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Spatial correlation of surface-generated noise in a stratified 

W. A. Kuperman 
,UCLANT ASW Research Centre, La Speiia, Italy 
and Naval Research Laboratory, Washington, D.C. 20375 

F. lngenito 
Nawl Research Laboratory, Washington, D.C. 203 75 
(Received 8 May 1979; accepted for publication 3 March 1980) 

A model is developed for the calculation of the spatial properties of the noise field produced in a 
stratified ocean by the action of wind at the surface. The random noise sources are repmented by 
correlated monopoles distributed over an infinite plane located an arbitraiy depth below the surface. 
Wave-theoretical methods are applied to derive expressions for the intensity and spatial correlation of the 
noise field. A normal-mode representation of the noise field is used to reduce these expnssions to forms 
which allow physical interpretation and are suitable for numerical computation. Examples are givm of 
intensity profrles and spatial correlation in the vertical for three generic sound-sped profiles. The results 
show that the sound-speed profile and the presence of the bottom can be important in detumining the 
spatial properties of the noise field. An example is given of a calculation of the horizontal spatial 
correlation using the fast field program (FFP). 

PACS numbers: 43.30.Nb, 43.30.Q 

INTRODUCTION 

Detection of acoustic signals in the ocean is always 
performed against a noise background. A r r a y s  of sen- 
s o r s  may provide some discrimination against noise, 
the degree of discrimination being expressed by the a r -  
r a y  gain. The  a r r a y  gain, defined as the ra t io  of the 
signal to  noise of the a r r a y  output t o  the signal t o  noise 
of the output of a single element, can be shown to  de- 
pend on the spatial correlation of the noise field.' In ad- 
dition, recently developed optimal a r r ay  processing 
techniquedJ require knowledge of the spatial correla-  
tion of the noise fi'eld. 

One of the major componente of the ambient noise 
field in the ocean is produced by the action of the wind 
a t  the surface. Previous theoretical studies of the spat- 
ial structure of surface generated noise have been car -  
ried out with deep water applicationsin mind.'" Thus, 
the ocean has been modeled a s  a homogeneous half- 

In this paper, using wave theory, we develop u model 
of surface generated noise in which the ocean is strati- 
fied in depth. The acoustic propert ies of the ocean bot- 
tom a r e  included, as a r e  the statistical propert ies of 
the surface. In Sec. I we derive a general  expression 
based on wave theory for  the cross-spectral  density of 
surface generated noise. In  Sec. II we apply th is  form- 
a l i sm using a normal-mode representation of the 
Green's function for the problem. T h i s  allows u s  t o  
gain some physical insight into how the noise is spatial- 
ly distributed. Section III presents some numerical re- 
sults  for  realist ic  ocean environments. In  Appendix A 
we show that the resul t s  derived in Sec. I reduce t o  
earlier results4 when the appropriate l imits  a r e  taken. 
Finally, Appendix B presents some purely analytic re- 
sul t s  for  an idealized waveguide. 

I. DERIVATION OF THE SPATIAL PROPERTIES OF 
SURFACE GENERATED NOISE 

space which allows straight-line propa@tion without re- 
flection, greatly simplifying the calculation. Such mod- 
e l s  a r e  of doubtful validity in shallow water where the 
acoustic field interacts  strongly with the bottom, Cox8 
has pointed out that the assumption that noise a r r ives  
only from above the horizontal is counter t o  experi- 
mental evidence. He shows how the spatial s tructure of 
the noise field is related to a plane-wave directivity 
function in t e r m s  of a sum of angular harmonics. The 
coefficients of the harmonics can in turn be related to  
deep water experimental results. We note however that 
in deep o r  shallow water the sound speed is not constant 
in depth, a fact which may have a profound effect on the 
noise field, a s  i t  does on the signal field. Since the 
ocean is horizontally stratified it is quite possible that 

