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MEASUREMENTS OF NORMAL-MODE AMPLITUDE
FUNCTIONS IN A NEARLY-STRATIFIED MEDIUM*

S. N. Wolf

Naval Research Laboratory, Washington, D. C. 20375

Abstract

In normal-mode treatments of acoustic propagation in nearly-stratified
media, calculations are frequently based on the perfectly-stratified medium
model, in which symmetry permits separation of the wave equation. In these
treatments the assumption is made that the normal-modes adapt to local
conditions and that the modes are not coupled by the changing environment.
This assumption is frequently referred to as the adiabatic approximation.
An experiment was performed in a shallow water area near Jacksonville, Fla.,
in which observations were made of individual normal modes propagating over
two sloping bottom tracks. Over the first track the water depth increased
from 30 m at the source to 41 m at the receiver, with the maximum bottom
slope (0.3°) at the receiver. Isovelocity conditions prevailed on this
track. Over the second track the water depth decreased from 120 m to 42 m
with the maximum slope (0.3°-0.9°) at the source positions. The vertical
sound speed gradient on this track was slightly negative at the receiver
and more sharply negative at the source. In both cases the constant depth
model gave the vertical pressure distributions observed, in agreement with
the assumption that the modes adapt to local conditions. Results from the
first track are in agreement with the adiabatic approximation, however,
propagation over the second track indicates the presence of mode coupling.
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Introduction

In investigations of acoustic propagation in shallow water environ-
ments, extensive use has been made of the normal mode representation of
the acoustic field introduced by Pekeris.®! The original model which treated
isovelocity water overlying a uniform semi-infinite sediment has been
extended to treat perfectly-stratified ocean enviromments,® in which the
acoustical properties are functions of depth only. A normal-mode computer
program of a perfectly-stratified medium has been developed at NRL.® This
program models the ocean enviromment as two finite-thickness fluid layers
overlying a semi-infinite region which can be a fluid or a shear-supporting
medium, The two finite layers, which are usually taken to be water and
surficial sediments, may have a velocity profile which is an arbitrary
function of depth. The model subbottom is uniform., Vertical pressure
distributions and group velocities of individual normal modes measured in
real ocean environments agree with predictions of this computer model.*
The locations of the at-sea experiments had been chosen to provide
propagation paths which closely approximated the perfectly-stratified-
medium model,

Many shallow water areas of interest exhibit horizontal as well as
vertical variability, so there exists the need for models of regions with
range-dependent as well as depth-dependent acoustical properties. The
extensions of perfectly-stratified normal mode theory to slowly varying
(almost-stratified) media by Pierce® and Milder® make use of the adiabatic
approximation.

This approximation is applied by assuming that the horizontal changes
with range are sufficiently gradual that the wave equation separates locally.
Properties of the normal-modes, such as vertical pressure distribution, are
then obtained from the constant-depth model using the local environment
information., In addition, if this approximation is valid, the normal-modes
propagate without coupling, i.e. without the transfer of energy among modes.,

An experiment measuring attenuation of normal-modes in a tank with a
sloping rubber bottom was reported” by Eby, Williams, Ryan, and Tamarkin in
1960. The attenuation data were in agreement with a model using the adiabatic
approximation in the calculation of the attenuation coefficient.

In November 1973 an experiment was performed by NRL to measure the
vertical distribution of pressure in individual normal modes. propagating
over a sloping bottom. This paper compares the measured distributions with
those predicted by the adiabatic approximation.

Summary of Theory

The geometry used in the mathematical model for the perfectly-stratified
medium is shown in Fig. 1. The oceazn enviromment is divided into three fluid
layers, each of constant density. The upper two layers may have arbitrary
sound speed dependence on depth., The sound speed in the subbottom is assumed
constant. A point source of unit strength and angular frequency w is located
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at depth z4. A receiver is located at depth z, and range r; from the source.
The pressure at the receiver is given by

5 N u (z)u (z,)
1 \° n' 97 n'"1 i(kpr-wt)=-08,1
= 2 (_L_
P (r,z,,20) = wpy <8nr> n T e \°n n (1)
n=1 n
where 8, is the modal attenuation coefficient and the u,(z) are solutions
of the z-dependent part of the separated wave equation
d?u 2
— (¥ _-k®\u =0 (2)
) n n
dz® c”(2)

subject to the appropriate boundary and normalization conditions. The
dependence of the pressure amplitude of the nth mode on source and receiver
depth is given by

P_(21,%0) < u_(21)u_(2o) ©)

where other parameters in Eq. 1, such as frequency and range are kept
fixed. Verification of the proportionality (Eq. 3) in at-sea experiment
has been reported by Ferris.*

If we apply the adiabatic approximation to the nearly-stratified
medium case a similar expression is obtained:®

P (71,2) = u_(z)u! (%) 4)

Here u_ is the solution of Eq. 3 using the enviromment in the vicinity of

the reeiver and u' is obtained using the source's immediate enviromment.,

If the environments are significantly different, there will be a considerable
change in the shape of the function u, between source and receiver. The
adiabatic approximation assumes that this change takes place very slowly

and that energy is not exchanged among modes of propagation.

Experimental

The site of the experiment is shown in Fig. 2. A spar buoy supporting
a string of 12 hydrophones was anchored at the location indicated by the
numeral 1. The signals received by the hydrophone string were telemetered
back to the source ship for recording. The source ship occupied the two
stations to the west of the spar buoy and operated a 400 Hz source in a pulsed
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mode at five depths at each station. A similar set of runs was made with
the buoy at location 2 and the source ship occupying the three stations
to the east of the buoy. The track extending west from the buoy will be
referred to as the shallow propagation path, the other track, extending
east from the buoy will be called the deep propagation path. The sound
speed in the sediment was determined by seismic refraction techniques.?®

Results

Bathymetry of the shallow propagation path is shown in Fig. 3. The
bottom slope at the receiver (zero range) is about 0.3°. Also shown are
water sound speed profiles measured at the receiver and at the two source
stations. The profiles indicate essentially isovelocity conditions along
the entire track. Bathymetry and sound speed profiles for the deep
propagation path are shown in Fig. 4. The water depth at the receiver is
the same (42 m) as for the shallow path., On the deep path the slope
increases with range from the receiver to about 0.9° at the 16 km range
station. 1In addition, a considerable change takes place in the sound speed
profile. Near the receiver the profile gradient is slightly negative. At
the source stations the profile gradient is more negative, becoming
increasingly negative with range from the receiver.

Data obtained from pressure distribution measurements of the first
mode on the shallow path are shown in Fig. 5. At zero range a typical
measured variation of pressure with receiver depth, keeping source depth
and range fixed, is shown as dots. The distribution predicted from the
constant depth model is indicated by the line. The vertical pressure
distribution in the vicinity of the sloping bottom is seen to be
accurately calculated from the constant depth model. The data plotted at
9 and 18 km indicate the variation in signal strength as the source depth
is varied. The receiver depth and range are held constant in each
comparison. In these cases the variation of signal strength with source
depth is given by the eigenfunction calculated using the constant depth
model and the environment near the source., The data are consistent with
the adiabatic approximation.

The dependence of the signal strength of the second mode on source
and receiver depth is shown in Fig. 6. Again the constant-depth model
is seen to predict the dependence of the signal strength on the source or
receiver depth when the appropriate local environment is used. 1In signal
strength vs source depth data the absolute value of the eigenfunction is
plotted since phase changes implied by axis crossings could not be measured.

Variation of first mode signal strength for propagation over the deep
path is shown in Fig. 7. The vertical pressure distribution at the receiver
is shown at zero range. Agreement with the eigenfunction calculated from
the constant depth model is still good. Variation of the signal strength
with source depth shows good agreement at the 8 km station only. At the
12 and 16 km stations stations the constant depth model predicts the first
mode to be "trapped'" near the bottom by the negative gradient profile. 1In
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several runs the source was placed in the upper part of the water column,
where the first-mode eigenfunction is very small, If the adiabatic
approximation is valid the first mode should be absent from the signal
field. The first mode was observed with the relative strength indicated
by the uppermost square., Agreement of the predicted and measured strength
of the first mode at the 16 km station is very poor. Results for the
second mode are shown in Fig. 8. Again the pressure distribution (zero
range) at the receiver is predicted by the constant depth model and the
receiver's immediate enviromment. Variation of the signal strength with
source depth does not agree with predictions. Similar results shown in
Fig. 9 were obtained for the third mode.

