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Intensity calculations along a single ray

H. R. Krol

NATO SACLANT ASW Research Centre, La Spezia, Italy
(Received 17 November 1971)

A method is presented for the calculation of sound intensity using only one ray. The sound-velocity profile
is assumed to be continuous up to the second derivative and it is supposed that the ray equations are solved

numerically. An example is given.

Subject Classification: 13.2; 11.7.

INTRODUCTION

In this paper a method is presented for the calculation
of the spreading loss along a ray, using only that
particular ray. (The medium is assumed to be lossless,
and so the intensity is equal to the spreading loss.)
It appears that the spreading loss may be expressed by
two different formulas, one not usable near any point
where the first derivative of the sound velocity becomes
zero, the other not near a turning point of the ray.
By switching from one formula to the other near these
critical points, these difficulties are avoided. It will be
assumed that the sound-velocity profile is a continuous,
differentiable curve, but not expressible in one math-
ematical formula, so that the ray-differential equations
have to be solved numerically.

After a short introduction, in which some basic
formulas used in the paper are given, the two intensity
formulas will be discussed. Finally the method is
illustrated with a computer result.

For the ray path shown in Fig. 1, the basic equations,
when there is no z dependence of the sound velocity ¢,

are!
d /1dx d1
iy o1 g
ds\c ds/ O9xc
d/1dy 01
—(— —>=——. (1b)
ds\c ds/ dyc

For a velocity profile dependent only on y, this reduces
to

dx
—=c¢-A4, (Snell’slaw) (2a)
s
d/1dy c
H-2)--% (2b)
ds\c ds c*

where 4 is the ray constant, the prime denotes the
derivative with respect to y, and ds is the curvilinear
parameter along the ray. From Fig. 1, we have

dy/dx=tand. 3)
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From Eq. 3 and eliminating ds from Eq. 2 it is easy to
derive

d%y T
e @
dx? ¢-cos?f
Now for the radius of curvature p we have
1 |d% dy\* 7% | cost
TS
p ldx? dx ¢
From
ds=pldb| (6a)
and the sign convention of Fig. 1 we arrive at
ds ¢
dol |c’ cosd
dx ¢
S ) (6C)
de i
dy c
—=——tané. (6d)
do ¢

I. INTENSITY CALCULATION

The intensity calculation (Fig. 2) is based on the
assumption that the energy is confined in an infinites-
imally narrow bundle of rays. This implies that the
intensity along a ray can be expressed in terms of that

Yy
Y — — — — —
8 | L
ds i |
3 |
| e
(%o, Yo) *H *

F16. 1. Notation for ray tracing. The subscript H indicates the
turning point.
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one particular ray:

aQ 2 COSGodﬂo

I(0)=p—=p——, (M
aFr 2rxdn

where Q is the unit solid angle and F the area swept
out by the wave surface normal to the rays.! (In the
following, the emission of the point source p will be
assumed to be 1.) It is possible to express dn in different
ways, depending on which variables are looked upon
as the independent ones. For a reason that will become
clear later we will assume 6, and y to be independent.
In the Appendix we also give a variant with 6, and 6
being independent.

A. First Formula

From Fig. 2 it is seen that
dox
dn = —sinfdx = —sin6—-db,, 8)
90

except exactly at the turning point (xg,ys) where Eq. 8
is not valid; after the turning point both dx and sinf
change sign, abruptly. So Eq. 7 reduces to

dx\!
I(x)= —-cos0o<x sino—) . 9)

fo

From Eq. 3 it follows that

~

v
x= / cotanfdy, (10)
Y

0

“only valid if <, and from this

ox v a0
———=/ —sin~20—dy, x<xm. (11)
30 Juw 6o

From Snell’s law, Eq. 2a, we know that
o cosf=c cosby. (12)
Partial differentiation with respect to 6, provides

00 cosf sinf,
—_— (13)
96, sinf cosfy

(We see the advantage of taking 6, and y as independent
variables here, dc/d6, being zero.)
Substitution in Eq. 11 yields

ox v
—=—tanfy / sin—%0 cosfdy, x<xmg.  (14)
a0, %

With the aid of Eq. 3 this can be expressed as

ox %
—=—tan#, / sin~20dx, x<xg. (15)
a6 0

b

do,

8o
x

Fi16. 2. Notation for intensity calculation.