The  model geometry is shown in Fig. 1. The figure 
i l lustrates a simple case,  with a layer of water overly- 
ing a semi-infinite bottom, the density and sound speed 
of the water and the bottom given by p,, c,b) and 
A, %k), respectively. The  theory t o  be presented be- 
low is a lso  applicable t o  more complex environments. 
F o r  example, attenuation in the water  and the bottom 
can be included as can a layered bottom with finite rig- 
idity. Figure 1 is merely meant t o  suggest that the en- 
vironment must be stratified in depth, thus ensuring 
separability of the wave equation. In the development 
below, we drop the subscripts  distinguishing the sound 
speeds in the water and bottom and denote the sound 
speed anywhere in the medium by ck). 

the acoustic field cannot be expressed in t e r m s  of the Consider a n  infinite plane parallel to  the surface and 
same weighted set of plane waves (same directivity located below the surface a t  depth 2' .  Assume that at 
function) a t  each of the hydrophones of an ar ray ,  partic- each point in the plane the re  is a monopole source  of 
d a r l y  a large aperture vertical a r ray .  strength s(r1, t ) ,  where r' is the radial  vector in the 

J. Acoust. Soc. Am. 67(6), June 1980 



,,---Aq-- 

SOURCE PLAN 

BOTTOM 

FM. 1. Ihe model geometry ahowhg the saurce plane, at 
depth r' below the surface, a d  the two fleld pointa (ri ,ri) and 
(VZ, X I ) .  

source plane and t is the time variabie. Let the func- 
tion s(rl ,  t) be a random variable. These monopoles will 
couple into the water column as dipoles becauee of the 
pressure release surface; this effect ie automatically 
incorporated in the wave-theoretic treatment used. We  
we monopole sources because they represent the basic 
fluctuating volume source7 and more complicated 
sources can be considered to  be o sum of these sources 
appropriately dietributed in space. Therefore, the 
source function is s(rl, t)8G: - a '1 s o  that the field (vel- 
ocity potential) in the water column @ (r, z,  t )  satisfies 
the wave equation 

where a(z) is the Dirac delta function. 
We represent O and s by their Fourier transforms 

where o denotes angular frequency. 
Inserting Eqs, (2) and (3) into Eq. (11, we obtain, after 

some manipulation, 
(4 +ka)rpw=-Sw(r1)8(z-2'); h a  w/c(z). (4) 

Equation (4) has the solvtion 

where ~ ( r ,  rl; a, zl), the Green's function of the prob- 
lem, satisfies the Helmholtc equation 

(V +kab(r,rl;z,zl)=-(l/r)@b-r1)8b -8') (8) 

and the appropriate boundary conditions. Equation (6) 
simply d a t e s  that the total velocity potential is obtained 
by summing wer all source contributione. We note 
here that Sw is the spectral strength of the noise 
sources and that the total field is given by integrating 
over a l l  frequencies a s  rtated in Eq. (2). In order to 
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simplify notation, we shall usually drop the subscript 
w. 

The croys-spectral density is a measure of the epatial 
coherence of the noise field. T o  obtain the cross-spec- 
tral density we form the product of ry(rl,r,) and 
cp*(ra, 4) and take the eneemble average (rp* is the com- 
plexconjugate of rp). Thus, 1 

x C(rl,rl;z,,zf)~*(ra,ra;za,z'), (1) 
where the angle brackets indicate an average taken over 
the random function S. It will be convenient to use a 
transverse Fourier representation of the Green's func- 
tion8 which we write a s  
~ ( r ,  r'; a, 2')  

where g@; a ,  a ') satisfies the equation 

whtbh follows from Eq. (6). 