Conclusions

Measurements were made of vertical pressure distributions of
individual normal modes propagating in two nearly-stratified ducts. 1In
the first case the receiver was located over a sloping bottom. The slope
(0.3°) is typical of shallow continental shelf areas. 1In the second case
the water depth varied by a factor of 2 or 3 over the propagation path and
a considerable change in sound-speed profile over the path was found. As
a result there was a considerable change in the shape of the eigenfunction
over the second track. In both cases the vertical pressure distribution
of the modes observed was in agreement with the predictions of the constant-
depth normal-mode model using the immediate environment of the receiver.

On the first path, where the change in depth was relatively small and
isovelocity conditions prevailed along the entire track, the measured
variation of signal strength with source depth was found to be in agreement
with the predictions. Over the second path the water depth changed by a
factor of two and the sound speed profile changed significantly. Here the
predicted dependence of mode signal strength on source depth does not agree
with the measured dependence. This disagreement may be due to the failure
of the theory to calculate the excitation of the modes correctly, or it may
be due to the conversion of energy from one mode to another by the environ-
mental changes. The experimental results cannot be used to determine which
of these possible causes is responsible since the signal strength of the
individual modes was not measured near the source, It seems probable, how-
ever, that the excitation was calculated correctly, at least at the 8 km
and 12 km stations. The bottom slope at the stations is less than at the
receiver station on the first track, where local separability of the wave
equation appeared to be a good approximation.

The deep propagation path exhibits a horizontal variability representa-
tive of continental shelf area waters. The indication of mode conversion
along this path suggests that shallow water propagation models may need to
include mode coupling effects.
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RANGE DEPENDENT NORMAIL MODES
IN UNDERWATER SOUND PROPAGATION

by

Ronald D. Graves, Anton Nagl, and H. Uberall
Department of Physics, Catholic University
Washington, D.C.

Anton J. Haug
John Hopkins University Applied Physics Laboratory
Silver Spring, Md.

and

George L. Zarur
Versar Inc., Springfield, Virginia
U.S.A.

ABSTRACT

Normal mode theory is best suited for the case of
stratified media. Range dependence of the medium properties
and of its boundary may nevertheless be taken into account in
the framework of an adiabatic approximation provided the changes
with range are sufficiently gradual. We have extended this
approach and have included possible range variations of the
boundaries. To lowest order, the solution furnished by this
method consists of the depth functions of a locally stratified
medium; in higher order, the range functions satisfy a system
of coupled equations, with the coupling terms causing an exchange
of energy between modes. As an application, we have evaluated
acoustic fields in an isovelocity wedge-shaped ocean (continental
shelf) using the normal-mode method with adiabatic range
variation, obtaining good agreement with the exact solution due™

to Bradley and Hudimac.
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Normal mode theory of underwater sound propagation, as
applied in the usual way, is useful for the case of stratified
media where'the wave equation separates. A range dependence
of the medium properties (sound velocity profile) and of its
boundaries may nevertheless be taken into acéount in the frame-
work of an adiabatic approximation, provided the changes with
range are sufficiently gradual. We have extended this approach,
which was first indicated by Piercel and by Milder2 for the
variable medium, and have included possible range variations of
the boundaries. To lowest order, the solution furnished by this

method contains the depth functions of a locally stratified

medium, whose eigenvalues kn at each range point enter in an
equation for the range function that replaces the range function

(1)
o

H (kn?) of the stratified case. To higher order (approach-

ing the exact case), the range functions satisfy a system of
coupled equations, with the coupling terms causing an exchange
of energy between modes.

Starting from the wave equation corresponding to a point

source in an inhomogeneous medium,
Vi (F)+ k> (F)P(r) = d(T-70) -

- -
where k(r) =w/c(r), one attempts a "separation" in horizontal

- —
and vertical coordinates r = (?,z) of the form

‘4?(7:)-‘—%\]% (Q ) M, (2,9) ; (2)
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the "local depth functions" u(z,?) satisfy the usual depth equa-
tion

i (2,8)/I=2+[k*(2,8) — ki (¢)]un (2,F)=0, o
whose modal eigenvalues kn2($5, determined from the boundary
conditions at the boundaries z = Z:t(g) , are now range dependent.
Inserting (2) in (1) leads to a set of coupled range equations

52>
(source atg? = 0, 2= zo):

[G* +ki )]y, (8) = () M (25,0)

= - Z4 N =3
21 e P [P s,

e () e ) G )0
Z-

This is still an exact system of equations, but the lack of
separability has led to the appearance of mode coupling terms,
which will however be small for sufficiently gradual range de-

pendence.

For the important special case where range variations
take place in one horizontal direction only (x, say), the range

function may be written as a Fourier integral,

Yo =[G e ks o

Inserting in (4) and neglecting mode coupling, one finds the

range equation

§d’/d,<l+ [ka20x) - k'] ! G (¥, k)=t 25,0)d(x). (6)
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We first solved the special case of an isovelocity wedge-
shaped ocean, with the origin at the shore, the source at
r = (x , 0, z ), and the ocean floor given by z = h(x)=h (x/x ),
o o o + o o

hO being the ocean depth at the source location. We obtained

the exact solution (without mode coupling)

¢ () = (X°/2i‘f»o)m§o ﬂ'n[‘ﬂé)vzz/ﬂ] sfn[{wé)ﬁga/ga] (
ST (hexa) M) (haxs) enp Ly ) 4Ky

where x z = max, min (x,xo), and

7)

4/2

i = { Eefnet)mx/Ra ] ®

If x » X, , a saddle-point evaluation of (7) gives

o
b(7)= Go/Bor)exp(ikr ) Z Sin|met)nz/R ] sin[tns £)Tzo/R)]
erp (=i ) Iy (kx, x, /r), (9)
where r = (x>2 + yz)%.

As a numerical example, we chose a free-surface, rigid-
bottom wedge with ho/xo = 0.2, with the source located at
X = 251, I (l/3)ho. The acoustic intensity ‘ﬂ |2 ob-
tained from (9) is shown in Fig. 1 in the plane y = 0, plotted
vS. x/). between 0 and 10. Modes cut off at positions indicated
by arrows. Contour lines represent intensity variations in steps
of 3 dB for three contours of highest intensity, and 6 dB other-
wise. The results are compared in Fig. 2 with 'ﬂ '2 calculated
from the exact solution of the same wedge problem, as found by
Bradley and Hudimac3, and likewise evaluated by the saddle point

method. Small differences can be observed between the lower
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right portion of the figures, and are probably attributable to
mode coupling effects.

A computer program has been developed by us for solving
the adiabatic range equation (Eq. (4) without coupling) for
realistic sound velocity profiles with arbitrary (but gradual)
variations in range, and similar variations of the ocean floor4;
this is now being extended to the system of Egs. (4) including
the coupling, The same method is used for the depth equation (3)
also, in order to apply a unified treatment to all parts of the
problem.

To solve . the depth equation, we divide the ocean into P
horizontal layers (P &~ 10 for practical purposes), and linearize
th

- .
the wave number kz(z:§) at each range points:, so that in the p

layer
klp (2,0) = dP(§)+FP(§)[2r“1 (‘5)'2], (10)

Zp—l being the interface between layers p-1 and p.With the

new variable in the pth layer

Z [}3‘, (Q)] {-0( (0)+ /Sp(e)[ )"" rp)] k. } A1)
the solutions of (3) are the Airy functions
(2 9) A, (Q)At ({ap@)+ B (§)BI(F,=). a2

?
The boundary conditions at each interface, i.e. unp(z,?) and
" A
:)unp(z,?)/gz to be continuous, permit to evaluate all the
coefficients A ', B as follows. At each interface, A and
n np np
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and Bn The one condition

p-1°

Bnp may be expressed by Anp—l

at the ocean surface z=0, namely unl(0’$) = 0, determines Al,
while Bl may be fixed by the overall normalization of u . At
the ocean floor, a decaying exponential for unP+l(BnP+l= 0)

matched to U p determines A while matching of the derivative

nP+1’
->
furnishes the eigenvalue equation for kn(9)'

The analogous treatment for the uncoupled range equation,

in the form of e.g. Eq. (6), now linearizes the quantity
kn2(x) - ky2 , wWhere kn(x) is obtained by solving the eigenvalue
equation at the boundaries X of the range intervals, the sub-

divisions ranging from X_yM to Xy (with the source at x = Xg = O):.

k) -k = a, + b (Xpoy =X).