Substitution of this result in Eq. 9 provides

z -1
I(x) =c05200(x sinf, sinf / sin"@dx) , x<zxg. (16)

z0

B. Consideration of the First Formula

There are some interesting points to make now with
regard to this formula, Eq. 16.

Firstly, it appears to be the continuous form of the
formula often used in the case of the piecewise linear
sound velocity profile, viz.,

n Xi—%Xi—1 =4
I(x) =cos200<x sinfo sinf, > ——) 5 1h

i=1 Sinai_x Sino,'

where ¢ indicates the layer number.

Secondly, Eq. 16 is not valid after a turning point
(6=0) is passed. The point =0 is a singular point of
the integral and also the point where the assumption,
Eq. 8, does not hold. But the whole expression converges
if we approach the turning point from the left side, as
is easily proved in the case of a linear sound velocity
profile. For, in this case, the solution is

x= (co/g cosby) (sinfp—sind), (18a)
dx= — (co/g cosby)d sinf (18b)

(where g is the sound velocity gradient), and substitu-
tion in Eq. 16 provides

I (x) =cos?0y/*. (19)

This is the solution for a linear profile shown to be
true also after a turning point.! Let us formally extend
Eq. 16 for x> xy; then, for this example, after substitu-
tion of Eq. 18b

sinf / sin—20dx
z0

Co sinf 0" )
= ———( lim / sin—260d sinf
g cosfo\emy0 Jg,

]
+ lim sin—%0d sin0>
(3:6¥1 4 0m
Co Sinf
= (lim sin~'0x
g cosby 6my0

— lim sin~'6x—sin—p+sin"10). (20)
0Ht2T
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i
sin” @

F16. 3. Behavior of the quantity — (9x/96,)/tané,.

The integral from x, to x has been divided into one
from x4 to xx and another from xy to x.

We see that the first two terms in Eq. 20 lead to 4+«
at both limits and in order now to satisfy Eq. 19 they
have to be ignored. They appear because we pass the
turning point, that point where our initial assumption,
Eq. 8, did not hold.

Thirdly, from a numerical point of view Eq. 16 is no
longer usable in close proximity of the turning point,
because sind goes to zero and the integral becomes
infinite.

C. Second Formula

By means of partial integration we can transform the
last two terms of the denominator in Eq. 16, viz.,

) 22| z dx
sinf / ——dx= —sinf —d cotané
z0 SIn%0 =

x x C
— / cotanﬂd——), (21a)
z0 z0 G

which may be developed further, under the condition
that a second derivative of the sound velocity exists, to

c
= sin0<— cotanf
CI

V4

c ) co @ —cc
— cosf—sinf cotanfy——sind / = dx, (21b)
& €

(ot co’ ”
where ¢y denotes the sound velocity at the source.

Substitution in Eq. 16 provides
c Co

I(x) =c05290l:x sin()o(—, cosfl—siné cotanﬂo—,
€ Co

) lE O =
—sinﬁ/ dx>:| . (22)
- 6/2

We can derive Eq. 22 in a different way (see Appendix
A), from which it appears that this expression is also
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valid beyond the turning point. It is shown there that
that derivation is in fact the more natural way of
deriving Eq. 22, and is totally independent of the
turning point. But by a formal application of partial
integration to Eq. 16 in a manner similar to Eq. 20
for x> xn, we would obtain two extra terms in the
denominator,

¢ ¢
lim — cotanfy— lim — cotanfy,
0m40 ¢’ ort2x ¢’

(23)

which both go to 4.

These two terms again express explicitly the wrong
contribution due to the fact that our original assump-
tion, Eq. 8, does not hold at the turning point, and the
terms have to be ignored. It is easy to see that Eq. 22
is applicable in the proximity of the turning point; the
last two terms in the denominator go to zero, but the
first term remains finite.

D. Extension of First Formula Beyond the
Turning Point

From the fact that Eq. 22 is also valid after the
turning point and the fact that Eqgs. 22 and 16 are
identical before the turning point, it follows that we
can extend Eq. 16 after the turning point by writing

I(x)= c05200|:x :]—l, (24a)

x
sinfy sinf f sin—20dx
0

where the bar in the integral means that in the neighbor-
hood of xx, by definition,

zHte ] c
JC dx=— cotanf

zm—e SIn%0 ¢

TH+€

T f—e

zH+€ 6/2 —CC”
- / dx,
’2
TH—e 4

where € is some finite number >0 and |¢’| >0 for
|t—2xg| <e. We see that with this definition it happens
that the integral of Eq. 24a changes sign after the
turning point, and we get the shape as sketched in
Fig. 3.