Using this Fourier representation, we can express the 
cross-spectral density function of the noise field as 

( ~ ( r a ,  zab*(ra,za)) 

Now let  R =r, - ra and p = r' - ra, and assume that the 
spatial coherence of the noise sources, (s(r'Is(rn)), de- 
pends only on p. We denote (S(r')S(rn)) a8 q a ~ ( p ) .  Sub- 
stituting for r, and r1 in Eq. (lo), the integrations over 
rn and 9' can be performed, resulting in 

cw(6(, a,, a,) t (cp(r1, z,)~*(ra,aa)) 

j j d a p d a q ~ ( p ) g h ; q , z l )  

where o is used as a subscript to remind us that the 
crose-spectral dgneity function depends on frequency. 
Since g and g* depend on the magnitude of q, but not i t s  
direction [see Eq. (911, we can perform the integration 
over the asimuthal angle associated with q ,  with the re- 
rult that the cross-spectral density function takes the 
form 

xg*(q;r,,rl)J,(qIR-PI), (12) 
where J, is the Bessel function of zero order. Another 
form for  C,, which is particularly simple, can be ob- 
tained by exprerring N( p) by its Fourier transform 
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Then the integration over p in Eq. (11) c,an be per- 
formed, giving 

~ g * ( ~ ; z ~ , z ' ) e ' ~ ' ~  . (14) 
Equation (12) can be put into a form which will be useful 
for later calculations by decomposing the Bessel func- 
tion into a sum of Hankel functions 

J,,(z) =i(iYA1)(z)+ Hia)(z)), (15) 
where the superscripts denote the Hankel function of 
f i rs t  and second kind. Using the relation -rfil)(-z) 
=HAa)(z) and noting that g and g* a r e  even in q we can ex- 
tend the integration over q from -.o to -. Equation (12) 
becomes 

From the expressions for  the cross-spectral density 
function of the noise field [Eqs. (12), (14), and (16)], 
we can immediately make some comments about i ts  
structure. In any horizontal plane, i t  is independent of 
absolute position and depends only on the horizontal 
vector R connecting the field points. In the vertical, the 
spatial coherence depends not only on separation dis- 
tance but also on the absolute depth of the field points. 
Hence, in general, the noise is not spatially stationary 
in the vertical. 

enclature that the correlation function uf the wise field 
is given by 

(@(r,,z,, t)3*(r,,z2, t+r ) )  

where r is a time delay. 
In this paper, we a r e  mainly concerned with the dis- 

tribution of noise in a stratified ocean, and in pwticular  
in situations where the acoustic properties of the ocean 
bottom have a profound effect on the acoustic field. 
Nevertheless, the model should aleo handle situation8 
where the bottom is not important, for example, the ' 

deep ocean. In Appendix A we show that the above theo- 
retical  results  reduce to  earlier work4 where the ocean 
was modeled as a semi-infinite isovelocity half-space. 

II. NORMAL-MODE REPRESENTATION OF THE 
NOISE FIELD 

In this section we apply the results  of Sec. I to a 
stratified medium, that is a medium in which the sound 
velocity and density of the medium are functions of 
depth a only. The Green's function can be expressed in 
several  equivalent ways; in this section we use a nor- 
mal-mode representation in  which the Green's function 
is expanded in t e rms  of the normal modes of the sys- 
tem. If the medium is finite in depth with appropriate 
conditions given a t  the boundary, the normal modes will 
be discrete and the propagating modes will be finite in 
number. However, if the medium is infinite in  depth, 
there  will, in general, exist a finite number of discrete 
modes and an infinite se t  of continuous modes. The 
Green's function expansion will then consist of a dL-  
cre te  sum plus an integral over the continuous mode#. 

An important s w c i a l  case  is that of uncorrelated 
noise sources. Equation (16) is an expression for the For  simplicity, we restrict  ourselvee to  that part of 
cross-spectral density function of the noise field a s  a the noise field which can be represented by a discrete 
function of the spatial coherence of the noise sources se t  of normal modes. From the above discussion we 
N(p). For  uncorrelated noise sources, i t  has been see  that this will be a complete description for  the 
shown thate pressure-release/rigid waveguide discussed in A w n -  

dix B. but not for more realistic ocean models. The 
N( p) = 28( p)/k2p . 

