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Reverberation suppression 

I.P. Kirsteins 

Executive Summary: We propose a signal processing methodology in which 
reverberation suppression algorithms are developed using acoustic propagation 
and scattering physics as a guide to model and determine simpler representa- 
tions for the received data (i.e., reverberation and target waveforms), for which 
the criteria is applicability or development of efficient adaptive algorithms. The 
philosophy used here is that it is important to utilize as much prior propagation 
and scattering information as is practical to improve performance and also use 
the predicted waveform structures to justify the algorithms being used. This 
methodology is demonstrated by showing that temporally spread reverberation 
components, spread either due to the medium and/or extended scatterers, can 
be accurately modeled using a reduced-rank representation and expansion by 
discrete prolate spheroidal sequences. These representations lead to simple and 
efficient algorithms for reverberation suppression and target localization. The- 
oretical analysis and computer simulation results indicate that these algorithms 
perform well. 

An important advantage of this approach is that prior environmental informa- 
tion can be utilized in a computationally efficient manner, while at the same 
time adaptively compensating for uncertainty in the environmental informa- 
tion. This is in contrast to a standard matched-field processing approach where 
the uncertainty in environmental information would have to be compensated 
by possibly a very high order multidimensional search. Thus the proposed ap- 
proach is particularly useful in shallow water where acoustic propagation has 
considerable interaction with the ocean bottom, but the prior bathymetry in- 
formation can be limited, e.g., bathymetry and sediment properties are coarsely 
sampled. 

One potential scenario envisioned for application of these techniques is where 
a hostile submarine is stalking a strait or harbor entrance and exploits re- 
verberation from bottom features (e.g., shoals, trenches, cliffs, etc.) to avoid 
detection. 
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Reverberation suppression 

I.P. Kirsteins 

Abstract: We propose a processing methodology for shallow-water rever- 
beration suppression in which acoustic propagation and scattering physics are 
used as a guide to develop simple, but still accurate representations for the re- 
ceived data which are motivated by the ease of development of efficient signal- 
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reverberation components. We also present a performance analysis of the RR- 
GLRT. Using both simulated and real data, it is shown that these methods 
perform well. 

Keywords: adaptive detection o generalized likelihood-ratio test 0 

performance assessment o reduced-rank interference cancellation 0 rever- 
beration suppression o time delay estimation 
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Preface 

This memorandum is a collection of three recently presented conference 
papers on new methods for interference suppression and target localization. 
The objective of this memorandum is to make available and tie together the 
work presented in these papers under the common theme of improving target 
detection and localization in shallow-water reverberation and show how the 
algorithms are applied to reverberation suppression and target localization. 
Particular emphasis is given to the special problems of shallow-water reverber- 
ation and the methodologies for dealing with shallow-water reverberation. 

The remainder of this memorandum consists of an introduction, con- 
clusion and appendix followed by the three papers: (1) Model-Aided Data 
Adaptive Suppression of Reverberation presented at the Low Frequency Active 
Sonar Conference, SACLANT Undersea Research Centre, La Spezia, Italy, May 
1993, (2) Modeling and Suppression of Reveberation Components presented a t  
the Seventh SP Workshop on Statistical Signal and Array Processing, Que- 
bec City, QC, Canada, June 1994, and (3) Analysis and Interpretation of the 
Reduced-Rank Generalized Likelihood-Ratio Test presented at the VII Euro- 
pean Signal Processing Conference, University of Edinburgh, Scotland, UK,  
September 1994. 

vii - 
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Introduction 

Standard active sonar systems typically perform poorly in shallow-water environ- 
ments. The principal cause of poor performance in shallow water are the high levels 
of bottom reverberation. Bottom reverberation is particularily severe in shallow wa- 
ter because of the numerous interactions of the transmitted acoustic pressure field 
with the seafloor. Of particular importance are 'target-like' reverberation compo- 
nents due to distinct bat hymetric features (e.g., seamounts, cliffs, trenches, pinna- 
cles, etc.) . These 'target-like' components lead to masking of true submarine echos 
and high false alarm rates. This is illustrated in Fig. 1 by the beamformer display for 
some shallow-water data taken north of the island of Elba off the Italian coast. Note 
the large amount of clutter on the beamformer display, much of which is attributable 
to bathymetric features. 

The poor performance of standard active sonars in the presence of reverberation 
is due to the suboptimum properties of delay-sum beamforming and matched-filter 
processing. I t  is well known that delay-sum beamforming and matched-filtering are 
optimum only for detecting and localizing a single-point scatterer in white gaussian 
noise. When closely spaced (by closely spaced, we mean relative to the main lobe 
width of the beam pattern and autocorrelation function of the matched-filter) or 
spread reverberators and/or colored interference are present, the delay-sum beam- 
former and matched-filter has poor detection performance and resolvability, that  is, 
scatterers are not resolved. This is because the resolvability of delay-sum beam- 
forming is limited by the main lobe width of the beam pattern (similarily for the 
matched-filter). Furthermore, even when reverberators are far apart, sidelobe leak- 
age can be a significant problem. 

The implementation of the optimum detector or estimator (e.g., likelihood-ratio test) 
requires the spatial-temporal statistical properties of the reverberation, ambient 
noise, and target acoustic pressure fields. However in practice, sufficient information 
is generally not available to implement the optimum receiver. For example, the 
pertinent ocean-acoustic parameters (e.g., bathymetry) are often inaccurate and are 
known only at  isolated points. Furthermore, high numerical conlplexity is required 
to precisely model the underlying scattering and propagation physics. Thus it is not 
feasible to implement the optimum receiver. 

An alternative methodology is matched-field processing (MFP) [I] where one fits 
the received data using the predicted acoustic pressure calculated via a numerical 
scattering-propagation model over the hypothesized target locations and all un- 
knownluncertain parameters, e.g., reverberators, bathymetry, geoacoustic parame- 
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ters, SVPs, target scattering functions, etc. The difficulty with this approach is the 
very large dimensionality of the search space to account for all the uncertainty and as 
before, the high numerical complexity to precisely model the underlying scattering 
and propagation physics. 

kilometers 

Figure 1 A n  example of reverberation observed after a single 
ping using a 375-425 Hz HFM waveform. The display is showing 
the output of the beamformer after match-filtering. Note that 
'light' intensities on  the display mean stong returns and 'dark' 
intensities mean weak returns. This data was collected in  about 
120 m of water north of the island of Elba off the coast of Italy. 

It is conjectured that there is sufficient information available about the scattering 
mechanisms and acoustic environment to provide at least useful insight for model- 
ing and suppressing reverberation components. We therefore propose a methodology 
in which efficient adaptive detection and localization algorithms are developed us- 
ing acoustic propagation and scattering physics as a guide to determine simpler 
representations for the received data, for which the criteria is applicability of effi- 
cient adaptive signal-processing algorithms for the particular data structure. The 
objective is to (1) seek a data representation whose fundamental structure is approx- 
imately invariant to the uncertain acoustic parameters, and (2) allows development 
of computationally practical adaptive detection and localization algorithms. It  is 
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necessary for the algorithms to be adaptive in order to compensate for the uncer- 
tainty in the acoustic environment. By invariant data structure we mean that the 
parametric representation does not change much due to small changes in the acous- 
tic parameters. For example, if the observed data can be represented by a sum of 
sinusoids, then we desire that only the frequency and amplitudes vary as a func- 
tion of the uncertain acoustic parameters, not the sinusoidal representation itself. 
Essentially, the idea is to embed the uncertain acoustic parameters in terms of the 
parameters of the simpler data structure, here the amplitudes and frequencies. 