(24b)

II. NUMERICAL EXAMPLE

Formulas 22 and 24 have been implemented in a
computer program. The ray equations, Eq. 1, are
converted to a set of first-order equations and solved
numerically, using a Kutta-Merson procedure.* The
advantage of taking the pathlength as the independent
variable here is that the ray differential equations
become simple and that the numerical solution of them
is straightforward, also near a turning point.

The sound-velocity profile is approximated by Cubic
Spline interpolation.? The advantage of this interpola-
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Fic. 4. Ray solution and corresponding intensity curves.

tion method is that a continuous second derivative of
the sound velocity is obtained. The advantage of the
Kutta—Merson method is that it is highly accurate,
4th order, and that its step size is automatically adapted
to the required accuracy during the integration. With
each integration step the intensity contribution is
calculated either with Eqs. 22 or 24 depending on the
magnitude of ¢’ and sinf. For insteance, if Eq. 24 is
used and |sinf| becomes smaller than |¢’|, the integral
of Eq. 22 is at that point calculated by equating both
denominators of Egs. 22 and 24 and the calculation is
continued with Eq. 22 until |sinf| is larger than |¢’|
and we continue the calculation with Eq. 24.

The example of Fig. 4 illustrates the method very
well. There are two points where ¢’ equals zero and, for
all the rays, there is one point where sinf becomes zero.
The intensity peaks correspond to the caustic. They
indicate the points where the denominator is zero.
We also see that for the first part all the intensity curves
coincide. The results there can be compared with the
solution for the linear profile, Eq. 19.

III. CONCLUSION

A method has been presented for the intensity
calculation in the case of a sound-velocity profile which
is continuous up to the second derivative. The intensity
is calculated along the ray simultaneously with the
numerical integration of the ray differential equations.

It appears that the intensity can be expressed by two
different formulas, theoretically valid everywhere, but
numerically one is not usable near the turning point,
and the other is not usable near points where ¢’ is zero.
By switching from one formula to the other in the
computer program these difficulties can be avoided.

APPENDIX A: ANOTHER DERIVATION OF
THE SECOND FORMULA

Equation 22 can be derived in a different way (see
Fig. 5). At the point P where the intensity is required,
we transform coordinates

(Ala)
(Alb)

n=—x sinf+y cosb,
t=x cosf+y sinf.

We now choose 6, and 8 as independent variables.
Instead of Eq. 8 we develop dn as

n
dn=—-d6b,. (A2)
96,

Fic. 5. Notation
for coordinate trans-
formation.
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This leads to

an
I(x) =cosby / x—. (A3)
a0,
From Eq. Ala it follows that
on dox y
— = —sinf—--cosf—. (A4)
600 600 600
From Eq. 6c we know that
¢ ¢
x=— [ —dé. (AS)
o €

Partial differentiation with respect to 8y of Eq. AS and
Eq. 12 (Snell’s law), respectively, provides

0x ¢ a(c/c)) co
600 Bo 600 Co/
0y ¢
——ae tanGo. (A6b)
600 6'
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Because
a(c/c’) d(c/c") ay a(c/c") Ay
= —= — (A7)
600 dy 600 (')y 600
it follows that
9x  ¢o = ¢ —cc”
—=—--tan6f, / dx. (A8)
600 Co' z0 Clz

Substitution of Eqs. A6 and A8 in Eq. A4 and substitu-
tion of this result in Eq. A3 gives Eq. 22. This derivation
of Eq. 22 is the most natural, since it is independent of
the turning point and, in addition, proves the extension
of Eq. 16 to Eq. 24.

'C. B. Officer, Introduction to the Theory of Sound
Transmission (McGraw-Hill, New York, 1958).

P. M. Lukehart, “Algorithm 218—Kutta Merson,” Collections
Assoc. Comp. Mac. 4, 273 (1966).

3C. B. Moler and L. P. Solomon, “Use of Splines and
Numerical Integration in Geometrical Acoustics,” J. Acoust.
Soc. Am. 48, 739 (1970).
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