Using Eq. (17) in Eq. (16) we get 

~ . ( R , z , , z ~ ) = C ~ q % "  ~:~LH:"(IR) 

xg(q;z1,z')g*(q;z2,z'). (18) 
When we se t  R = O  and z, =z2 =a  in the expression for 
C,, we obtain a quantity proportional to  the intensity of 
the noise field a t  a point. Equation (16) then reduces to 

o r  alternatively, from Eq. (14), 

The  expressions given by Eqs. (18), (19), and (20) will 
be useful later. We also mention for clarity in  nom- 
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lat ter  usually consist of a layer of water and several  
sedimentary layers overlying a semi-infinite basement. 
However, by making the acoustic impedance of the 
basement very high, we can minimhe the importance 
of the continuous modes. 

The  Green's function g(q; z, z') can be written in t e r m s  
of the normal modes as followsl 

where Un(z) and k, a r e  the normalized mode amplitude 
function and the wavenumber of the d h  mode and .are 
solutions of the eigenvalue problem defined by the equa- 
tion 

with the appropriate boundary conditions. In Eq. (22) 
p,(z') is the density of the medium at the depth a '  and 
k(z) = w/c(z) with c k )  being the sound speed. 



We ar rume  that h, ir a complex number of -the form , Then Eq. (a61 reducer to 

with it,, a, a,, the imaginary part  of h, ir the 
modal attenuation coefficient. I t  ir interesting to  note 
that we must include attenuati& in the system to  obtain 
a finite cross-spectral density function. This  is be- 
cause sound trapped by the layered medium (represent- 
ed by the discrete .modes) suffers cylindrical spreading 
while the amount of energy radiated by the noise 
sources increases as the square of the range from the 
field point& Hence, the contribution to  the intensity of 
distant sources increases with range and the total in- 
tensity diverges. Any amount of attenuation in the sys- 
tem will cause the intensity to  decay exponentially with 
range and ensure convergence. It is important to  note 
that the resulting cross-spectral density functions and 
intensities will depend on the attenuation chosen. 

We now insert  the Green's function of Eq. (22) into the 
expression fo r  the cross-spectral density function . 

[Eq. (1611 and evaluate the t) integral. F rom Eq. (22) 
we see  that the integral of Eq. (16) has simple poles a t  

, of which the poles at + k, and -kg a r e  in the upper half- 
plane. Using standard methods of complex integration 
we close the contour in the upper half-plane with a 
semicircle of large radius and evaluate the residues of 
the integral. The result is 

a :kl)!dpN(p) cum, 4, 4) = p4 

where, 

The quantity f, is a measure of the coherence be- 
tween the normal modea which make up the noise field. 
F o r  example, iff, vanishes for n # m, then the noise 
field reduces to  an incoherent sum over the normal 
modes. Writing f, in t e rms  of the complex k,'s and 
assuming that K, s a,, K, %a,, we get 

~/(KP,- K:)  for  m z n ,  
1 / 4 i q I  for n = m . 

We see  that the n =  m t e r m s  in the sum of Eq. (26) be- 
come infinite in the absence of attenuation. Th i s  is due 
t o  the contributions of distant sources, as discussed 
above. The n #  m t e rms  remain finite because they a r e  
products of different modes with rapidly oscillating 
phases whicti give negligible contribution from distant 
sources. Equation (28) also indicates that if the attenua- 
tion coefficients a, a r e  much smaller than the smallest 
separation between eigenvalues, then the noise field can 
be approximated by an  incoherent sum of modes. This  
is often the case  in shallow water. We can further sim- 
plify Eq. (26) by approximating k, by i t s  r ea l  part K,. 

where we have neglected the n + m  terms. Finally, when 
the noise sources a r e  completely uncoyelated, the 
cross-spectral density takes the simple form 

From Eq. (29) and Eq. (30) i t  is obvious that the 
structure of the noise field is highly dependent on the 
attenuation; in shallow water the attenuation is usually 
dominated by the acoustic interaction with the bottom 
sediments. 

In Appendix B we evaluate the cross-spectral density 
function for a case  which can be done analytically: an 
isovelocity waveguide bounded above by a pressure-re- 
lease surface and below by a rigid bottom. Though it is 
not very descriptive of a real ocean environment, the 
analytic calculations are helpful in understanding how 
surface noise is distributed in a waveguide. 