We now illustrate the concept using the following example. Consider the case of 
high-frequency acoustic propagation in deep water when the sound-velocity profile 
(SVP) is not precisely known. It  is well known that the received data in deep 
water can be modeled as a superposition of delayed and attenuated versions of 
the transmitted signal, i.e., propagation via discrete multipaths. The uncertainty 
of the SVP is implicitly embedded in the multipath structure, that is, number of 
paths, arrival times and attenuations. Note that the basic multipath structure is 
approximately invariant to the SVP. Therefore the approach in this example is to 
develop algorithms which exploit the underlying discrete multipath structure and 
incorporating uncertainty in the arrival times, attenuations, and number of paths. 
We now discuss the special characteristics of shallow-water reverberation and related 
detection/localization issues. 

The characteristics of reverberation are determined by the following three factors [2]: 
The first is propagation from the source to the reverberator, the second is the scat- 
tering process and the third is the propagation to the receiver. In shallow water 
the propagation processes have significant effect on the characteristics of shallow- 
water reverberation. For a discussion on deep- and shallow-water propagation the 
reader is refered to Jensen [I]. Some of the important issues regarding shallow-water 
propagation/reverberation in terms of how they affect detection/localization are the 
following: 

1. The propagation and backscat tering can have significant temporal spreading 
(i.e., greater than the spatial extent of the scatterer) . For example, at  a range 
of 13 km 2-way parabolic equation (PE) code [3] predicts that the backscat- 
tering from a 5 x 5 m square block lying on the ocean bottom in the Elba area 
will be spread nearly 0.4 s (see Fig. 2). 

2. Empirical results suggest that propagation is often via a continuum of paths. 

3. Because of temporal spreading, weak targets even at  a considerable distance 
from the reverberator can be masked by temporally spread reverberation com- 
ponents. Furthermore, the echo from a point-like target can look similar to 
that from a reverberator, making classification difficult . 
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Figure 2 Calculated backscat- 
ter from a discontinuity at 13 k m  
for a 375-425 Hz bandpass pulse 
excitation. The acoustic param- 
eters were chosen to correspond 
to realistic Elba Island area con- 
ditions. (a) The geometry used 
for the calculation. Note that the 
5 x 5 m discontinuity is denoted 
by a cross. (b) Measured sound 
velocity profile used i n  calculation. 
(c) Calculated normalized back- 
scattering. Note that spreading of 
0.4 s corresponds to about 300 m 
in  range. 
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In this memorandum we apply the previously discussed methodology to develop al- 
gorithms for detecting and localizing targets in the presence of teinporally spread re- 
verberation components. The methodology is demonstrated by proposing that tem- 
porally spread reverberation components, spread either due to the medium and/or 
extended scatterers, can be accurately modeled using a reduced-rank representa- 
tion [4] and expansion by discrete prolate spheroidal sequences. These representa- 
tions lead to simple and efficient algorithms for reverberation suppression and target 
localization. 

This memorandum is a compilation of three conference papers in which the results 
of this research were presented. The three papers present the derivation of the above 
reverberation representations, algorithms, and performance analysis. We now briefly 
summarize each. 

In the first paper (Annex I) we show that a reduced-rank model is a simple, but 
accurate representation for temporally spread reverberation components. We then 
apply the Principal Component Inverse (PCI) method [5] to separate weak target 
components from overlapping strong reverberation components. Using both simu- 
lated data and real reverberation data, it is shown that the PC1 niethod performs 
well. This work was presented and published at the Low Frequency Active Sonar 
Conference, SACLANT Undersea Research Centre, La Spezia, Italy, May 1993. 

In the second paper (Annex 11) we consider the problein of estimating arrival times 
of overlapping, temporally spread, multiple reverberation and target echoes which 
have propagated via an unknown channel. The temporal spreading is included in 
the model by using a discrete prolate spheroidal sequence expansion to represent 
the channel impulse response of given duration, but unknown shape. The unknown 
arrival times are estimated using an iterative approach which deconlposes the original 
data  into their constituent components and then estimates the arrival times through 
a sequence of one dimensional searches. Computer simulation examples indicate the 
method performs well. This work was presented and published at  the Sewnth SP 
Workshop on Statistical Signal and Array Processing, Quebec City, QC, Canada, 
June 1994 and is a collaborative effort with Geoff Edelson at  Lockheed-Sanders 
Inc., Nashua, NH, USA. Parts of this work and related topics were also presented 
at  the GRETSI Conference, Juan-Les-Pins, France, September 1993 and at  the 
IEEE Workshop on Underwater Acoustic Signal Processing, Alton-Jone Campus, 
University of Rhode Island, Rhode Island, October 1993. 

The third paper (Annex 111) presents a theoretical performance analysis of the 
reduced-rank generalized likelihood ratio test (RR-GLRT) proposed for extending 
the PC1 method to non-weak signal cases. In Fig. 3, we present some ROC curves 
(obtained via computer simulation) which show the dramatic inlproveinent of the 
RR-GLRT over conventional matched-filtering. For a discussion on how to apply the 
RR-GLRT and detection in reverberation, the reader is referred to Appendix A. This 
work was motivated by the success of the PC1 method for suppressing strong, tem- 
porally spread reverberation components in Annex I. The objective of the RR-GLRT 
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100 Figure 3 Measured receiver oper- 
ating characteristic curves for a 20 
element equi-spaced line array used to 
detect a narrowband signal arriving at 
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analysis is to have formulas available to determine the applicability and performance 
of the RR-GLRT for suppressing reveberation components which can be represented 
by a reduced-rank model and when the signal is not weak. The performance analysis 
shows that the RR-GLRT is closely related to the optimum Gauss-Gauss receiver. 
This work was presented and published at the VII European Signal Processing Con-  
ference, University of Edinburgh, Scotland, UK. 
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broadside in  the presence of interfer- 
ence from two narrowband jammers 
plus white Gaussian noise: (a) strong 
signal case where the signal strength is 
-5 d B  below the interference; (b) weak 
signal case where the signal strength 
is -15 dB below the interference. The 
jammers are located in  spatial frequency 
half a DFT bin-width about broadside 
and a total of 20 independent data 
snapshots are used. (Notation: c - 
clairvoyant detector; gg - Gaussian 
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Conclusions 

This memorandum is the first in the series of two documents or1 reverberation s u p  
pression. The objective of this memorandum was to lay a theoretical foundation 
for the proposed reverberation suppression methodology and techniques. The sec- 
ond follow-up document will focus on the application of these techniques to actual 
shallow-water reverberation data from the Elba area collected during November 
1994. In particular, the second document will present experimental examples using 
reverberation from known bottom features to show that the proposed nlethodology 
and techniques can result in significant performance gains over standard delay-sum 
beamforming and matched-filtering. Also, aspects regarding the practical imple- 
inentation of these techniques on real sonar data will be discussed. 

We now sunlinarize the key results presented here and also discuss some issues and 
questions raised by this work. We have proposed a signal-processing methodol- 
ogy in which reverberation suppression algorithms are developed by using acoustic 
propagation and scattering physics as a guide to modeling and determining simpler 
representations for the received data (i.e., reverberation and target waveforms), for 
which the criteria is applicability or development of efficient adaptive algorithms. 
The philosophy used here is that it is important to utilize as much prior propa- 
gation and scattering information as is practical to improve perforn~ance and also 
use the predicted waveform structures to justify the algorithms being used. This 
methodology was demonstrated by showing that temporally spread reverberation 
components, spread either due to the medium and/or extended scatterers, can be 
accurately modeled using a reduced-rank representation and expansion by discrete 
prolate spheroidal sequences. These representations lead to simple and efficient al- 
gorithms (which are presented in the three papers in the Annexes) for reverberation 
suppression and target localization. Theoretical analysis and computer simulation 
results indicate that these algorithms perform well. 

