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INTRODUCTION 

The conventional approach to ray tracing is to follow one ray, usually 
specified by its initial direction, by standard techniques of numerical 
integration along the ray path, building up a set of values of 
horizontal displacement, direction, and travel time, as a function of 
vertical displacement (horizontal stratification of the sound speed 
profile in the medium is assumed). This process demands computer time 
and storage. By this means a family of ray plots may be built up 
[e.g. Fig. lJ 

In many applications, however, this forward computation is inconvenient, 
in that an inverse problem requires solution. Examples are: 

a. Given the terminal points of the ray, what is the 
grazing angle at one point on it (this frequently occurs in 
experimental determinations of bottom reflectivity). 

b . Given the measured travel time from surface to bottom, 
what is the true slant range (e.g. the use of bottom transponders 
ln some navigational systems). 

c. Given the known slant range, what is the true travel 
time (the converse of (a), also often encountered in bottom studies). 

A common feature of these problems is that they do not involve rays 
having turning points (i.e., the slope is always of the same s ign), 
and basically the theory to be described is restricted to this special, 

but important, situation. It is possible to extend the treatment to 
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rays having a turning point, but the advantages of the approach are 
not as marked, and this extension will not be discussed here. 

THEORY 

Figure 2 shows the geometry of the situation . Horizontal range is 
denoted by x, vertical depth by z, and the grazing angle at any 
point on the ray bye. The terminal points of the ray will be 
denoted by (0,0) and (X,Z). The sound speed profile (horizontally 
stratified) is assumed known, the sound speed at depth z being c. 
The slope of the slant range line 90 , and the slant range is D. 

The basic ray-tracing equations are that along the ray: 

tan e 

cos 8/c = p = constant (Snell's Law) 

dzl dt = c sin e, where t = travel time 

On integrating along the whole path, we obtain 

x = Sz cot e dz 
o 

t = JZ (cosec si c) dz 
o 

[Eq. I J 

[Eq. 2 J 

[Eq. 3 J 

[Eq. 4 J 

[Eq. 5J 

If we use Eq. 2 to express Eq. 4 in terms of c and p, we note 
that, if given X and Z, Eq. 4 becomes essentially an integral 
equation for determining p. The method to be described is based on 
noting that integration is an averaging process, and that this 
suggests that we are in effect computing some rather complex 
weighted average of c. 

As far as Eq. 5 is concerned, we may note that another average 
value of c is defined by travel along the straight line path; 
since by Fermat's principle the true travel time represents a 
stationary value, the change due to moving to the displaced straight 
line path can differ only be second order quantities. 
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We therefore express c in terms of its deviation from the mean - - 1 JZ value over depth c, where c = Z c dz and write 

c = c[ 1 + e: (z) J , where for real profiles 

e:(z) « 1 [Eq. 6J 

It is also convenient to replace the Snell's law constant p by 
an angle e, defined by the equation 

cos e/c = p [Eq. 7J 

Since -c is a value which actually occurs on the sound speed 
profile, e is a real angle for any real ray. 

The mean of e: over z is clearly zero, and we may define higher 
moments by such equations as 

1 Z 
= - J e: 2 dz Z 0 

[Eq. 8 J 

On making the appropriate substitutions in Eqs. 4 and 5, we obtain 

x/z cot 8 0 
cot e 

z 
1 f z (1 + e:) [1 - cot2 e (2 8 + 8 2 ) J -2" dz 

' 0 [Eq. 9J 

t = (cosec e / e) J Z (1 + e: ) -1 [1 - cot2 '8 (2 e: + e; 2 ) J -! dz . 
o [Eq.lOJ 

Equations 9 and 10 may now be expanded as binomial series in e:, 
the results being 

cot 80 

ct/ z 

= [Eq.llJ 

= cosec e [1 +? (1 - ! cot2 8' + 3/2 cot4 a) + 0 (83 )J 
[Eq.12J 

the first-order terms vanishing identically. 

If we retain only terms to the second order, Eqs. 11 and 12 are very 
easy to invert or otherwise manipulate, with the following results 
(noting that D = Z cosec 80 ) : 
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[Eq. l3J 

[Eq. l4J 

and the inv erse of Eq. 14 

[Eq. l5J 

Thes e equations clearly give a very simple answer to the problems 
cited in the introduction. They are easy to compute, and require 
c omputer storage for only two environmental parameters, c and~, 

both of which are easily computed once for all for any given sound 
s p eed profile. 

ACCURACY 

Equations 13 to 15 are approximations ln which terms in "€3 and 
higher moments have been ignored, and it is obviously necessary to 
determine the errors introduced (and indeed even to decide if the 
s e ries is convergent). 

Thi s probl em has been solv ed as follows. Considering all possible 
s ound s peed profiles for which c and ~ are specified, and for 
given val u es of X and Z, for which of these profiles will the 
values of p or of t given by Eqs. 2, 4 and 5 have extremal 
valu e s? This is a variational problem, which can be handled by the 
technique of using Lagrangian multipliers for the equations of 
c ondition. The result, for both p and t, is that extremal values 
wi ll be attained when c{z) is a function of (z) which can take 
only two discrete values, i.e., when the sound speed profile is that 
of a two-layered environment. 