II I. NUMERICAL RESULTS AND EXAMPLES 
In this section we present eample calculations which 

exhibit some of the properties of the spatial correlation 
and intensity of the noise.field. Most of the calculations 
were made using the normal-mode representation of the 
noise field presented in Sec. II, but we emphasbe that 
the model presented here is not bound to  a spekific rep- 
resentation; any wave-theoretical represenktion can be 
used. As an example, we will a lso  give some results  
calculated by a modification of the fast field programz0 
(FFP), where the function g(q; %,a') is calculated di- 
rectly and Eqs. (18) and (19) are used. 

F i r s t  we present three cases  which illustrate the ef- 
fect of sound-speed profile and frequency on the intens- 
ity and spatial coherence of the noise field. In all three 
cases  the water depth is 50 m and the bottom consists 
of 20 m of sediment overlying a hard basement. The 
sound speed, density, and attenuation coefficient of the 
sedimentary layer a r e  characteristic of sand-silt- 
clay." The noise sources a r e  assumed to be uncorre- 
lated and located 0.5 m below the surface; they are 
equivalent to sources a t  the surface with cose direction- 
ality . 

The three sound-speed profiles: isovelocity, down- 
ward refracting, and upward refracting a r e  shown in 
Fig. 2. The corresponding noise intensities are shown 
in Fige. 3, 4, and 5 as functions of depth for the fre- 
quencies 200, 400, and 800 Hz. The results  for the iso- 
velocity andadownward-refracting cases  a r e  qualiatively 
similar. Both cases  show decreasing noise intensity as 
a function of depth, with a faster ra te  of decrease for 
the higher frequencies. The intensity decrease is 
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FIQ. 2. Ieovelocity , dopward-refraoting, and upward-re- 
fracttng sound-speed proftles used in the calculattons. 

caused by the frequency-dependent attenuation of the 
system. F o r  the downward-refracting profile the atten- 
uation, which is dominated by the bottom, is greater, 
resulting in a more rapid decrease. The peak in intens- 
ity which appears a t  all three frequencies in the up- 
ward-refracting case is caused by the low-order modes, 
which a r e  the dominant contributors to  the intensity. 
The low-order modes a r e  trapped in the upper part  of 

-. the water column and hardly interact with the bottom. 
Thus, their attenuations a r e  very small and contribu- 
tions from distant sources a r e  important. The domin- 
ant low-order modes a r e  strongest in the upper part of 
the water column, resulting in the observed peak. 

F o r  the noise intensity plots shown in Figs. 3, 4, and 
5 no absolute levels a r e  given. The model does not pre- 
dict the levels of the noise sources, expressed by q' in  
Eq. ( l l ) ,  which we expect to be dependent on frequency. 
For  the purposes of these calculations qa has been set  
equal to  unity in all  cases. 

Figures 6, 7, and 8 show the spatial correlation func- 
tion for the same cases  as above. (For ' a  single fre- 
quency and zero  time delay thg spatial correlation func- 
tion is equal to the real  part  of the cross-spectral dens- 
ity.) For  comparison the results  for surface sources 
having cose directionality in a semi-infinite homogen- 

INTENSITY (dB) 

lo - 

- 
E 20- 
I 
t 
W 
a 30- 

40 - 

50 
200 Hz 400 Hz 800 Hz 

FIG. 3. NoGe intensity as a function of depth for the isovelo- 
city profile shown in Fig. 2(a) and for the frequencies 200, 
400, and 800 Hz. 
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FIQ. 4. Noise tntaneity as a fuaotion of depth fbr the down- 

eous medium (Cron and Sherman4 and Appendix A) a r e  
also shown. Again the upward-refracting case  is the 
most interesting. In this case,  as mentioned above, a 
few low-order modes dominate the noise field, result? 
ing in high values of coherence throughout the water 
column. In the isovelocity and downward-refracting 
cases  many modes contribute-to the noise field and the 
coherence is much closer to the Cron and Sherman re- 
sults. 