" d . (13)
With the new variable
7 0=[8,21" [y -y -am ], )
one again has the Airy function solutions
G mm (X) = A Al (Tm) + B B (). (15)

Boundary conditions in the adiabatic case are again the continuity

of Im (x) and dgnm(x)/dx at each interface. At x > lx

+M' !

however, one now has a radiation condition which requires out-
going waves only as X «» + a© , while in all finite intervals

in the region x < |X+Ml ’

the solutions (15) represent both in-

and outgoing waves, so that in contrast to the now-fashionable
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PE (parabolic equation) method6, the possibility of backscattering
towards the source is always present. Modes that have cut off
by the time they reach x = X+M' are matched to decaying exponen-

tials, of course. The coefficients of the outgoing or decaying

exponentials i A or A
ponentials in x > Ky OF X < X_y2re denoted by nM+1 n,-M-1°

respectively .

If the coefficients of the solution (15) are normalized by

(X%m« ='%xﬂ%m /%\mﬂﬂ+1 L [5m~u = JB%WL/Q&MVﬂ4Ti (wr>o)/

(16)
( = S
><’V\*vv'» A,nm /A,n/ “M-4 9 /3»7)m - mm/A’-,L/_M—i (m < O)/
then the mentioned radiation condition determines CXI] and
/Bn +M completely, and by further matching at all successive
boundaries of segments, all other coefficients are determined

down to X and ;3
n

n.+1 . Accordingly, the only two unknowns
' T i

o

left are the common denominators An,M+l and An,-M—l' These
cannot be determined from the normalization, but from the re-
quirements that the solution of Eg. (6), which actually is the
Green's function of the problem, (i) be continuous at x = 0,
and (ii) have a discontinuity in slope such that the source
strength in (6) is reproduced. Satisfying these condition com-
pletely solves the range-dependent problem (in the case of
x-dependence only).

This approach is now being programmed by us, together

with the case of cylindrical-coordinate range variation (? de-

pendence only). The latter solution will be utilized for
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"patching up" the solution of the PE method in regions where the
latter becomes unreliable, either due to equivalent ray angles
exceeding inclinations of ~~ 20° (i.e. propagation up-slope,

or over a seamount), or near the source. TheSD—dependent case is,

however, less general than the x-dependent one, since it cannot

describe e.g. sound propagating up the continental shelf at
an angle, and being deflected back out to sea. Numerical re-
sults of our range-dependent normal-mode program will be pub-

lished elsewhere.
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INVERSE WAVE PROPAGATION IN AN INHOMOGENEOUS WAVEGUIDE
John A DeSanto, Naval Research Laboratory,

Washington, DC, and Admiralty Research Laboratory,
Teddington, England*

ABSTRACT

A solution is given for the problem of inverse propagation in an
inhomogeneous rectangular two-dimensional waveguide. The sound speed is
assumed to vary in depth and inverse propagation means the calculation of
the field at range X in terms of the field at range Xo where
Xo > Xy The method is analogous to that used by Wolf, Shewell, and Lalor
for the inverse diffraction problem in a homcgeneous half space. It is
found that the field at X7 can be expressed in terms of two integrals
over the field at Xo e Trie kernel of the first integral is bounded and
expresses physically the result at X1 of the waves at Xo reversing
their direction of propagation and decay, ie they now propagate and decay
in the direction of Xqe A reciprocity relation for this term is possible.
The kernel of the second integral is singular and expresses the mathematical
fact of the residual effect of the evanescent waves at Xy as they reverse
their direction at Xo and now grow exponentially. Consequences of the

neglect of this singular term are discussed.
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INTRODUCTION

Recently, Wolf and Shewe]]l and La]or2 discussed the solution of
the inverse diffraction problem in a homogeneous half-space. Simply, one
has a field propagating into a half-space z > 0, and assumes the field
is known on some plane z = Z,. The problem is then to find the field
on the plane 1z = z where 21 < Z,. For example, one might wish to
calculate the "near" field from the "far" field. The result is expressed
as the inverse of one of the Rayleigh diffraction formulas. The kernel of
the inversion contains two terms, one of which is singular. Methods for
handling the singular term are discussed.

In this paper we briefly present a similar analysis with the problem
being the calculation of the inverse field in a two-dimensional rectangular
waveguide. Here, in addition, the waveguide is assumed to be inhomogeneous
in the sense that the sound speed is a function of depth.

In Sec. 1 we present the basic analysis and express the field at
Xy < X, as asum of two terms each of which is an integral over the
field at Xo The kernel of the first integral is bounded and the term
describes that part of the field at X1 due to waves at Xo reversing
their direction of propagation and decay. The kernel of the second integral
is singular and the term describes exponentially growing waves at X1 due
to evanescent waves at Xo which grow towards Xqe In Sec. 2 the reciprocity
relation of the first term is derived, and in Sec. 3 a brief discussion is

given of the consequences of neglect of the singular term.
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1. GENERAL FORMALISM

In two dimensions the propagation of sound is governed by the

Helmholtz equation

by ¥ by, k2n2(2)¢(x,z) = 0 (1)

for the velocity potential field ¢.3 Here, n(z), the index of
refraction, is proportional to the inverse of c¢(z), the sound speed, and
k = 2r/ X is the wavenumber with A the wavelength. Since ¢ is a
function of depth the equation is said to be inhomogeneous. The general
problem of sound propagation involves the solution of (1) assuming that ¢
satisfies appropriate boundary conditions. Here we first wish to solve (1)
in the region 0 £z2<D and 0L x < « (see Fig. 1), where ¢
satisfies boundary conditions at z =0 and D, x =0, and an outgoing
radiation condition as x = «. Then we will assume that the field is
known on a (far) plane x = Xo and express the field on a (near) plane
X =Xy <% in terms of the field on Xoe

The solution of (1) is separable and can be written in terms of an

infinite discrete spectral representation

p(x,2) = zgj Ajwj(z)exp(ikmjx) (2)
j=0
where the eigenfunctions w5 satisfy the ordinary differential equation
v+ K2y, - q(z)] W = 0 (3)
J Hj J
. 2
with q(z) = 1-1z2) (4)
" - 3
and m, { (1 “j) % 0 < Hy <1
+ 1(uj - 1) y > 1 (5)
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The boundary conditions at z =0 and D (which we do not specify)
yield specific forms for the wj and the discrete eigenvalues i
which we assume for simplicity are confined to the positive real axis in
the j-plane. The choice of branch in (5) is to ensure outgoing or

decaying waves as X -» o . In addition we assume the wj are orthonormal.

D
.[ ¢3(Z)Wm(2)dz = 8jm = [ bog=m (6)
0 o0 g#m

Multiplying (2) by wi(z), integrating over z from 0 to D and
using (6) yields
D
A. = exp(-ik mjx) .[ ¢(x,z)¢3(z)dz. (7)

J
0

Now let x = Xy and z = z; in (2), x = Xo and z = Z, in (7), and
substitute the resulting (7) into (2) to get
D

i) (x],z]) = ;gj ¢3(z])exp [ikmj(x]-xz)]/‘¢3(22)¢(x2,22)d22. (8)
_0 0

Next assume x; < Xo and split the sum in (8) into two parts defined by

= d T+ a
) LN}
j=0 =041 (9)

where By < 1 and Bap1 1. To the result, add and subtract the term

L VA exn ( --1) / w<z2 (X5,2,)dz, (10)
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and rewrite the result as the sum of two terms

¢(x],z1) = ¢](x1,z]) + ¢2(x2,22) (11)

where we define (m = 1,2)

Pn(X1s27) = /. Kn(Xps2q3 %2025)8 (%5,25)dz, (12)
with

xnzrs xgazg) = ) ¥z ¥(zgdext ik (x-x,))

: le(zl)wj(zz)exp[-k(uj-ni(xz-x])l

B e
- ;ZJ U (2))9;(25)expl -km; (x,-x)] (13)
j=0
where the * is complex conjugation, and

(T
Kz(x],z]; XZ’ZZ) = Z/ wj(z])\bj(zz)exp[ikmj(x]-xz)]

+ ) gtz ¥ (apent k1) e )

. jgﬁ(z])¢3(zz)sinh[k(uj—l)i(xz-x])]. (14)

Thus it is possible to write ¢ at (x],z]) in terms of two integrals
over ¢ at (XZ’ZZ)' The kernel of the first integral, K], is bounded

and expresses physically the result at X1 of the waves at Xy reversing
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their direction of propagation and decay, ie they now propagate and

decay in the direction of X1 'The kernel of the second integral, K,,

is singular since the summation in (14) goes to infinity, and the problem
becomes il1l-posed since a small change in the "initial" condition

¢(x2,22) could produce a large change in ¢(x],z]). ‘This is the mathematical
expression of the residual effect of the evanescent waves at Xo s they
reverse their direction and grow exponentially in the direction of Xqe The
neglect of this latter term means neglect of large wavenumbers, short
wavelength ,terms and hence an inability to gather information on an obstacle
or process with a characteristic length smaller than a certain amount. There

is thus a lower bound on the size of obstacles which can be seen.
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2. RECIPROCITY

It is possible to express the ¢] term as the inverse of one of
the Rayleigh diffraction formulas. This is done as follows. The
incoming wave Green's function G (x,z; x',z') satisfies an equation

similar to (1) with a delta function source term

o ¥ Gy + anZ(Z)G- = - d(x-x')8(z-2") (15)

as well as the boundary conditions at z =0 and D which are satisfied
by the eigenfunctions, and the asymptotic condition of an incoming wave.