An important advantage of this approach is that prior environmental information 
can be utilized in a computationally efficient manner while at the same time adap- 
tively compensating for uncertainty in the environmental information. This is in 
contrast to a standard matched-field processing approach where the uncertainty in 
environmental information would have to be compensated by possibly a very high 
order multidimensional search. Thus the proposed approach is particularily useful 
in shallow water where acoustic propagation has considerable interaction with the 
ocean bottom, but the prior bathymetry information can be limited, e.g., bathymetry 
and sediment properties are coarsely sampled. 
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One potential scenario envisioned for application of these techniques is where a 
hostile submarine is stalking a strait or harbor entrance and exploits reverberation 
from bottom features (e.g., shoals, trenches, cliffs, etc.) to avoid detection. To 
illustrate how easy it would be for an adversary to avoid detection, consider a realistic 
example where the beamwidth of the delay-sum beamformer is 4 degrees. At a range 
of 15 km, this translates to a cross-range resolution of about 1 km. Thus a weak and 
slow-moving target would be masked by the main beam response of the reverberator 
at  any distance less than 1 km in cross-range. Therefore, an intelligent adversary 
could easily avoid detection if conventional processing is used. 

For example, to apply the proposed methodology, information from historical bathy- 
metric data bases in conjunction with numerical scattering models and augmented 
on online reverberation measurements would be used to determine areas of strong 
reverberation that a target could hide in. This analysis is then used to design and 
choose the reverberation suppression algorithms for a particular area; e.g., near a 
distinct shoal, one of the data adaptive high resolution algorithms proposed in this 
memorandum could be used; on the other hand, if the bathymetry is 'flat', then 
delay-sum beamforming followed by matched-filtering might be sufficient. 

Future work will consider the application of more sophisticated propagation and 
scattering models for developing reverberation suppression algorithms using the 
methodology outlined earlier. One potential direction of study is the utilization of 
more detailed channel propagation and scattering prior information in the reduced- 
rank generalized likelihood-ratio tests. 

Another area for future work is automating the application of the proposed algo- 
rithms (e.g., algorithm determination, parameter setting, thresholding etc.). It is 
envisioned that a sonar system would have an intelligent, automated front-end (e.g., 
expert system) which would take as its inputs information from bathymetric data 
bases, environmental information, numerical scattering models, and observed re- 
verberation and noise data. The front end would then automatically decide which 
detection/localization algorithms to use and set algorithm parameters and thresh- 
holds. 

Report no. changed (Mar 2006): SM-287-UU



References 
[l] Jensen, F.B., Kuperman, W.B., Porter, M.B. and Schmidt, H. eds. Computational 

Ocean Acoustics. New York, NY, American Institute of Physics, 1994. [ISBN 1-56396- 
209-81 

[2] Schmidt, H. Numerical modeling of three-dimensional reverberation from bottom facets. 
In: Ellis, D.D., Preston, J.R. and Urban, H.G., eds. Ocean Reverberation. Dordrecht, 
the Netherlands, Kluwer, 1993: pp. 105-112. [ISBN 0-7923-2420-X] 

[3] Collins, M.D. and Evans, R.B. A two-way parabolic equation for acoustic backscattering 
in the ocean. Journal of the Acoustical Society of America, 91, 1992: 1357-1368. 

[4] Scharf, L.L. The SVD and reduced rank signal processing. Signal Processing, 25, 1991: 
113-133. 

[5] Kirsteins, I.P. and Tufts, D.W. Adaptive detection using low rank approximation to a 
data matrix. IEEE Transactions on Aerospace and Electronic Systems, 30, 1994: 55-67. 

Report no. changed (Mar 2006): SM-287-UU



Appendix A 
Detection in reverberation using the RR-GLRT 

The RR-GLRT can be applied to any situation where the reverberation and target 
echo components can be represented using a reduced-rank model. We now propose 
an approach using the reduced rank representation from Annex I. 

First, recall that the observed data matrices in the RR-GLRT are assumed to be of 
the form (see Annex 111) 

X = 'FIT + N (noise only), (Al) 

or 
X = 'H, + SC + N (signal plus noise), ( A 4  

where 'H, is the low rank interference component due to the temporally spread 
reverberation (see Annex I) and SC is the target echo component to be detected. 
The target component is written as the product of matrices S and C. The columns 
of S generate the target echo subspace and the elements of C are the expansion 
coefficients. Note that the target echo component in the kth column of the data 
matrix X is written as 

M 

where the { s k )  are the basis vectors which generate the target echo component and 
the {ck) are the scale factors. We now show that (A3) can be used to represent 
temporally spread target echos. 

From Annex I formulas (9) and (12), the observed data matrix is 

- . . .  LF,-, B ~ I ~ + ~  . . . - cNP1 1 
Letting X = zT, we see that each row of X has the form 

X k  = [ G L + ~ - I G L + ~ - ~  . . . G k I T  
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We can now apply the same arguments of Annexes I and I1 and propose that tem- 
porally spread target echo components in each column of X can be accurately rep- 
resented using a discrete prolate spheroidal sequence expansion, that is, the Isk)  in 
formula (A3) are the discrete prolate spheroidal sequences. The reader is referred to 
Annex I1 for details how to design the DPSSs. 
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Annex I 
Model-aided data adaptive 

suppression of reverberation 

The paper reproduced in this annex was originally published as: 

Kirsteins, I.P. (1993). Model-aided data adaptive suppression of reverberation. In: 
Weatherburn, R, and Murdoch, G. eds., Low frequency active sonar. A NATO 
conference held by SACLANTCEN on 24-28 May, 1993, collection of unclassified 
papers, Vol. 1, SACLANTCEN CP-42. La Spezia, Italy, NATO SACLANT Under- 
sea Research Centre: pp: C/11-1 to C/ll-12. [AD B 182 7811 
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MODEL-AIDED DATA ADAPTIVE 
SUPPRESSION OF REVERBERATION 

I.P. Kirsteins 
SACLANT Undersea Research Centre, Viale Sun Bartolomeo 400, 

191 38 La Spezia (SP), Italy 

Abstract We propose a processing methodology which is based on the piece-wise modeling, 
adaptive estimation, and removal of reverberation components. An important feature of this 
approach is tbat backscatter models and information from pre-processing are used to guide 
the modeling of the reverberation components and the design of the algorithms to estimate 
them. The proposed processing methodology is developed for the case when strong, highly 
temporally localized reverberation compoaents plus a weak target echo are present in single 
channel time series data and the only prior information available about the reverberator is the 
approximate location and extent. For this case we derive a reverberation suppdon algorithm 
which is based on the reduced-rank modeling of the reverberator transfer function followed 
by application of the Principal Component Inverse (PCI) method of reduced-raok adaptive 
interference cancellation. The algorithm is tested using simulated and real reverberation data. 

1. Introduction 

An important problem in active sonar is the detection of targets in the presence of bottom 
and surface reverberation. It is well known that active sonars using standard delay-mun 
beamforming and matched filtering perform poorly in the presence of strong reverberation. 
This performance loss generally arises from the suboptimum properties of standard sonar 
signal processing when strong 'signal-like' reverberation components are present (delay- 
sum beamforming and matched filtering are optimum only for detecting and localizing a 
single point scatterer in white gaussian noise). These 'signal-like* components arise from 
abrupt changes in ocean boundaries (e.g., c l s s ,  trenches, pinnacles, seamounts, facet-like 
surface waves etc.) [I]. The poor performance leads to masking of targets and high false 
alarm rates. 

The design of an optimum receiver (e.g., likelihood-ratio test) requires the spatial-temporal 
statistical properties of the reverberation, ambient noise, and target acoustic pressure 
fields. Conceptually, the statistical properties of the acoustic back-scattered field are pre- 
dictable if all the pertinent scattering physics, propagation physics, and ocean-acoustic 
parameters (ocean surface, bathymetry, water column properties etc.) were known. The 
difficulty in practice is that excessive complexity is required to exactly model the acous- 
tic backscattering and propagation. An equally important problem is that the available 
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bathymehic/environmental data is often incomplete and known with limited accuracy. For 
example, the sound velocity profile and geo-acoustic parameters are usually measured at a 
small number of locations. In addition, bathymetric surveys may miss small-scale bottom 
features which can be important reverberators. Hence the optimum receiver can not be 
implemented. However, it is conjectured that sufficient information is available about the 
scattering mechanisms, bathymetry, and ocean environment to provide useful predictions 
to aid in modeling and suppressing the reverberation components. For example, at least 
the 'coarse' reverberation structure (e.g., location, energy dishibution and extent) should 
be predictable using acoustic backscattering models such as the two-way PE method [2] 
or BISSM2 [3] in conjuction with bathymetric and environmental data bases. 