Finally, we give a calculation of the spatial correla- 
tion in the horizontal direction. We have assumed an 
isovelocity water layer 100 m thick with a sound speed 
of 1500 m/s and a single semi-infinite bottom of unit 
density, sound speed of 1600 m/s, and an attenuation 
coefficient of 1 dB/h. Figure 9 shows the horiEontal 
spatial correlation at 100 Hz along with the Cron and 
Sherman result for comparison. For  this environment 
the model spectrum consists of a discrete part  and a 
continuous part, both of which contribute to  the noise 
field. The correlation was calculated using a combina- 
tion of the normal-model and FFP methods. Thus, Eq. 
(26) was used for the discrete normal-mode part  and a 
modification of Eq. (18) was used for the continuous- 
mode part. In Fig. 10 we have plotted the discrete and 
the continuous contributions separately, both normal- 
ized, to illustrate the differences between the two con- 
tributions. The continuous part, while more coherent 

INTENSITY (dB) 

FIG. 5. Noise intensity as  a functlon of depth for the upward- 
refracting profile shown in Fig. 2(c) d for the frequencies 
200, 400, and 800 Hz. 
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SPATIAL CORRELATION 

FIG. 6. Vertical spatial correlation functions for the isovelo- 
city profile shown in Fig. 2(a) as a function of D/A, where D is 
the receiver separation, A the acouatic wavelength, and with 
one receiver fixed at 20-m depth. Three frequencies are 
shown: -- 200 Hz; 400 Hz; and - 0 - 0 -  800 Hz. Also 
shown is the result for a semi-Wnite homogeneous medium 
cahlated from Eq. 622) : - . 

- 1.0 0 1.0 
SPATIAL CORRELATION 

FIG. 7. Vertical spatial correlation functions for the down- 
ward-refractt~lg profile shown in Fig. 2(b) oe a function of D/X, 
where D ie the receiver separation, A the acoustic wavelelgth, 
and wlth one receiver fixed at 40 m. Three frequencies are 
shown: -- 200 He; 0 . -  400 Hz; and ----- 800 Hz. Also 
shown is the result for a semi-inflnite homogeneow medium 
calculated from Eq. W 2 )  : -. 
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SPATIAL CORRELATION 

FIG. 8. Vertical spatial correlation functions for the upward- 
refractillg profile sbown in Ftg. 2(c) ae a function of D/A, 
where D is the receiver separation, A the acoustic wavele@a 
and with one receiver fixed at 10 m. Three frequencies are 
shown: --200 Hz; * * *  400 Ha; 81d -0-0-800Hz. A h  
shown is the result for a semi-infinite homogeneous medium 
calculated h.om Eq. (A221 : - . 
for small  receiver separations (relative to  a wave- 
length), quickly becomes less  coherent than the disc 
part, the lat ter  maintaining some degree of coherence 
over several  wavelengths. 

The relative 'importance of the discrete and c o n t i n u w d  
parts of the normal-mode spectrum is dependent on the 
total loss of the system. For  low loss  the discrete a 

FIG. 9. Horizontal correlation function (solid line) for an h- 
v0 
to: 
and A ie the acoustic wavebugth. The dashed line is the r m #  
ibr a semi-infinite, homogeneous medium [Eq. (Al8) with m 
= 11. 
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and k = w/c, where w is the angular frequency of the 
eource and c te the speed of sound in the medium. The 
Green's'function in Eq. (Al) is just that of a potnt 
source and its image, wtth the negative sign to  satisfy 
the boundary condition a t  the surface, 

T o  obtain g(q; a,, z l )  we note thatla 

I I I I 
1.0 2.0 3.0 4.0 

D/X ' where 
FIG. 10. The horizontal spatial correlation for the same case v.=(ka-$')l/a for  k a > v a ,  
as Fig. 9 showing the discrete (--) and continuous (-) con- 
tributions, both normalized. =i(#-&a)'h tor ka c q a .  