It can be written as

B (%25 x%,2") Xw G(XX) (16)

where 63 satisfies the differential equation

d2
{_7 + K2(1n, )} 610x,x') = =8(x=x') (17)

and can be written as

(Zikm;) exp ik | x-x'] ] (18)

Gg(x,x')

where the complex conjugate of mj is used in the exponential to ensure
that for j > J the function is decaying towards Xqe From (14) it can

be easily seen that
Ki(X1aZq3  %pazp) = ‘Z‘a%‘EG-(Xl’Zl; XysZ5) (19)

so that ¢] by (12) can be written as the inverse of a diffraction formula.
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3. SUMMARY

To use these results one must be able to neglect the singular
term ¢2. Neglect of ¢2 means neglect of terms of the order of
k(ud+]-1)5 'and larger, ie high frequency terms. The term k = «/c
where ¢ is some reference sound speed, eg the sound speed at the
surface. This establishes a characteristic length L = 7\/21r(uJ+]-1)é
below which we cannot measure. The higher the frequency of sound the
smaller the obstacles we can see, but high frequency sound is rapidly
attenuated in the ocean anyway, so that neglect of ¢2 probably yields

no worse results than are now available.

Footnotes

* Temporary Address

1. E. Wolf and J. R. Shewell, Phys. Lett. 25A, 417 (1967) and 26A,
104 (1967)

2. E.Lalor, J. Math. Phys. 9, 2001 (1968) and J. Opt. Soc. Am. 58,
1235 (1968). These papers also consider similar mathematical
questions which arise here in greater detail.

3. The harmonic time dependence exp(-iwt) is assumed throughout.
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FIG. 1 INVERSE PROPAGATION IN A RECTANGULAR TWO-DIMENSIONAL WAVEGUIDE. THE SOUND
SPEED C IS A FUNCTION OF DEPTH Z. THE FIELD IS ASSUMED KNOWN ON THE PLANE

X = X2 AND THE PROBLEM IS TO CALCULATE IT ON THE PLANE X =X1
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A SOLUTION OF THE WAVE SOUND EQUATION IN SHALLOW WATER
FOR REAL SPEED PROFILES AND SOLID BOTTOM UNDER SEDIMENT

by

A. Gilles and D. Odero
CIT-ALCATEL Marine Dpt
Arcueil 94110, France

ABSTRACT

The wave equation has been solved by using normal mode theory. The medium
is assumed to be horizontally stratified. A closed form solution has

been found in the case of GANS - PEDERSEN types of density and sound-speed
profiles. For real profiles of any given shape a numerical solution is
employed that makes use of the VOLTERRA integral equation.
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1 - INTRODUCTION

The use of normal modes theory for the calculation of shallow water
sound propagation has first been developed by PEKERIS (Ref. 1, 2, 3)
in 1948. His model was oversimplified as the sound speed was assumed
to be constant in the water and the sea bottom was taken as an homo-
geneous fluid halfspace. A number of attempts have been made since to
account for the variation of sound speed with depth : we can mention
for instance a computer program worked out by NEWMAN and INGENITO
(Ref. 4) for a two fluid model with the speed of sound varying with
depth in the first fluid. This program makes use of the finite
differences technique.

lle develop herein a more realistic model based on a mode formulation
exposed chapter 2 which is valid for horizontally stratified media
(physical characteristics depending on depth only). This assumption
enables the initial propagation equation to be transformed into a
HELMHOLTZ type equation.

In our development the medium is taken as follows :

Sea water bounded by the atmosphere (plane surface) and infinite elastic
bottom with or without an intermediate fluid layer corresponding
to the sediment.

* 1, av. A. Briand ARCUEIL 94110 FRANCE
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In the water and the sediment the sound speed may vary with
depth in any given manner. In the elastic bottom, both
compressional and shear velocities are constant .

The density may vary with depth in the sediment and it stays
constant in the water and the elastic bottom (although it
could vary in the former if wanted).

The sound field dealt with is that created by an omnidirectional
monochromatic point source.

The formulation developed in chapter 2 will be app]ied in chapter
3 to analytic velocity and density profiles of the GANS-PEDERSEN
type. In chapter 4, it will be applied to realistic profiles of
any shape given by a discrete number of data points.

2 - FORMULATION OF THE PROBLEM.

2.1 Sound propagation equation.

Let ¥ (?;t) be the:velocity potential.
By definition, the acoustic pressure p (?,t) and the displa-
cement velocity v (?,t) of a fluid element are given by :.

(1) p (Fst) = » i“’a‘—“l LV (F,t) = - grad ¥ (1)
t

Taking into account the equations of motion and mass conserva-
tion and the state equation relating acoustic pressure to den-
sity variation, the potential V¥ (?,t) obeys the following
equation (first order approximation).
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where C(z) is the speed of sound in the fluids (water or
sediment) and P (z) the fluid density. The second member of
equation (2) represents the source term :

¥ and ?é are the vectors joining the origin of the refer-
ential to the point of observation and to the source respec-
tively. Owing to the symmetry of revolution, one can make use
of only two cylindrical coordinates r and z.

Therefore, y (¥#,t) takes the form:

(3) ¥ (F.t) = o' (ryz) eI®F

Equation 2 can be solved by using the HANKEL Transform of @' (r,z):

The wanted fonction &'(r,z) is a solution of the equation :
+3°
=4 % (z,s) K, (sr) sds

J m

(4) *{r,z) =

~ A
where K0 (sr) is the zero order second kind modified BESSEL
function.

The &(z,s) function is a solution of the equation :

2 2 1 dp do
(5) d” ¢ 5 W +S2 ¢ - =:2'TT(S (Z'Ze)

dz? ¢?(2) p(z) dz dz
where r is the horizontal range between source and observation
point and z is the depth below sea level.

The s variable is a parameter that comes in when applying the
HANKEL transform and that physically corresponds to the hori-
zontal component of the wave vector.

In order to obtain the velocity potential, it is therefore neces-
sary to first solve equation (5) and obtain the & (z,s) func-

tion and then calculate integral (4).
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The second order differential equation (5) obeys certain
boundary conditions at the various interface levels :
air-water, water-sediment, sediment-rock, which makes it a
STURM-LIOQUVILLE problem.

Note : The K, function is found here instead of the usual J
function because of the choice we made in writing.
+ 52 in equation 5 (instead of - 52). Changing s into
- Js would lead to the forms mostly encountered in the
literature. In the same way, there will be a change from
real to imaginary and vice-versa when speaking of
poles, integration contours, etc ....

2.2 Formulation of the boundary conditions.

Crossing (or boundary) conditions arise at each change of
medium :

- Water-sediment interface (z = z) plane) : pressure is conti-
nuous and the fluids undergo the same vertical motions on
each side of the boundary

- Sediment-rock interface (z = z, plane) : the T term of
the stress tensor that acts on the elastic medium at z = 22+0
must balance the pressure acting on the other side
(at z = z, - 0). Furthermore, the boundary must undergo the
same displacement as seen from each side. These two condi-

tions lead to the following homogeneous condition :

(6) 1 1 239 -1 1 " zz = K(s)
p.(z,) ®(z,) a3z _ B, 1 9z
=2 2 z, 0 2 77 25,0
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where the function & is a solution of (5) and where Py and
p, are the specific masses in the sediment and the rock
respectively. It can be demonstrated that the term K(s) may
be expressed as a function of the compressional and shear
ye]ocities in the rock CL and CT, the variable s being the
same as the one introduced in equation (4).