The methodology that we propose for processing the reverberation data is to identify, 
categorize, model, and remove the reverberation components in a piece-wise fashion based 
on their ease of separability fram the ambient noise and target signals. The modeling and 
estimation of the reverberation components are guided by backscatter model predictions 
and preliminary analysis of the data, such as standard beamforming and matched filtering. 
In essence, the estimation step is used to compensate for the uncertainty in the backscatter 
predictions. 

This piece-wise approach to modeling and processing complicated data is similar to that 
proposed by Kirsteins and lWts [4] for processing Arctic sea noise data and also by 
Middleton [5] for strong non-gaussian interference. Middleton proposed that one way 
of dealing with non-gaussian interference is to estimate and thm subtract out the strong 
non-gaussian interference prior to signal processing and reduce the problem to one of 
processing in ambient noise [5]. The above methodology is also closely related to the 
residual signal analysis scheme of Costas [6] In [6] Costas considers the problem of 
recovering the individual signals that the received waveform is composed of, that is, the 
received waveform consists of a sum of several signals plus ambient noise and the problem 
is to estimate each of the signal components. He proposes a cooperative arrangement 
between estimation processors in which eacb processor acts as an adaptive interference 
canceller for all the other processors while estimating its own signal [6]. 

In this paper we develop the methodology for the case when strong, 'signal-like' or 
temporally localized reverberators plus a weak target echo are present in single channel 
time series data and the only prior information available about the reverberator is the 
approximate location and duration (see Figure 1). For this case we derive a novel al- 
gorithm for estimating and removing the strong, temporally localized reverberators. The 
algorithm is based on the reduced-rank modeling of the mearmred reverberator transfer 
function followed by application of the PC1 method [8-121. of reduced-rauk interference 
cancellation. 

The rest of the paper is organized as follows: In the next section we derive the r e e d -  
rank reverberation suppression algorithm. We then present some simulated and real 
reverberation data examples in Section 3, and in Ssction 4 concluding remarks. 
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2. Reduced-Rank Estimation and Removal of Temporally Localized Reverberators 
In this section we motivate the use of a reduced-rank madel to represent the measured 
reverberator and ocean-acoustic channel transfer function, and then derive the reduced- 
rank reverberation suppression algorithm for the single channel case e.g., beam outputs 
or individual hydrophones. For a review and discussion on reduced-rank modeling the 
reader is referred to [15,16]. 

The observed reverberation plus target time series, denoted as d(t), can be written as 

where the operator '*' denotes convolution, h(t) is the combined impulse response of the 
reverberator(s) and ocean-acoustic channel, T(t) is the combined impulse response of the 
target and ocean-acoustic channel, ~ ( t )  is the transmitted signal, and n(t) is some noise 
component (e.g., ambient noise). In the frequency domain the first convolution in (1) is 

where D(w), H(w), and S(w) are the Fourier transforms of d(t), h(t), and s(t) respec- 
tively. mically S(w) is restricted to some band, say between wl and w2. Therefore 
we consider H (w) only in the interval [wl , w2]. Next sample H (w) to form the discrete 
sequence 

Hn=H(wl+Awn), n=0 ,1 ,  ... N - 1 ,  (3) 
where w2 = wl + Aw(N - 1). 

Let us now assume that only one strong, temporally localized reverberation component is 
present in d(t) (1). More precisely, by temporally localized reverberation component we 
mean that most of the energy of the combined reverberator and ocean-acoustic channel 
impulse response is concentrated in a small time interval (e.g., featurea A and B in 
Figure 1). We now argue that the sequence (H,) can be approximated using a reduced- 
rank model when h(t) is temporally localized. Our argument starts with the observation 
that since h(t) can be expressed as 

it can be regarded as a 'Fourier transform' of the 'waveform' E(w) (h(t) is the complex 
conjugate of the Fourier transform of (1/2r)Z(w)). If h(t) is concedltrated in some time 
interval [ q ,  T ~ ] ,  we can then say that the 'waveform' H(w) is approximately bandlim- 
ited. It is well known that a segment of N samples from a bandpass stationary random 
process with a rectangular power spectrum of bandwidth and sampled at rate f, can 
be accurately approximated using a linear expansion of only (2P/ f,)N discrete prolate 
spheroidal sequences (DPSS) [16]. Hence from the above discussion, we infer that the 
data vector 

h = [H,,H~ . . ~ ~ - ~ 1 ~  
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should roughly be representable using a linear expansion of about r terms where, 

and f, = 1JAw. Formula (6) can be simplified by noting that as Aw -+ 0, it tends to 

recalling that [wl, w2] is the signal band. It is emphasized that formula (7) is exact only 
for a bandpass stationary random process with a rectangular spectrum. In general it should 
only be used as a heuristic rule or bound to gain rough insight into the dimensionality of 
H(w). The actual dimensionality will vary depending on the shape of h(t). 

We say that h is low rank when the dimensionality of h is much less than the dimension- 
ality of the background noise (e.g., rank of noise covariance mahix) [15,16]. Therefore, 
h is expected to be low rank when (r2 - r1)(w2 - wl) < < N and the background noise 
is full rank (e.g., white noise). Thus the PC1 method [8-121 can be used to remove 
temporally localized reverberators. A detailed review of the PC1 method is provided in 
Appendix A. 

First some preliminaries before presenting the reverberation suppression algorithm. The 
signal spectrum S(w) within the band of interest [wl, w2] is assumed to be non-zero 
everywhere and with no deep notches. The need for this will be seen later in the algorithm 
steps. Secondly, the target echo is assumed to be much weaker than the reverberator and 
the regions where strong, temporally localized reverberation components are present have 
been identified. The target echo is required to be weak to minimize the influence of the 
signal when estimating the reverberation component. We now give the steps of the 
reverberation suppression algorithm: 

2 .  Fourier transform the data 

where the interval [T:, T!] encompasses the kth reverberation component in for- 
mula (1). The interval [T:, T:] is determined from backscatter models and/or 
p r e l i m  analysis of the data, e.g., matched filtering. 

2. Measurement of reverberator-channel and target transfer function 
Calculate - - Dk(wl + Awn) G, = , n=0,1 ,  ... N - 1 ,  S(wl +Awn) 

It is important that S(w) has no deep notches within [wl, w2]. The effect of deep notches 
is to enhance any noise components which may be present in Dk(w). 

3. Apply PC1 method to remove reverberation component 
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The steps of the PC1 method presented in Appendix A are applied to the sequence 
(6;) (9) to estimate the reverberator response Hn and then subtract it from (6;). The 
residual contains an estimate of the target response and background noise. 

Formula (7) can be used to gain insight into the rank of the interference. The 
rank of the interference is more precisely determined by computing the srngular value 
decomposition of the data matrix and then finding the number of dominant s i n g d ~  values 
(see Appendix A). 

Discussion It is pointed out that the only prior information necessary to implement the 
algorithm is the approximate location and duration of the reverberatorchannel response. 
This can be determined from prellmlnary analysis of the data or backscatter models. No 
information regarding the shape of the reverberatorchannel response is needed. 

lWts et al. [7] also proposed using the PC1 method to suppress reverberation. In [7] the 
PC1 method is applied directly to the reverberation time series data. The new approach 
presented here applies the PC1 method to the measured reverberatorchannel transfer 
function and only requires that the reverberatorchannel impulse response is temporally 
localized. It does not require that the reverberation time series possess any low rank 
properties. 