Thus i t  follows from Eg. (8) that 
modes dominate, as they can be propagated very large 
distances from a very large area.  In high-loss cases  
the continuous modes tend to dominate since they a r e  (exp(iq.la, - 2'1 - exp(h.1 

471 'I. important near the source while the long-range contri- 
butions of the discrete modes a r e  severely attenuated. similarly we have that 

IV. SUMMARY g*(tl;za,zl) 

We have presented a model of surface generated noise = ( e x p ( -  - a - e x -  z a '  1) . uO 
in  the ocean in which the random noise sources a r e  n p -  4n st 
resented by correlated monopoles distributed over an We a r e  concerned with the case  z,, e, >zl. Then, from 
infinite plane parallel to, and located on arbitrary depth Eqs. (445) and @6), 
below, the ocean surface. Expressions have been de- 
rived for the intensity and spatial coherence of the noise d'l'zl'zl)B.(qiza'z') 
field in a stratified medium based on a wave-theoretical 1 expli(~.zl - q f ~ ) ]  sin(q.z')sin(tlfzl) , = -  
treatment. ~ x a m p l e s  have been given which demon- In' I rl, la . .- 
s t ra te  that environmental factors, such as the swnd-  
speed profile and the presence of the bottom, can be Inserting Eq. (A?) in Eq. (12) we obtain the expression 
important in determining the spatial properties of the Lor the cross-spectral density function 
noise field. We have also shown that for  an isovelocity, C,(R,z,,h) 
semi-infinite fluid medium our results  are identical to 
those of previous investigators. = p ~ a  [ d a r ~ ( r ) ( r n  dh J.(V IP-CI ) 
ACKNOWLEDGMENT X exp[i(q,z, -qfa,)] sin(q,zl)ain(rl z 
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(Code Owl-4). If k is real, the integral inaide the large gueatl#sce 
can be written 

APPENDIX A: SPATIAL COHERENCE IN A 
HOMOGENEOUS SEMI-INFINITE *ACE lk ~,,(q IR - pi 1 exp[i(al - za)(k2 - $)lh 1 

In this appendix we show analytically that the theory 
developed in Sec. I reduces to ear l ier  work4 where the 

X 
sin'[el(ka -#)'la 1 

ocean was modeled a s  a semi-infinite space. F o r  this k2-v' v &  
problem, the Green's function is 

1 e i ~ ~  1 e i ~ ~ l  +[J,,(VIR - up[-(a, +aa)(?.- ka)lh J 
~ ( r , , r ' ; z ~ , z ' ) =  -- - - R 4r R '  ' (A 1) 

x sinhl[zl($ - kaYh] where $-ka ?I&. (Is 9) 
R = [ (rl.- r1ls +(zl -z')' 1'" , 

and 
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We now must make some wsumption about ~ ( p ) .  
Cron and Sherman4 have calculated the correlatifm fuuc- 
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tion for a homogeneous half-space with noise sources N(p) =Zmrnl (kp)'"'J,(kp), (A 10) 
having cosme directionality distributed uniformly over 
the surface. Liggett and JacobsonB have shown that for m a I .  Inserting Eq. (A101 in Eq. (A8), the angular 
coeme directionality is equivalent to assuming omnidi- part  of the p integration can be performed, resulting in 
rectional sources with a correlation function given by the expression 

where Z = z, - za. Fm(q) is known, and is given bylS 

(Al l )  

For  m = 1, the integral is easily calculated. The result 
is 0 for kc , , ,  

[2-l(ka - qatP)]m-lk-m[I"(m)]-l for k 27 ; (A 12) I,@, Z )  = kZ" sin(k2) + ~ - ~ [ c o s ( k Z )  - 11 . (A211 

Thus, using Eq. (A12), Eq. (Al l )  becomes Thus, we have, for m =1, 

F o r  m > 1 we note that 
x expliZ(ka -TI'@] . - p m  -a -. I ,(~,z)=(-l)m-l jpi 11(09z); 

sina ziik: -+$ PIa 1 ,, (A131 
s o  for ma 1 

T o  compare with Cron and Sherman's results, we let  
z '  - 0 and take the normalized function E,(R; zl, 4 ) .  
Thus (Re denotes the real part) 

cw(R;#,, 2.2) 
The results  expressed by Eqs. (A18), (A22), and (A241 
a r e  in agreement with those of C r e  and Sherman. 

