated structure. Now you form a beam, using 
that vertical array as a beamformer, and look in 
different directions, before you look at the result, 
you go back to the beginning, where your source was in 
this case, and you follow by Snell's Law - it's a 
completely d"ifferent theory, very simple - •••• you 
follow Snell's Law through the system and find out 
exactly where a ray is coming in. You then look at 
your beamformer and you find a ray exactly there. 
Now, I find that a very convincing test on the fine 
structure of •••• 
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•••• Do you believe? That means that if you actually 
went out and made a measurement and compared the 
measurement against your prediction, would you 
believe the fine structure? ••• 

Isn't there a l ot of da-ca with enough source motion 
moving back and forth through this fine structure to 
be able to have time fluctuat ions just because of 
very small source motions? And can't we really, if 
we believe this fine structure, can't we really throw 
away an awful lot of data? 
(Inaudiable) 

Di Napoli: •••• Now what they call the fine structure are the 
fluctuations •••• the broad features •••• and the mean 
value. Now there's a CW prediction •••• it also has 
fine structure. I'm saying we don't believe that 
fine structures necessarily right. 

Unidentified: Is that shot data? 

Di Napoli: No, that's LFM pulse. 

Flatte: You have to be very careful when you say you don't 
believe the fine structure. You have to say what 
aspect of it you don't believe. You mean you don't 
believe it is there at all? ..•• reality is continuous, 
smooth, like the white curve? 

Di Napoli: No, I guess what I'm saying is that if you could 
somehow statistically describe the •••• of the model 
and the •••• of the data •••• then I don't necessarily 
believe that the two would be close. I don't see 
evidence •••• I don't see experimental data of that 
type. 
(Inaudiable question) 

Di Napoli: No, this is not a smoothing function. All we've done 
is make predictions in range •••• to change the 
input •••• 
(Many people speak at once) 
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