The steps of the proposed processing methodology are now summarized. They are as 
follows: 

1. 1denu.Q and locate the regions where strong, temporally localized reverberators 
are present using prelimhaq analysis, e.g., standard W o r m i n g  and matched 
filtering, and backscatter model reverberation level predictions. The validity of the 
reduced-rank model for the reverberatorchannel transfer function is determined 
using formula (7) and from the number of dominant singuiar values the data matrix 
has (see Appendix A). 

2. Estimate and remove the strong, temporally localized reverberators using the PC1 
method. 

3. Perform target detection/localization on the residual data. 

3. Experimental Results 
We now present some simulated and real data examples. We start by giving an example 
to show how the low rank structure of the PC1 method data matrix (12) can arise. 

Low Rank Data Matrix Suppose our received waveform is 

for example, arising from two point scatterers over direct path propagation. It can then 
be shown that 

H(w) = ale-'r1w + a a e - i ~ w .  (11) 
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If we sample (11) over some interval and arrange the samples into the matrix given by 
formula (12), it is easy to show the data matrix is rank 2 (e.g., every row of the data 
matrix is some linear combination of the same two discrete exponential sequences). 

Computer Generated Data Next we present a computer generated example where a weak 
target echo is recovered in the presence of a strong, highly temporally localized rever- 
berator plus white Gaussian noise. The bandwidth of the reverberator is chosen to be 
0.0488 Hz and the sampling rate is 1 Hz. The envelopes of the entire observed impulse 
response (reverberator, target and noise) and the target echo are plotted in Figure 2a. 
Note that the signal has been deconvolved from the data. The PC1 method using a rank 
of 5 is applied to remove the reverberator and the residual is plotted in Figure 2b. Note 
that the target echo is distinctly observable in the residual. 

Real Reverberation We now apply the algorithm to some real shallow water reverber- 
ation data. The data was collected in area where the average depth was about 110 m. 
The reverberation data used in this example is the output basebanded time series from a 
single beam. The transmitted waveform is a 375-395 Hz HFM pulse of 2.45 s duration. 
In Figure 3 the envelope of the matched filter output for a single beam is plotted. It can 
be seen that there are several distinct peaks present in the matched mter output, partic- 
ularly the feature labeled 'A'. We now use the PC1 method to -timate and remove the 
reverberation component corresponding to peak 'A'. 

To apply the algorithm, a 5.3 s segment of data about the reverberator was taken and 
its Fourier transform evaluated at 100 qui-spaced points in the interval 375-395 Hz. 
The measured impulse response after the signal has been deconvolved from the data is 
plotted in Figure 4 (see step 2 of algorithm). Insight into the rank of the reverberator 
can now be determined using the measured reverberator response (Figure 4) to estimate 
the reverberator duration (N 0.4 S) and then substituting it into formula (7), obtaining 
r = 8 ( = 0.4 x 20). The data matrix (see step 3 of algorithm) had actually 4 dominant 
singular values so a rank of 4 was used to implement the PC1 method. The estimated 
reverberator and residual impulse response are plotted in Figures 5 and 6. It can be seen 
from Figure 6 that the reverberator has been accurately removed. 

4. Conclusion 
A new algorithm has been presented for suppressing strong, temporally localized reverber- 
ation components. The only prior information the algorithm requires is the approximate 
location and duration of the reverberation component. This can be obtained from prelim- 
inary analysis, e.g., beamforming and matched filtering or backscatter model predictions. 
Future work includes extending the algorithm to the strong target echo case and perfor- 
mance analysis. 

Acknowledgement The author would like to thank Dale Ellis and Reginald Hollett for 
providing the reverberation data set and also the many helpful discussions. 
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A. Review of PC1 Method 
The PC1 method [8-121 of adaptive interference cancellation and detection is based on 
reduced-rank nulling of interference. The PC1 method exploits the low rank structure of 
the data covariance matrix or equivalently, of the data matrix. An important advantage of 
the PC1 method over conventional methods such as adaptive control loops and the Sample 
Matrix Inverse method is that it achieves a much more rapid rate of adaptation [8-121. 

In the PC1 method, the interference is first regarded as a 'signal' to be enhanced. Then 
reduced-rank signal enhancement [10,13,14] is applied to obtain an estimate of the inter- 
ference. This interference is subtracted from the observed data and the residual is then 
processed to extract the desired signal information, e.g., presence of signal. The key idea 
in the signal enhancement algorithm [lo, 13,141 and the PC1 method is to arrange the data 
samples in some matrix form which exploits the low rank structure of the data. More 
specifically, the steps for the time series version of the PC1 method are as follows: 

1. Construction of Data Matrix 
The data sequence {H,),"C; is arranged into the forward-backward matrix 

where L is the number of columns and '-' denotes complex conjugate. 

2. Estimating the Interferpnce Component 

The interference waveform is estimated by arithmetically averaging aU multiple 
occurences of each data sample in the low rank approximation to 31, denoted as a , ,  
which is found as the solution to 

rnin 
31, 

31, subject to rank[31,] = r 

The solution to (13) can be easily calculated using the singular value decomposition 
(SVD) of the data matrix X. Also, the rank 'r' can be estimated by determining the 
number of domiuant singular values present. 

3. Removing the Interferpnce Component 
The estimated interference waveform, denoted as in, is subtracted fnnn the data: 
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reverberation level 

Figure 1. Example of prior information available. 
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Fig. 2a) Interference, signal and noise impulse response. 
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Fig. 2b) Residual impulse response after estimated interference has been subtracted. 
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Figure 2. Computer generated data example. 
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Figure 3. Single beam matched filter output. 

Time (s) 

Figure 4. Measured impulse response of reverberator. 
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Figure 5. Estimated reverberator impulse response using reduced-rank signal en- 
hancement. 
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Figure 6. Residual impulse response after estimated reverberator component has 
been subtracted. 
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Annex 11 
Modeling and suppression of 

reverberation components 

The paper reproduced in this annex was originally published as: 

Edel, G.S. and Kirsteins, I.P. (1994). Modeling and suppression of reverberation 
components. In: Gingras, D., Fortier, P., Philibert , B. eds., Proceedings, IEEE 
seventh SP workshop on statistical signal and array processing, 26-29 June, 1994. 
Quebec, Universitek Laval: pp. 437-440. [ISBN 2-9804169-0-81 
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Modeling and Suppression of Reverberation Components 

Geofrey S. Edelson Tvars P. ~(irsteinst 
Lockheed Sanders, Inc., P.O. Box 868, Nashua, NH 03061-0868 USA 

~ S A C L A N T  Undersea Research Centre, Viale San Bartolomeo 400, 1-19138 La Spezia, Italy 

Abrrtract - We propose a maximum likelihood type 
approach for estimating the arrival times of signals 
which have propagated via a continuum of paths, i.e. 
temporally spread channels. The channel spreading 
is included in the model by using a discrete pro- 
late spheroidal sequence (DPSS) to represent the 
channel impulse response of given duration, but  un- 
known shape. The  unknown parameters are esti- 
mated using an iterative methodology which decom- 
poses the original data  into its constituent compo- 
nents and then estimates the parameters of the in- 
dividual components through a sequence of one di- 
mensional searches. Computer simulation examples 
indicate that the method performs well. 

I. INTRODUCTION - 
An important problem in active sonar is the detection 
and localization of targets in the presence of reverbera- 
tion. Reverberation becomes particularly acute in shal- 

L 

low water due to the complex interaction of the reflec- 
tors with the channel. The reverberation plus target 
time series can be modeled as the joint convolution of 
the signal with the channel and scatterer impulse re- 
sponses, that is, 

d(t) = hl(t - TI) *s(t) + ht(t - n) *s(t) + n(t) - k = 2  - v 
target reverberation noise 

(1) 
where ~k is the propagation delay, hk(t) is the path 
impulse response, and s(t) is the transmitted signal. 
In many environments, the channel response hk(t) can 
not be adequately modeled as propagation over discrete 
paths. Rather, the propagation is via a continuum of 
paths and the spreading can be significantly greater 
than the spatial extent of the scatterer. 