One would find :

K - - Jw a
S 4o, CAT 2 W2 ¢ 2
P2 'T[s +'£72] - abs
where
2 2 1/2
N R R CE
C

The fact that the acoustic field must vanish at infinite dis-
tance leads the determinations to be taken for a and b.

~ Source_level plane_(z = z_) : the source condition can be trans-

)
e
formed intoa boundary condition at the source horizontal plane
as follows :

Continuity of pressure and opposite direction of the fluid

motion on each side of the plane, leading :

2.3 Solution of equation (5)

Let ¢ (z,s) be a solution of equation (5) that meets the pre-
viously exposed boundary conditions at z = 0, viz :

(9) $(055) =03 1 34(0,s) _ 4

p(0) 9Z
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Let ¢ (z,s) be a solution of equation (5) that meets the
boundary conditions at z = Z5, viz
¥ (z,8) =¥ ¢ (2,8) + K (s) ¥, (z,5)

with :

If these two functions ¢ (z,s) and ¢ (z,s) are linearly in-
dependant, the solution of equation (5) that obeys the three
sets of conditions : surface, bottom and source, is given by

the GREEN'S function :

-2 w(Ze,S)¢(z,s) 0 & Z < Z, < 2,
(1) a(zzgs) =4 POHOS)
9 0’
-2 ¢(Ze I 0) 0 < ze <7< 1
0(0)y(0,s)

It must be emphasized that solution (11) to equation (5) is not
analytically known. We have just expressed the conditions to be
fulfilled by the functions that are solutions of the problem
described. These conditions are necessary and sufficient for

all functions ¢ and ¢ that meet conditions (9) and (10) res-
pectively to give rise to a function & . solution to the problem.
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2.4 Solution of equation (4) - Choice of the integration contour

in the complex s plane.

The ¢ (z, Zgs s) function just described is a complex function
that has a certain number of poles Sn (complex, imaginary or
real ). These poles are the zeros of ¥ (0,s).(Here the STURM-

LIOUVILLE problem is not an hermitian one).

From the expression for K(s) and the determinations chosen for
a and b,the integration has to be made in the Re (s) > 0 plane.

The cuts at + jo /CL and + Jjy /CT have been chosen so that only
two of them are in the halfspace Re(s) > 0 and they are parallel

to the s real axis. The poles Sh of function @ are simple and
located in the fourth quadrant of the complex plane and so are

their symetricals withrespect to the origin, located in the se-
cond quadrant .

The chosen integration contour C is illustrated in figure 1.

“ Im (.S)

FIG. 1
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Integration is made along the 1 + j straight path so that
the second quadrant poles do not influence the ¢ function.
(This is of consideration in the case of a numerical inte-
graticn of (4)).

With this integration contour, equation (4) may be written :

(12) o' (rz) = & U‘ ; / - 4 T R Ky(s,T)
7 T r, :

where the R, are the residues, given by :

o(z or z_,s _)u(z, or z,s )
(13) R =S, e’’n e n
_ p(O)aw(O,sn)/as

Expression (12) consists of two terms :
The first term corresponds to the branch-line integrals
calculated along cuts Iy and Iy Physically they represent waves
that propagate along the sediment-rock interface ar speeds CL and
CT with amplitudes decreasing approximately as l/rZ (ref.5).

The second term is a summation of discrete values associated

with the residues which correspond to the roots of the

dispersion equation y (0,s) = 0. Each term of this summation
constitutes a propagation mode, i.e. a wave travelling with a
horizontal wave vector given by Sp- The amplitudes of these waves
decrease as 1/V/r, so that at ranges large compared to the water
depth the branch-line integrals contribution becomes negligible.

In order to verify the above mathematical development, one may
use it to solve the PEKERIS model. In this two layer model, the
sea water is a fluid with constant sound speed C1 and constant
density o1, bounded by pianes at z = 0 and z = Z, and ccuntaining
both the source (at z,) and the receiver (at z). The sea bottom
is taken as a fluid half-space with constant velocity C2

and constant density Pos extending from z = Z, to z = infinity.
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The ¢ (z,s) and ¢ (z,s) functions are then given by :

sinalz

(19) 6 (2:5) = oy —

pIK(s)

(15) ¥(z,s) = cosa, (z,~ z) - sina,(z,- z)

1

with :

2 1/2
(11 = 2—2—+S
¢

Moreover, in this case of a fluid bottom, the expression for
K(s) in (7) becomes :

In the case z < z, function ¢ (z, z,, s) transforms into :
(16) 0(2,2,5) = ——— X

P
ay cos al(zz-ze) + ] —l-az sin al(zz-ze)
02 '
. Pq .
al cos a122 * .J p— a2 S1n0.122
2
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which is identical to the formula obtained by PEKERIS.
Similar values for the residues Rn would also be found

by applying equation (13).

3 - CLOSED FORM SOLUTIONS FOR THE GREEN'S FUNCTION

A large amount of work has been devoted, especially in the
U.S.A., to study classes of C(z) function that would Tead to
closed form solutions fore (and 3y/ ds that enters into the
residue calculation).

In addition to C(z) = constant (PEKERIS) we can quote the
GANS-PEDERSEN profile (Ref. 5 - 6), the parabolic profile
(Ref. 7), the EPSTEIN profile (Ref. 8).

Among these various models we choose to program the GANS-PEDERSEN
profile both as being of interest to solve a few practical cases
we had to deal with, and in order to have a method for checking
the program using the generalized numerical method exposed
herunder. However, an improvement was brought to Pedersen's model
as a density varying with depth could be introduced by the use

of the exponential class of functions.

The adopted GANS-PEDERSEN modelling corresponded to the following
description :

a) Sea water (0 < z < zq

)
Constant density p = p 0

Sound speed C(z) varying as :

Cz(z) = C03/(cO - 2y 42)

where CO and vy 0 are constants.
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b) In the sediment (z1 <z <22) :
]

Density : p(z) = Py exp (P (z - 2,)/ pq)
|

where p,and p'; /p, are constants.

Sound speed : e (z) =C ‘

! /(C1 - 2Y 1(z-zl))

where C1 and Y 1 are constants.

Under these conditions,the ¢ and ¥ functions that cons-
titute ¢ are given by the following expression

) o= - = o0 () x
35/6 (y w2)173 0

0

[J-1/3(Co)d1/3(c) - J1/3(‘30)"-1/3(5)‘]

with :
c3 2 3/2 c3 2 3/2
0 w _ 0 2
g = 2(2 + 5) ’Co" 2(2+S)
3Y0w g 3y0w CO

The ¥ function may be written as :

(18) 4 = v + pOkl(s) X

with - Co 1/3
X=- w773 (51 x
3 w )

(YO

[J_1/3(C1)J1/3(C) - J1/3(C1)J_1/3(C)]
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o2 1/3
Y = - 7 (227°) X
A 5Ed
[9.1/3000953e0) + 1730013053000 |
pI
kl(s) = l—exp [5—1 (Z2 - zl)J X
Ol 1
- i ~N
P 11 dxl(£)+ dyl(El)
Pk |7 T
p 1 J
< +
%) oy (
[le(s) - =8 fe, ) % ofE)
2p1_ |
C
1 1/3
With : X, = - - (86,) "7 X
1 2172 (3Y1w2)1/3 B

[J-1/3(52)J1/3(5) - J1/3(82) J-1/3(5)_]

Yy = - ;1)7 (ee) /2

[ J_1/3(6)9_5/3(8;) * J1/3(E)95/3(85) ]
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dX; 2, \1/3

s (¢
4z 3172 2

X

[J-1/3(52)J~2/3(5) * J1/3‘52)“’2/3(5)]

[J_2/3(52)J2/3 (g) - J2/3(€2)J_2/3(€)]

where the J + 1/3 and J + 2/3 are fractional order first kind BESSEL
functions of the ccmplex variable ¢ or Ep-
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The variables Cqys & and §& 2 in the above expressions are

given by :
o B, Em
&1 =, 2 (‘"§'+ S )
Ylw

3y1w

C(z 2p1

The calculation of the residues corresponding to the . poles

of ¢ (0,s) requires the knowledge of 3y / 93 s. This derivative
can be calculated in closed form without difficulty but this
leads to a lengthy formula that will not be developed here.

4 - NUMERICAL FORM OF THE GREEN'S FUNCTION : (propagation in an under-

water medium of any given characteristics).