This, however, is not sufficient to determine a true maximum, since 
the two - layer profile is specified by only two conditions, but has 
three degrees of freedom. It is necessary to find a third constraint, 
and an obvious one is given by the observation that any real profile 
has bounded values of c, that is, that it has a maximum and a 
minimum value for sound speed. It can now be shown that the extremal 
v alues in this situation will be given when one of the layers is 
a llocated either the greatest or the least value of c, denoted by 
c and c. [Fig. 3J. max mln 
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From these extreme profiles it can be shown that the series expansion 

is absolutely convergent, and that the values of cos e and D lie 

within the bounds given by the following expression: 

D = c t [1 +!- 7 \ (c2 e / Z2 ) - 3 \ (1 + Y 2 ) ] 

c = c(l+a) max c. = c (1 - b) mln 

It is clear from these expression that the error is greatest at the 

maximum range, and falls off roughly as the fourth power of range. 

If we make some simplifying assumptions (basically that gradients are 
never very large, so that the sound speed profile moves relatively 
smoothly between its extremes), it can be shown that, to a reasonable 
degree of accuracy, the error at maximum range is approximately equal 
to the correction introduced by adding the term in €2 for the 
Snell's law constant cose, and is half the corresponding correction 

for the slant range determination. 

ILLUSTRATIONS 

To demonstrate the sort of accuracy that the approximations can give, 
a comparison has been made between the results of an exact computa-
tion, using a digital computer, and the approximations given above, 

for two profiles (chosen basically to ease the digital computer's 

task ~ ) 

Figure 4 outlines the profiles used. That marked 'typical' has 

parameters not unlike those found in the real ocean; the 'extreme' 
profile was designed to have wide limits (a 10% variation in sound 
speed) and incorporates a marked inversion layer. 
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Figures 5 and 6 illustrate the results for travel time. The computed 
slant range errors are shown for 

a . the very simple formula D = ct and 

b. the second-order expression [Eq. 15J. The computer 
upper and lower bounds are also shown. It will be seen that, with 
the second order correction terms the error is at most 9m in 28.9 _km 
for the 'typical profile, and is only 23 m in 19.3 km for the 'extreme' 
profile. 

A similar analysis was carried out to compute the error ln initial 
grazing angle as deduced from the Snell's law parameter cos e. A 
summary of the results is given in the following table. 

TABLE 1 

ERRORS IN GRAZING ANGLE 

Profile Range True Grazing Error in Maximum Error 
(km) Angle Angle Bounds 

(deg) (deg) (deg) 

15 15 0.01 ±0.05 
20 8 0.1 ±0,17 

'Typical' 24.5 4 0.27 ±0.4 
29.3 0 0.74 ±0.87 

10 17·5 0.01 ±O .15 
15 7 0.1 ±0.8 

, Extreme' 16.5 4 0.17 ±1.2 
18.7 0 0.29 ±1.9 

It will be noted that the errors in grazing angle are larger for 
the 'typical' profile than for the 'extreme'; this is because the 
horizontal ranges with the 'typical' profile are much greater than 
for the 'extreme', and the strong range dependence outweighs the 
smaller variation in the sound speed. Even so, the errors are 
remarkably small over most of the range, and the accuracy everywhere 
is probably greater than is warranted by the reliability of the 
input data. 
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DISCUSSION OF RESULTS 

It is appar ent that for most purposes the errors introduced by the 
use of this approach are far smaller than the quality of the input 
data would justify, and the saving in computer size required is 
considerable. Furthermore it is clear that, because the sound speed 
enters only in the form of statistical averages it is easy to assess 
the precision to which individual measurements should be made. 
Again, from this analysis, it is evident that the effect of 
irregularities in the profile will not in general be of great 
importance; this is a deduction that would be difficult to make 
by conventional ray-tracing methods. 

At first sight the high accuracy of this very simple approximation 
seems surprising. The following argument gives an explanation for 
this result. In the integration over z for X and t (Eqs. 4 and 5) , 

" the order in which successive increments are added is immaterial, and 
the profile can be redrawn so that c is a monotonically increasing 
function of z (this is the same as forming a Lebesgue integral). 
The approximation then consists, in effect, of replacing this 
'regularised' profile by the constant gradient profile of best fit 
by least squares. The shape of the ray-path will be quite different, 
but the Snell's law constant and the travel time will be nearly 
unchanged. This argument also shows immediately why the two-layer 
profile gives the extreme bounds, since this is the one which is 
least well fitted by a single straight line. 

The method is clearly capable of extension. For example, if ln say, 
a side-scan sonar the launching grazing angle and the travel time are 
simultaneously recorded it is possible to estimate the height of a 
projection above the sea-bed (since in effect 8 and t are given) 
by suitable inversion of the equations. 
reported separately. 
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