A standard approach for estimating the arrival times 
r k  is to simply match filter the received data with the 
transmitted replica and then determine the location of 
the peaks in the matched filter output. However, the 
matched filter does not take channel spreading into ac- 
count and the resolution of the matched filter is limited 

by the duration of the signal autocorrelation function. 
Equivalently, the resolution is proportional to the re- 
ciprocal of the signal bandwidth. Thus, in the presence 
of strong interference, weaker paths can be obscured or 
result in highly biased estimates. Recently, high reso- 
lution time of arrival estimation algorithms have been 
proposed [I, 2, 3, 4,5]. However, they also assume that 
discrete propagation paths are present. 

We propose a maximum likelihood type approach for 
estimating the arrival times which takes channel spread- 
ing into account. The approach is based on the fre- 
quency domain realization of the arrival time estimation 
[I,  2, 31 and then includes channel spreading by using 
a DPSS expansion to represent the channel response of 
given duration, but unknown shape. The unknown pa- 
rameters are estimated using an iterative methodology 
[4, 51 which decomposes the original data into its con- 
stituent components and then estimates the parameters 
of the individual components through a sequence of one 
dimensional searches. We now derive the algorithm. 

11. TIME OF ARRIVAL ESTIMATION 
The objective is to estimate the r k  from d(t) in (1). 
Assuming the ht(t) are known, then the least-squares 
estimator (ML when n(t) is white Gaussian) of the r k  
is [2] 

where D(w), Hk(w), and S(w) are the Fourier trans- 
forms of d(t), hk(t), and s(t) respectively. The interval 
[wl, w2] is the signal frequency band in radians. A p  
proximating the integral by a discrete sum, we get 

min C I D(wm) - 
'1 , . . . , T M  rn 

where wrn = wl + mAw and Aw is the frequency sam- 
pling interval. 
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A problem in practice is that the shape of the hk(t) 
are usually not known. However, there are instances 
for which the extent or bound of the expected temporal 
spreading is known, i.e. the channel impulse response 
lies in [-Tk,Tk]. For example, the sound velocity pro- 
file and geoacoustic parameters are often known to suf- 
ficient accuracy to approximately predict or bound the 
channel spreading. Thus the hk(t) are also unknowns 
(where the extent of spreading is known, but the shape 
is not) along with the rk. Hence, the optimization of 
(3) has to be performed with respect to both the r k  
and the unknown hk(t) subject to the constraint that 
the non-zero response of hk(t) lies within some interval 
[-Tk, Tk]. This is a difficult optimization problem. 

The approach we take is to approximately impose the 
constraint that hk(t) lies within [-Tk,~k]-  by kxpand- 
ing Hk(w) using the DPSS's as basis functions. For 
an excellent review of the definition and properties of 
DPSS's, the reader is referred to [6]. Note that we will 
be using the same notation as in [6] for the DPSS's. We 
argue that 

for m = 1'2,.  . . , N is a good approximation to HL(w) 
in the band [wl, wz] where r k  = Tk(w2 - wl)/x, the 
{vz(N, pk)} are the DPSS's designed for bandwidth P k  
in normalized hertz ([O, .5] Hz) and length N ,  Pk = 
TkAw/2~ ,  and the a: are scalars. 

Our argument starts with the observation that since 
hk (2) can be expressed as 

it can be regarded as a "Fourier transformn of the 
"waveform" Hk(w) (hk(t) is the complex conjugate of 
the Fourier transform of &ak (w)). If hk (t) lies in some 
time interval [-Tk, Tk], we can say that the "waveformn 
Hk(w) is approximately bandlimited. By the relation- 
ship between time and frequency, it can be shown that 
the normalized bandwidth is /3k = TkAw/2n. Also, 
it is well known that a sequence of N samples from a 
low pass stationary random process with a rectangular 
power spectrum of bandwidth P k  and sampled at rate 
f, can be accurately approximated using a linear ex- 
pansion of only ? N DPSS's [7] (see also [6] about the 
approximate dimension of a bandlimited signal and its 
expansion using the DPSS's). Hence from the above 
discussion, we infer that the sequence Hk(w1 + mA) 
should roughly be representable using a linear expan- 
sion of about r k  terms where 

and f, = 2x/Aw. Formula (6) can be simplified by 
noting that as Aw + 0, it tends to 

which should only be used as an heuristic rule or bound 
to gain rough insight into the dimensionality. r k  should 
be more precisely determined by experimentation. 

We now substitute (4) into (3) to get 

min JD(wm) - 
{rkl,{a;l rn 

The original constrained optimization problem is now 
an unconstrained optimization problem in terms of the 
a! and r k  because the unknown shape of the hk(t) is 
now represented in terms of the linear parameters a; in 
(8). This greatly simplifies the optimization problem. 
It  will be helpful to rewrite (8) in vector notation as 

where 

d = [D(wl) D ( w ~  + Aw) . , . D(wl + ( N  - ~ ) A w ) ] ~ .  
(10) 

W(rk) is a N x N diagonal matrix whose elements are 
wm,m = S(wl+ (m - ~ ) A ~ ) ~ - ~ ' ~ ( " L + ( ~ - ' ) A W ) ,  the Vk 
are N x r k  matrices whose columns are the DPSS's, and 

Solving for the rr: 
To estimate the rk, we need to solve (9). Direct min- 

imization of (9) is difficult. We proposeto use an ap- 
proach which was originally proposed in [4] and modi- 
fied in [5] which decomposes the original signal into its 
constituent components and then estimates the param- 
eters of the individual components separately through 
a sequence of one-dimensional searches. The approach 
accounts for the bias in the estimates by matching each 
search to its corresponding distorted residual signal [5]. 
We now present a brief derivation of the algorithm. 

In each iteration, we solve 

min - C w(~;)vkak - W(rm)vk&a11~ 
rm'tam' k=l.k#m . . 

(12) 
where the rt are the estimates from the hth step. Note 
that the minimization is done wit11 respect to only the 
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mth arrival time, T,, but with all the ak. Following [5], 
the linear parameters at can be eliminated to obtain the 
equivalent one dimensional minimization 

where P(T,) is a projection operator onto the column 
space of the N x M matrix 

where Bk = W ( s k ) h .  The projection operator P(T,) 
is given by 

To simplify (13), we construct the N x M - 1 matrix 
C, by removing the mth column of C. It is easy to 
show that 

where P& is the projection operator onto the orthog- 
onal complement of the column space of C,. Then we 
can rewrite P(T,) as 

where 
- ~ m ( G ' m ~ ~ m ) - ' ~ m ~  PC, - (18) 

and 
PA rn = A,(A:A,)-'A: (19) 

with A, = PkrnBm. Substituting (17) into (13) and 
explicitly evaluating the norm, the minimization of (13) 
can be rewritten as the maximization of 

max d H p ~ , d .  
1, 

(20) 

A summary of the iterative procedure is as follows: 
1) The iteration is initialized by assuming M = 1 and 

solving (20) for the first estimate f l .  
2) Next, we let M = 2 and TI = Fl in (20) and solve 

for 72, holding TI fixed. This step is repeated for 
M = 3 ' 4 . .  . , K where I -  is the total number of 
paths. Note that in each step the previous esti- 
mates {Fk}t=l, . . . ,~- 1 are used in the evaluation of 
(20) and are kept fixed. 

3) Once K initial estimates are obtained, we solve and 
update the estimates for TI; one at time until the 
change in (20) is less than some desired conver- 
gence criterion. 

This algorithm is an extension of the Fast Maximum 
Likelihood (FML) procedure [4, 81 to  incorporate or- 
thogonal bases. We reduce the computational require- 
ments of FML by using orthogonal components so that 
the estimation of the parameters becomes decoupled. 
This approach is taken in [9] for estimating the fre- 
quencies of complex sinusoids. A detailed comparison 
between FML and the class of algorithms that itera- 
tively maximize the likelihood function by updating the 
parame~ers of individual components is found in [4]. 