Re[Cw(R; z,, %)I ( ~ 1 4 )  A comment ib in order about the significance of the 
' ,!!: ~ R ~ [ C J O ; Z ~ , Z ~ ) ]  Re[~,(O:&4)1}" second integral in the large parentheses of E q. (A 11). 

Then we must evaluate the integral 

rm(R,Z)  = l h ( 4 '  -$ ) m - l ~ o ( ~ ~ ) ~ ~ s [ ~ ( k a - $ ) l h  I,&. 

F i r s t  consider the case  when z, =+. Then we have 

This  is a standard integral and ie  given by1' 
z,(R, 0 )  =2m"km~.R-m(m- 1) IJ,(&R). (A 17) 

Therefore, 
~ w ( ~ ; ~ , , ~ 1 ) = 2 m m ~  Jm(kR)/(kRr", (A 18) 

which ie  just the correlation function of the surface, Eq. 
(A 10). 

Because of the source correlation function chosen [see 
Eq. (AlO)], the second integral vanishes. We could 
have t a e n  the sources to  be completely uncorrelated by 
using the N(p) given by Eq. (17); then each source would 
be equivalent to  an independent dipole. The first  term 
of Eq. (All)  would then give Cron and Sherman's re- 
sults, while the second term, which can easily be cal- 
culated, would be negligible except near  the surface. 
The second term therefore is the contribution of the - 
nearfield of the dipoles. 

APPENDIX 6: A SIMPLE NORMAL-MODE EXAMPLE 

A s  an illustration of the normal-mode representation 
of the noise field we consider an isovelocity waveguide 
of depth H bounded above by a pressure-release sur- 
face and below by a rigid bottom. The boundary condi- 
tions for  this problem a r e  

U"(0) = 0 Next, let R =O. Then Eq. (A151 reduces to  @la)  
and 

I,,,(o,z) = r (ka - $).-l cos[z(ka -d)lhlrl & , U19) 
o a&k)la=H=~, @lb)  

which, after'changing to the variable g, where g 
= (kP - #) Ih ,  becomes where the functions U,(z) satisfy Eq. (23). The solution 
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of Eqs. (23) and (Bl) is 

U,k) = (~/HP" sin(~,,z), 

where 

( ) a = 1 , 2 , 3  ,.... (B4) 

We introduce attenuation into the system by letting the 
wavenumber k = w/c be complex: 

with E, the plane-wave attenuation coefficient, taken to 
be a small  positive number. Equation (B3) indicates 
that the modal wavenumber k, must also be complex. 
Thus, we let 

The modal at!enuation coefficient a, can be shown by a 
similar method to that of the Appendix of Ref; 15, to  be 
given by 

am= - J"KWIU,(Z)I~&,  
K, 0 

(B7) 

for the general case of a depth-dependent sound velocity 
profile c(z) = - w / ~ .  In the case considered here, c(z) = c 
a constant, s o  Eq. (B?) reduces to 

a, = E K/K, . (B8) 

Substituting (B2) and (B8) into Eq. (30) we obtain the 
simple result 
C,@, z,, 2,) = ~ U ~ ~ ~ ~ ( ~ ' ) / E K S H ~ ~  s i n 2 ( ~ , t 3  sin(~,z,)  

n 

lQB6 J. Acwst. Soc. Am., Vd .  67, No. 6, June 1980 

We note that the attenuation coefficient E appease in 
Eq. (B9) just aa a acaling factor and does nat affect the 
form of the crosr-spectral  deneity function. This  ie a 
result of the simple example chosen. In gemrol,  the 
factor (a, K,)-', which weighs each term in the eum will 
not be a constant, but will depend on n. 
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