The classes of function for C(z) and p (z) which permit to obtain
closed form solutions to the wave propagation problem are too

limited to account for all possible laws of variations encountered in
practice. One solution is to divide the medium into layers in

which sound velocity and density vary differently by a proper choice
of the parameters Py o' / Py i > Yy Arrived at that degree of
complexity one may as we11 envisage a completely numerical solution
allowing any sound speed and density profile to be used. This method
has been developed, programmed and will be described hereafter.
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Let us rewrite equation (5) in a slightly different way by the
system of two first order equations :

o(2) L+ (52— 4 5% P=0
o(z)U - CL
dz

It can be shown that ¢ represents the solution P(z) with the
bounding conditions :

P (0) =0
0) =1

and that V¥ represents the solution P(z) with the conditions :

P (22) =1

u (22) = K (s)

Let us now divide the medium into N horizontally stratified layers,
the nth one being Timited between z = z, and z = z. .y

In each layer, it is possible to define a mean sound speed Cn and
a mean density o By adding similar terms on each side of equations
(19), these equations can be written as follows :

2 2 2
du w 2 w w du
(20) p. —+ (=5 + s7) P=( - =P+ (p_-p) —
L an cn2 2 n dz
dP
pU=-—= (o, -p)U
n dz n

The advantage of this form is that in each layer (zn— Zn+1)’ the
first member of the two equations (19) that were variable are now
constant in (20). It becomes therefore possible to employ LAGRANGE's

method of constants variation to solve equation (20).
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This leads,after some arithmetic, to the following system :

(21) P(z,,q) = P(Zn)COSan(Zn+1 = z,) +

sina, (z,,4- Z..) z 2 2
PnU(Zn) n‘“n+l” “n +J n+1{{[gé__2__%’_(__] (z)

+
—
o =
=

dz

a
n

- o(z)] dU(c)} sino, (2,9 €)

- [pn_ p(C)] U(C)COSun(Zn+1- c)} dz

(22) an(zn+1) = - P(z )ansinan(zn+1- Zn) +

n+ wz w2

p U(Zn)COSan(ZrH_l zn) +J’ I{[E—n? -+ Cz(g)] P(z)
-

+ [pn - o(cﬂ Q%%gl} COSan(zn+1 - )

+ [pn = p(c)} U(C)OtnSinOLn(Zn+1 - c)}dc

where ;o - (%+ 2 12
Ch

The functions ¢ and y are now solutions of a VOLTERRA type
integral equation. If U(zn) and P (Zn) are known, then

U (Zn+1) and P (Zn+1)
layer to the next until U(z) and P(z). The values of U and P
being known at the boundaries from the boundary conditions,

can be calculated, and thus from one

these values serve to initialize the recurrent process.

Expressions (21) and (22) cannot however be programmed on a
computer as such, but if the layers' thickness is adjusted so
that C(z) and p(z) do not vary too much around C, and p n-
then a TAYLOR expansion under the integral signs of (21) and
(22) leads to an analytical formulation of the integrals.
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The following

(23) P(Zn+1)

Solution

©
N|—
>
—r W

s1nc>Ln(zn+1 -

of wave sound equation in shallow water

expressions are reached after some arithmetic :

= P(zn) {fOSan(Zn+1—

4
Z adin

zn)

bliKiq} ¥ U(Zn){pn

—r1w
(=3
—
G
-—
=
]
or1h
[o7]
—
~
—
s )
——

“n

These expressions can be easily programmed as the coefficients

1

dss Das

I 1

are analytical expressions that

present no difficulty for computation. They are not pre-

sented here for the sake of simplification.

In order to calculate the residues corresponding to the poles

n

s_of

This is done as follows :

Equating 3y / 3 s = 2 sx leads

Derivating system (19) with respec

(25)
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d du 2
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d dpP du
— (=) - o(—) =0
dz ds ds
37-18

(0,s) it is necessary to get the 3y /ds
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with this system of equations meeting the boundary conditions :

9K/ 352

<
—
N
N
~
i

The analogy with the equations for U and P is obvious and the
same recurrent methods can be used to get X(Zn+1) and y(zn+1)
as a function of x (Zn) and y (zn).

5. COMPUTER PROGRAM

From the models developed in chapters 3 and 4, different programs were
written down for the calculation of propagation losses versus horizontal
range at a fixed frequency.

At the present time three main programs are available, namely (from the
simplest to the most elaborate) :

1) Program "PEKTO" (from the names of PEKERIS and TOLSTOY) : Constant
sound speed and density in the water ; Solid bottom
without sediments.

2) Program "BESSEL" (because of the formulation in terms of J + 1/3 etc.):
Sound speed and density varying as exposed in chapter 3. elastic

bottom under the sediments.

3) Program "VOLTERRA" : Sound speed and density profiles of any given

shape (as exposed in chapter 4); elastic bottom under the sediments.

The "VOLTERRA" program can obviously handle the computations corres-
ponding to the profiles dealt with by the "BESSEL" and "PEKTO" programs
but at greater cost. This was done however to check the accuracy

of the "VOLTERRA"program.
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These three programs have specific domains of application for which
they are optimized.

Optimization was in all cases taken care of. For instance,the

VOLTERRA program had to be divided into two parts : one program
permitting to calculate both the branch-line integrals and the residue
series of equation (12) and one program dealing only with the residues,
i.e. the nodes.

The reader will find hereunder a few details concerning the program
structures.

In "PEKTO" and "BESSEL" the sound speed and density profiles are of
course given by their analytic expressions while in VOLTERRA they

are given by a set of data points. In this case the C(z) and p(z)
values for any desired z during the computation are obtained from

a subroutine that makes use of the natural cubic spline interpolation
method.

In "BESSEL" and "VOLTERRA" the possibility to account for an absorption
coefficient in the sediment (and water if desired) was introduced by
taking acomplex value for the sound speed. In that case the real

part of the sound speed is introduced as previously and the

imaginary part is a constant depending on the frequency and the
medium characteristics.

A11 three programs use the same technique to search for the poles and
perform the numerical integration if this is the case. They only
differ 1in the way the GREEN's function ¢ and the g%-derivative

(used in the residues calculation) are evaluated.

- Calculation of the poles Tocation in the complex plane and of the
corresponding residues.

It was mentioned in paragraph 2.4 that the poles s, were complex and
located in the fourth gradiant. They can also be imaginary and
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on the half axis Im(s) < 0.

The program performs the computation of the ¢(z s) function with

s varying along Im (s) by steps As. At the same time it detects

the minima of its denominator y(0,s). The corresponding value of s
can be regarded as the first approximate value of the imaginary

part of the pole Sp- From this value the program searches for. the
exact Tocation of Sy in the complex plane by the use of a NEWTON's
method and then branches to the subroutine that computes the corres-
ponding value of 3y/3s, calls back to ¢ and y components of ¢ and
gives the residue as in equation (13). This procedure is carried out

as long as s vary along Im(s) < O untila pre-established value Send
for which poles can no more exist.

- Numerical integration

Integral (4) is not directly computed in the program as this would
present difficulties caused by too strong fluctuations of the
GREEN's function along the imaginary axis. On the contrary the
branch-1ine integrals of equation (12) are easier to calculate by an
indirect method.

It can be demonstrated that these branch-Tine integrals may be
expressed by the integral

(14§ )
(26)] (¢ - 0') Ko(sr) ds

Jeo

where ¢' is given by
) T——ZR"
o' = 2s
n s"-s_

Sh and Rn being the poles and corresponding residues.

It is possible to obtain an analytical approached value of (26) by :
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N [as(s.) 2d(s..q)
L ) P+ e S Kl(s r) -
2r  p=0 S S P P

(27) K

Spr1K1 (Spen”)

where K1 is the first order modified BESSEL function and
where 46 = ¢ - ¢'.

The programming of equation (27) is easy. The achieved calculation
accuracy is a functionof the number N of values that have been computed
for ¢ along the two half lines "s = 1+ j" and Im(s) < 0 of the
integration contour.

In order to obtain the total sound field as given by (4),0ne just

needs to add to the previous results(branch-lines integrals) the -
sum of the residues (eq.12).

6. CONCLUSION

The various programs presented above have been written down on a

CDC 6600 computer. The required computation time is a function of

the given source frequency F.

This is evident since the number n of poles that determine the number
of modes to be added is roughly given by n = 2 FH/C where C is the
mean sound velocity in the water and H the water depth.

This computation time may hence reach large values. In spite of this

it was found that the use of all programs offered numerous advantages
beyond the mere aspect of sound field calculation in a given situation.
For example they can be used to study the influence of various sea
floor parameters on the sound propagation (sediments, density and
layering, compressional and shear velocities etc) and the influence

of variations in the sound velocity and density profiles (by the use
of the "VOLTERRA" program in particular).
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The "BESSEL" program can also be employed for the study of various
sound channels (ref.9).