111. EXPERIMENTAL RESULTS 
We consider a two path example in which the received 
data is modeled as 

dn = hn * sn +2~"-59 + wn + (21) 
spread channel 

for n = 0,1,.  . . ,1023 where w, is a IID zero-mean com- 
plex Gaussian distributed noise sequence. The spread 
channel hn is plotted in figure 1 and is modeled as a 
cluster of very closely spaced discrete paths (spacing is 
half the sampling rate). For example, hn can arise from 
an extended reverberator. 

The transmitted signal is a linear sweep FM given by 

for n = 0,1,.  . . ,199. The main-lobe width of the signal 
autocorrelation function is approximately 36 samples. 
Note that the sampling rate is one second. 

A single realization of data was computer generated 
according to formula (21) with noise variance 48.8. The 
data was transformed to the frequency domain by a 
1024 point FFT and bins 1-60 were used. The recon- 
structed raw data from bins 1-60 is plotted in figure 2. 
The spread channel was represented using the first two 
DPSS's designed for bandwidth 2011024. 

For this particular example the algorithm converged 
in 3 iterations. The estimates we obtained were TI = .4 
(spread channel) and 72 = 54.4 (discrete path). The 
residual after the estimated components are removed 
from the data is plotted in figure 2. Note that the 
estimates are quite close and that the discrete path is 
not resolved by the matched filter (see figure 2). For 
comparison, we repeated the example assuming that 
only discrete paths are present. After 4 iterations we 
obtained TI = 4.48 and r 2  = 14.08. Note that the 
discrete path at delay 59 is not resolved. 

IV. SUMMARY 
Motivated by the difficulty of matched filtering and 
standard high resolution algorithms to accurately es- 
timate the arrival times of signals that have propa- 
gated via temporally spread channels, we have pro- 
posed a frequency-domain estimation procedure based 
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on maximum likelihood that features a DPSS expan- 
sion to model the unknown channel spreading. The 
iterative estimation algorithm decomposes the original 
data into orthogonal individual components, provides 
a specific procedure for initialization, and improves on 
the estimates of the parameters in a well-defined and 
sequential manner. The computational efficiency of the 
algorithm is derived from the use of orthogonal basis 
vectors combined with the use of only onedimensional 
searches in the parameter domain. For future work, an 
investigation of the proposed algorithm's convergence 
properties is required. 

The combined spread and discrete channel example 
that we present demonstrates that i t  is important to 
take channel spreading into account and shows that the 
proposed modeling procedure can lead to significantly 
improved arrival time estimation. 
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Figure 1. Spread channel impulse response. 

Figure 2. Envelope of raw data and residual. 

Figure 3. Envelope of matched filter output. 
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Abstract.  An analysis and interpretation of the reduced-rank generalized likelihood-ratio test (RR-GLRT) detector 
is presented in this paper. First, simple and accurate approximations to the RR-GLRT test statistics are derived. The 
approximations are verified by computer simulation and are shown to be accurate over a wide range of interference 
and signal levels. These approximations are then used to show that the RR-GLRT is related to the UMP invariant 
test and to calculate the moments and deflection of the RR-GLW statistic. 

1. Introduction 
The objective here is to analyse and provide an in- 

terpretation of the recently proposed reduced-rank gen- 
eralized likelihood-ratio test (RR-GLRT) [I, 21 for de- 
tecting a low rank signal in the presence of unknown, 

8 strong low rank interference plus white Gaussian noise. 
The RR-GLRT leads to a test which is similar in spirit 
to the Principal Component Inverse (PCI) method [3] of 
rapidly adaptive detection and extends the PC1 method 
to the case where the training data is contaminated by 
signal components. Computer simulations indicate that 
the RR-GLRT performs well [I, 21. We begin with a re- 
view of the detection scenario. 

Let us assume that K independent, complex-valued, 
m x 1 data vectors or usnapshotsn of data {xl, . . . , x K }  
are observed consisting of either interference or inter- 
ference plus signal. In [2] the RR-GLRT was derived 
for two different distribution models. In both cases, the 

. snapshots are modeled as complex multivariate Gaus- 
- sian distributed, but with different assumptions. In the 

first case, the low rank interference component is mod- 
eled as deterministic. Here, the distributions for the 
interference only and interference plus signal hypothe- 
ses are: 

where the columns of the m x rh matrix H and m x r ,  
matrix S generate the low rank interference and signal 
spaces respectively, and the elements of the vectors bk 
and ck are the scale factors for the kth realiration of 

interference and signal respectively. We assume that H ,  
bk, ck, and uZ are unknown. 

In the second case, the low rank interference compc- 
nent is modeled as complex multivariate Gaussian dis- 
tributed. Here, the distributions for the interference 
only and interference plus signal hypotheses are: 

' H o :  x a - N c ( O , Q + u z ~ )  , k = 1 ,  ..., K (3) 

where Q is the rank rh covariance matrix of the low 
rank interference component. We assume that Q, uZ 
and ck are unknown. 

We now review the RR-GLRT detectors. For further 
detail the reader is referred to [I, 21. The GLRT is 
derived by constructing the LRT for choosing between 
hypotheses 'HO and 'HI and then replacing the unknown 
parameters by their ML estimates. We begin with the 
deterministic case. 
Deterministic Low Rank Interference 

For convenience, (xt), {cr), and ( b k )  are arranged 
column-wise into the matrices X, C and B respectively. 
Note that in matrix form, the low rank interference and 
signal components are HB and SC. Thus the unknown 
parameters in the joint PDF of X are H, B, C, and the 
white noise variance u2. It can be shown that a GLRT 
statistic for this case is [I, 21 
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The test statistic (5) simplifies to [I, 21 

where xrh and XS,, are the best rank rb approxima- 
tions to X and Pix in the least-squares sense respec- 
tively. P i  is the projection operator onto the orthog* 
nal complement of the column space of S. 

Low 
The unknown parameters in the PDF are now the 

covariance matrix Q of the low rank interference com- 
ponent, C , and the white noise variance u2. Note that 
we must constrain the rank of Q to rh  when estimating 
the parameters. 

Following the same steps as before, it can be shown 
that a GLRT test statistic is [2] 

cussion of the specific details involved in each step, the 
reader is referred to appendix A. 

1) The perturbation expansion for the error in approx- 
imating a matrix by a matrix of lower rank derived in 
131 is used to obtain the approximation 

where Ppgls, PHIS, and Pi are projection operators 
onto the column space of PAS, orthogonal complement 
of the column space of [HIS], and the orthogonal com- 
plement of the row space of the complex conjugate of B 
respectively. 

2) Formula (8) can be rewritten as 

where the columns of Do and 01 are the r principal 

(7) 
eigenvectors of & and P;&P;, respectively. 

where $ = h X x H  and ~1 = &(x - SC)(X - SC)H. 3) The perturbation expansion derived in [4] for the 
estimated interference subspace is used to approximate Formula (7) simplifies to [2] the ratio of determinants in (10) as 

where the {if0) and (if1} are the eigenvalues of & 
and P;&P; respectively. 

In order to analyse the performance of the RR-GLRT, 
we require the statistics (eg., moments, density) of the 
test under ')lo and 'HI. The statistics are difficult to o b  
tain analytically because the test statistics are a func- 
tion of the eigenvalues or singular values of the data 
matrix which are highly non-linear functions of data. 
In the next section we develop approximations to the 
test statistics which can be readily analysed. 

2. Test Statistic Approximation 
The approach we take is to use perturbation expan- 

sions for the low rank fitting error [3] and estimated sig- 
nal subspace [4] to derive simple approximations to zl 
(6) and 22 (8). The key assumption used is that the low 
rank interference component H B  is much stronger than 
the signal component S C  (when present) and the back- 
ground noise N in the observed data X = H B+SC+ N. 
That is, in the analysis, both S C  and N are treated as 
perturbations. It is also pointed out that the analysis 
is done for a specific realization of interference H B  and 
signal SC. 