Finally it must pointed out that the complete sound field calculation
may usefully help in the study of shadow zones and caustics where
the geometrical optics approximation is no more valid.
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A WAVE THEORETIC METHOD FOR ESTIMATING THE EFFECTS OF
INTERNAL TIDES UPON ACOUSTIC WAVE TRANSMISSION

D. J. Ramsdale

Naval Research Laboratory, Washington, DC 20375
U.S.A.

ABSTRACT

The effect of the first mode semidiurnal internal tide on a duct-
‘type sound speed profile was approximated by varying the minimum
velocity of the parabolic profile in a sinusoidal fashion with a
period of 12.42 hours. The corresponding effect on the acoustic
field was determined by using the normal mode solutions to the
parabolic profile to compute the signal level and phase at a fixed
receiver due to a fixed cw source. A systematic computer study

was performed to determine the dependence of signal level and phase
upon the source frequency, receiver range and tidal amplitudes.
Numerical results showed that the acoustic phase variation over a
tidal cycle was very nearly a sinusoid with 12.42 hour period and

a peak-to-peak amplitude which was approximately a linearly increas-
ing function of source frequency, receiver range and tidal amplitude.
A simple analytical expression was developed which predicts these
linear dependencies and closely approximates the phase variations
computed numerically. The fluctuations in signal level during a
tidal cycle wére found to depend upon the detailed structure of the
acoustic field in the immediate vicinity of the receiver. In general,
however, the fluctuations in signal level increased in frequency with

increasing source frequency, tidal amplitude and receiver range.
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I. INTRODUCTION

Large-scale periodic motions exist in the ocean in the
form of internal waves. The effect of these motions upon
the passage of an. acoustic wave through the ocean has received
a great deal of attention in the recent literature.! 1@

Of particular relevance to the results presented in this
paper are the experimental work of Clark and Kronengold!* and
the associated theoretical analyses of Weinberg, Clark and

Flanagan.!?

The experiment conducted by Clark and Kronengold
involved transmitting a 406 Hz cw signal from Eleuthera, Bahamas,
to hydrophones in the Eleuthera-Bermuda Propagation Range.
Signals received at both Bermuda and intermediate hydrophones
approximately 500 km from the source showed that the extended
angle phase variation was dominated by a large semidiurnal
component, suggesting that the acoustic propagation in that
region was strongly influenced by a deep ocean internal tide

of characteristic M2 periodicity, 12.42 hours.

The terminology "extended angle phase"” means that the phaée
variation thrbugh more than one complete cycle is recorded as
such, rather thanAas an angle between 0° and 360°. The distor-
tion of the sound speed profile due to the motion of the first
mode semidiurnal internal tide has been determined by Mooers.!®

For the case in which the acoustic path is perpendicular ta the

direction of propagation of the internal tide, Weinberg, Clark
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and Flanagan varied the sound speed profile according to Mooer's
prescription, using a ray-trace model to compute the associated
time histo;y of transmission loss and phase of the acoustic
signal during a 12.42 hour tidal cycle. Their calculations for
406 Hz and a range of approximately 500 km showed that (1) the
peak-to-peak variation in extended angle phase was linearly pro-
portional to the amplitude of the internal tide and (2) the
fluctuation in transmission loss became greater in extent and
more rapid with increasing tidal amplitude.

In this paper, we report the results of a normal mode calcu-
lation using the parabolic profile in which the profile is varied
to crudely approximate the effect of the first mode semidiurnal
internal tide. The extended ahgle phase and signal level are
gqmpg;ed_as functions of source frequency, receiver range and
internal tidal amplitude. Approximate analytical expressions
are developed to predict the dependence of extended angle phase
on these parameters and an explanation is offered for the com-

puted fluctuations in signal level.

THE MODEL

The parabolic profile is one of the few for which exact

18722 nphe acoustic pressure

closed-form solutions are available.
(p) at a range (r) and depth (z) due to a point source of angular
frequency (w) placed at the origin in range and depth z, is

given by .
_wp o 2Y? exp i [k _r-n/4-wt
P =17 E Gknr < o

n=o

2 2
x eXp |82 (z f‘zo) H, (B2)H_(Bzo) (1)

2%y YKo /T
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where p is the density, Hn are the hermite.p01Ynomials of

‘order n, K = w/co, B2 = Ka and the eigenvalues kn are given

by

- 2 1/2
k, = [K*-(2n + 1) Ka] : (2)

For any set of source/receiver parameters the pressure

can be written as

P = A exp i(¢-wt) (3)

where the pressure amplitude A and phase ¢ are determined
fromlthe real and imaginary parts of Zqg. (1) (éuppressing'
the harmonic time dependence) .

The solutions to the truncated parabolic profiie, shown
in Fig. 1, are very nearly those for the parabolic profile in
which modes with phase velocities greater than Cy» the velocity
at the edge of the duct are ignored.?? 1In all our calculations
the infinite sum in Eq. (1) is replaced by a finite sum in which
c, = w/kn < Cq- This represents a more realistic model for
fluctuations since it restricts the range of values of kn to
those normally encountéred in the real ocean.

The distortion of the sound speed profile predicted by

8 as due to the first mode semidiurnal internal tide is

Moocers!
shown in Figure 2. This rhythmic movement in the profile can
be approximated crudely using the parabolic profile by varying

the axial sound speed o according to

Cy ™ Co T Ac0 sin Q t (4)
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where @ is the tidal frequency and 56 is the unperturbed
speed at the axis. The sound speed perturbation produced
by the action of the internal wave has been shown to be
very nearly proportional to the internal wave amplitude.'®
Thus, the value.of Aco in Eq. (4) can be‘regarded as pro-
portional to the intern;l wave amplitude.

Given the source location, frequency transmitted and
receiver location, a time history of the amplitude and
extended angle phase can be generated using the parabolic
profile (terminated as in Figure 1) with the axial velocity
Cq given in Eq. (4). In performing the computation, the
extended angle phase was determined by increaéing or decreas-
ing the phase by one cycle as appropriate when the phase angle
moved from quadrants one to four or vice versa; the time sampling
interval was chosen sufficiently small to facilitate the phase
tracking. The amplitude was represented in dB by taking 20 log A
and plotted in dB as a loss in signal level.

ITI. NUMERICAL RESULTS

All calculations were made with both source and receiver

on the axis of the parabola, the unperturbed profile specified

by c, = 1480 m/sec, c, = 1520 m/sec and h = 1000 m. Typical

1
results for a source frequency of 100 Hz, receiver'range of
109.5 km (8th focal zone) and a Ac = 1.0 m/sec are shown in
Figure 3. These are in general similar to those computed by

2 in that the extended angle phase is sinu-

Weinberg, et al.,!
soidal with a period identical to the tidal cycle, and the fluc-

uations in amplitude are of higher frequency, varying over some
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15 dB. Note that the amplitude of the negative part of the

extended angle phase is smaller by nearly one full cycle than

that of the positive half. This is cdue to the two 180° phase

changes encountered at each deep null in signal level during

the negative portion of the cycle. |

A. Dependence on tidal amplitudé, source frequency and receiver
range.

Dependence of the exténded angle phase upon Aco (tidal
amplitude) was determined by simply holding frequency and range
constant (f = 100 Hz, r = 109.5 km) and varying Aco.. The results
are summarized in Figure 4, which shows that the peak-to-peak
variation in extended angle phase is a linear function of Aco,
which is, of course, proportional to tidal amplitude: This result
waS'aISO‘obtained by Weinberg, et al., using their ray-theory
model which'incorporated both the sea floor and surféce and was
thus éonsiderably_more complicated than the simple wave model
used here.

Plots of the signal level as a function of time over a tidal
cycle for these cases show that as the tidal amplitude increases,
the peak-to-peak fluctuation in signal level incfeases while the
time (1) for the normalized autocorrelation of the signal level
to drop to 0.5 decreases. The peak-to-peak fluctuation in
signal level varies from 29.9 dB for aco = 2.0 to 2.1 dB for
Aco = 0.25 while the corresponding decorrelation times (1) vary
from 11.5 minutes to 55.5 minutes.