We now present an outline of the main steps involved 
in deriving the approximations to zl and 2 2 .  For a dis- 

where the orthonormal columns of Uo, Ul span the col- 
umn spaces of H and P;H respectively. I, 

4) The ratio of determinants (11) is now approximated 
using a first-order Taylor expansion as 

where 
A = t r a c e [ ~ ; ~ U f ~ ~ ~ U ~ ]  - ~ ~ ~ C ~ [ Q ; ' U ~ X X ~ U ~ ] ,  
Qo = U , H E E ~ U ~ / K  + U~I,  
Q1 = UrEEHU1/K + u21, and E = HB. 

5) When N is small, the term A / K  also becomes small. 
Then, for small N, (1 + e)(ll(m-rh) x l+ A/K(m-rh). 
Substituting the above approximation and (9) into (lo), 
we obtain the approximation 

Summarizing, we have derived accurate approxima- . 
tions for zl and 22  which are given by formulas (9) and 
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(13) respectively. In the next section we discuss the 
relationship of the RR-GLRT to optimum detectors. 

3. Interpretation of the RR-GLRT and 
Calculation of the Mean and Variance 

The above approximations provide useful insight 
about the RR-GLRT detectors. Note that in the fol- 
lowing discussions we assume that the elements of N 
are IID complex Gaussian distributed with zero-mean 
and variance u2. We began with the connection of zl 
(9) to the UMP invariant test for detecting a subspace 
signal in subspace interference and white noise of un- 
known variance. Scharf [5] showed that (here modified 
for the mu!tiple snapshot case) 

( q  is some threshold) is the UMP test invariant to ro- 
tations in the range of PPkS and non-negative scalings 
of X. Note that (14) and (9) are almost identical ex- 
cept for the post-multiplication of X by P i .  The post- 
multiplication of X by P i  can be interpreted as a loss 
due to the low rank estimation procedure. However, 
when r h  is small, we expect the loss to be generally 
small since the projection operator P i  is almost of full 
rank. 

For insight into zz (13) we replace I(PisXPkII$ by 
its expected value u2(m - r h  - r,)(K - r h )  and assume 
that m and K are large. Then (13) becomes approxi- 
mately 

(15) 
where scale factors and constants have been removed. 
We now compare (15) to the Gauss-Gauss detector for 
the case when the dimensionality of the observed data 
has been reduced by projection onto the column space 
of [HIS] ,  e.g., Z = [ U ~ ( U S ] ~ X  where the orthonormal 
columns of Us generate the column space of PHIS. A% 
suming the signal is strong and of dimension t h  + r, (we 
are assuming an arbitrary signal here, not the signal dc- 
fined previoualy), a t a t  statistic for Z is (see [7]) 

where Qo is the covariance matrix of U ~ X , .  Note that 
the first two terms of (15) are very similar to (16). It is 
not directly obvious how the last two terms in (15) affect 
performance. This has to be studied further. Finally, 
we note that A = 0 and hence zz x zl when the signal 
is orthogonal to the interference, i.e., SH H = 0. 

It is now pointed out that 22 utiliaes signal compo- 
nents which lie in the range of H ,  while zl doca not. 
Thus, we conjecture that the test based on 22  should 
perform better. 

Calculating the mean and variance of zl (9) ie 
straight forward. It is eaey to show that tl - 1 is 
distributed an (vl/v2)F.,,,, under hypotheeia NO and 
(vl/v2)F(P),,,., under 311 where vl = 2r,(K - rh), 
u2 = 2(m-th-r,)(K-rh), and P = ~ I I P ~ . L ~ S P ~  Il$/uZ 
(see [6] for discussion on F distributions). The mean and 
variance can then be obtained from the tables in [6]. 

The calculation of the mean and variance of zz is 
more difficult because the term Q,'U:XX~U~ and the 
numerator of zl - 1 (9) are correlated to some degree. 
However, in practice we have found the correlation to 
be very small and that 7'/(m-'b) and zl can be approx- 
imated as uncorrelated. Thus, the mean and variance 
of zz can be obtained by first calculating the mean and 
variance of r'/(m-'h) using some results found in [8] 
and then assuming that zl and r'/(m-'b) in the prod- 
uct zlrl/(m-rh) are uncorrelated. 

4. Experimental Results 
In the simulations, a twenty sensor equi-spaced line 

array is used to detect a plane wave monochromatic sig- 
nal arriving at  broadside. The interference consists of 
two strong, far-field equi-powered monochromatic jam- 
mers located in bearing symetrically about broadside 
plus a background white Gausaian noise component. 

20 independent snapshots of the low rank interfer- 
ence component and 20 signal snaphots were generated 
where JIHBJI; = 42.2 and IIscII$ = 1.4. In each trial, 
the true and approximate test statistics are evaluated 
using the same realization of low rank interference and 
signal, but with independent realbations of the back- 
ground white Gauseian noise with variance .01. 

A total of 200 independent trials were performed with 
the low rank interference spatial frequency (separation 
from signal component) varied from 1 to .5 DFT bin- 
widths. In figure 1 the theoretically calculated meam 
and variances for hypothesis N1 are compared againet 
the experimentally measured values. They agree quite 
well. Although not presented here, the true and a p  
proximate test statistics were a h  compared by scatter- 
grams. Here also, the true and approximate t a t  statin- 
tics were very close. 

The above approximations can now be uned to eval- 
uate the deflection 

d =  ( P 1 [ z ]  - E1(O[z])= 
.5(varU0[z] + varU1 [z]) (17) 

which is an indicator of receiver performance. The de- 
flections are plotted in figure 2 and compared against 
the UMP invariant receiver (14). Note that the deflec- 
tion of zl is close to the U M P  invariant test and that 
za is somewhat higher than zl. 
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5. Conclusion 
Accurate approximations have been derived for the 

RR-GLRT receivers which provide useful insight about 
the receiver structures and are simple to analyse statia- 
tically. In future work the analysis will be considered 
for the case of random low rank interference and signal 
components, rather than for fixed realizations of HB 
and SC. 

Appendix A 
Step 1: Using the perturbation expansion derived in 
[3] for the error in approximating a matrix by a matrix 
of lower rank and keeping only first-order terms, it can 
be shown that 

and 

where P i  is the projection operator operator onto the 
orthogonal complement of the column space of H. 

Next, using the relationship Ps + PpkH + P A  = I 
(where Ps is the projection operator onto the column 
space of S), (19) can be rewritten as 

Similarily, noting that PH + PpkS + P i S  = I, (18) can 
be rewritten as 

Substituting (21) and (20) into (6), we obtain the a p  
proximation (9). 
Step 3: A first-order perturbation expansion of the 
space spanned by the r principal left singular vectora of 
a perturbed matrix R = R + AR, where ronk[R] = r ,  
is [4] 

01 w UI + (I - UIU,H)ARUIA;' (22) 
where the columns of UI are the r principal left sin- 
gular vectora of R and AI ia a diagonal matrix of 
the principal singular values. Substituting (22) into 
O ~ ( R  + A R ) ~ ~  and keeping only ht -order  terms, we 
get O ~ ( R  + AR)O~ w U: R U ~ .  T K ~  approximation ia 
then used to obtain (11). 
Step 4: The firat-order Taylor expansion of the ratio of 
two determinants IQo + AQo(/lQl + AQ1l, about ma- 
trices Qo and Q1, 

is obtained by direct application of the standard for- 
mula for the partial derivative of a determinant [9]. 
Letting AQo = U ~ X X ~ U O / K  - QO and A91 = 
U:XX~U~/K - Q1 in (23) and after some manipu- 
lation, we get (12). 
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SEPARATION IN BIN-WIDTH 

Figure 1. Calculated and experimentally measured 
(x - mean, + - variance) mean and variance. 

Figure 2. Calculated deflection 
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