Dependence of the extended angle phase on source frequency

was examined by holding the range and tidal amplitude constant
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(r = 109.5 km and Aco = 1.0 m/sec) and varying the frequency.
Ths results are summarized in Figure 5, which showsvthat the

ezX-to-peak variation in extended angle phase is a linear

g

unction of source freguency over the range 10 Hz to 400 Hz.

iV

lots of signal level over the tidal cycle as a function of
tize showed that the peak-to-peak fluctuation increesed while
decorrelation time (7) decreased with frequency, ranging froﬁ 29.9 4B
ané 8.25 minutes, respectively, at 400 Hz to 15.4 dB and 21
minutes, respectively, at 100 Hz, while for 10 Hz the corres-
ponding values are 2.4 dB and a time greater than 70 minutes
for 10 Hz.

Preliminary measurements have been made between a fixed
source and a fixed receiver separated by some 400 nautical

? Internal

miles with source frequencies of 12 and 22 Hz.?
tides appeared to be modulating the phase, but the total phase
change over a six-hour period was only a fractien of a cycle
ané the correspondiﬁg amplitude fluctuation approximately 1-2
é@8. This gives credence to our theoretical results which
showed that both phase and amplitude fluctuations decrease
with decreasing source frequency.

The dependence of extended angle phase on receiver range
was determined by keeping the source frequency and ti@al

arplitude constant (f = 100 Hz and Aco = 1.0 m/sec) and varying

receiver range. The results of such calculations carried

ﬁ
o
()

out over ranges from 100 to 420 km are shown in Figure 6. The

dependence is approximately linear but deviations are more
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noticeable than in the cése of frequency or tidal amplitude.
These deviations are a result of phase changes due to deep
fades in the signal level; thus, even though the value taken
from the linear curve would be a good estimate of thé peak-
to-peak variation in extended angle phase at a given range,
deviations can result if the amplitude structure displays
deep nulls. |

The complexity and variation in signal level at each of
the various rangés depends on whether one is near a focal
zone or between a focal zone. For example, at a range of
109.5 km (8th focal zone) the peak-to-peak fluctuation in
signal level is 15.4 dB with a decorrelation time of 21
minutes, while at 117 km (between 8th and 9th focal;zones)
the corresponding numbers are 2.8 dB and 13.5 minutes. 1In
general, the variations in signal level and decorrelation
times are larger near focal zones than in between them. Also,
in general, for both zones, focal and non-focal, the variations
-in signal level increase while the decorrelation times decrease
as range increases.
B. Random component of axial velocity

The speed of éound near the sound channel axis is surpris-

* mo investigate the effect of a small random

ingly variable.?
variability on the signal level ana extended angle phase, a
small amount of speed randomly selected in time from a normal
distribution was added to the axial velocity in addition to

that due to the internal tide. The magnitude of the random

SACLANTCEN CP-17 38-8



RAMSDALE: Estimating effects of intermal tides on acoustic wave transmission

component was determined by specifying the standard deviation
of a normal distribution whose mean value was zero. The signal
level, its autocorrelation function and the extended angle
phase were computed over a tidal cycle for a constant range

(r = 109.5 km) and consgant tidal amplitude (Aco = 1.0 m/sec)
for frequencies of 10 Hz, 100 Hz, 200 Hz and 400 Hz with the
addition of a random axial velocity component determined by a
standard deviation of 0.0l m/sec. These results were compared
with identical calculations where the random axial component
was zero. The effect of the random component upon the 10 Hz
and iOO Hz results was negligible. The peak-to-peak extended
ancle phase at 200 Hz was 14.35 cycles with the random component
as compared to 17.06 cycles without it; however, the basic
sinusoid shape, although contaminated by a certain amount of
"grass," was still retained. The results for the 400 Hz source
are shdwn in Figure 7. In this case, the random component was
large enough to prohibit phase tracking. Although a certain
amount of "grass" was added to the signal level curves at all
frequencies, the decorrelation time was substantially the same
both with and without the random component.

An additional set of computations were performed with all
parameters aé before but with the standard deviation of the
random component now set at 0.1 m/seé. The extended angle phase
for the 10 Hz source was quite grassy but still basically sinu-
soid, and the decorrelation time was still.greater than 70 minutes

as in the case of no random componant. However, for the 100 Hz,
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Iv.

200 Hz and 400 Hz cases the sinusoidal phase variation was
destroyed and the signal level decorrelated in appfoximately
one minute.

These results show that a random component in the axial
velocity discriminates more against tracking phase variations
due to internal tides at high acoustic frequencies than at
low acoustic frequencies. vThis.suggests that perhaps the
effects of an internal tide might be masked at a high acoustic
frequency while being visible at a lower acoustic frequency.
The decorrelation time is not as sensitive as phase to random
components in the axial velocity but eventually will be increased
as the standard deviation of the random component increases.
ANALYSIS

Numerical results presented in the previous section showed
that the peak-to-peak value of extended angle phase is to a
good approximation linearly dependent upon receiver range,
source frequency ahd tidal amplitude. Calculations of extended
angle phase as a function of range for source and receiver on
the axis with a source frequency of 100 Hz showed that with the
exceptioh of deep nulls in amplitude, the phase can be repre-
sented fairly well by ¢ = kr. The exact value one uses for k
depends upon the modes which contributé most to the solution

and their speeds but consider for the moment that k = w/c where
c represents some typical sound speed. The internal tide causes

a variation in c with time so that the resulting phase variation

SACLANTCEN CP-17 38-10



RAMSDALE: Estimating effects of internal tides on acoustic wave transmission

can be written as

Lo (r,t) = - <l—> wr Ac sin § t (5)

which demonstrates very simply the numerically observed
linear dependence on tidal amplitude (Ac), source frequency,
and range. Note that it correctly predicts a phase variation
which is 180 degrees out of phase with the driving function.
The prediction of accurate values of extended angle phase
using Eg. (5) depends to some extent on the particular choice
of ¢ and Ac. Consider the case computed numerically in the
vrevious section of a source/receiver on the axis, source
fregquency 100 Hz, Ac=1 m/sec and receiver range of 109.5 km.
Takxing c to be 1500 m/sec one finds a peak-to-peak value of
89.73 cycles which is in reasonable agreement with the true
value of 8.65 as determined numerically. Suppose we consider
applying Eq. (5) to the case computed by Weinberg, et al.,
where a 406 Hz source was located approximately 500 m from
the surface propagating acoustic energy to a receiver some
500 km away at a depth greater than 2000 m while the medium
was under the influence of a 10-m internal tide. If we take
as c the sound speed at the SOFAR axis and Ac the maximum
change in the axis speed produced by the internal wave, Eq. (5)
predicts a peak-to-peak phase variation of 27.4 cycles, which
compares perhaps fortuitiously to the value of 25 cycles com-
puted by Weinberg, et al.!? This suggests that perhaps a rule
of thumb in using Eg. (5) is to take c equal to the speed at

the SOFAR axis and Ac as the maxinum change in this speed.
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Now let us consider the fiuctuations in signal level.
In an effort to understand these fluctuations, sevefal com-
putations were made of the signal level as a function of'range
for slightly different values of S The results showed that
the acoustic field for two values of C, very nearly the same
was the same in form but shifted slightly in range. The
amount of range shift can be approximated well by computing
the change in spacing (R) between focal zones as Cq changes.

. T . 2
Since R = /a (source and receiver on the axis),

AR = RCOACo (6)
2.2
cl co

Application of this expression to the case wher? the
receiver is at the 8th focal zone (r = 109.5 km) yields a
shift in range of approximately 1.3 km. Figﬁre 8 shows the
corresponding signal level as a function of range for a source
frequency of 100 Hz, the dotted lines indicating the range shift
corresponding to Aco = 1.0 m/sec centered at 109.5 km. Note
that the portion of the signal within the ddtted lines when
sampled in a sinusoidal manner beginning at 109.5 km corresponds
to the fluctuations in signal level shown in Figure 3.

A close study of the plots of transmission loss over é
tidal cycle for various tidal amplitudes as computed by Weinberg,
et al. (reproduced in Figure 9) leads one to the same conclusion,
i.e., the effect of the internal tide is méinly to move the

acoustic field back and forth in range. ' This can be seen in
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Figure 9 by noting that a larger tidal amplitude causes the
field to shift greater in range; thus, the fluctuations for

a 7-m internal tide would be included as a subset of those
for a lO—m>internal tide. Examination of Figure 9 shows this
to be the case.

According to Eg. (6), the amount of range shift depends
directly upon the tidal amplitude (Aco) and the range (number
of focal zones covered), but is independent of frequency.

One conclusion reached then is that the fluctuations in signal
level at any range depend upon the structure of the acoustic
field nearby, since the effect of the internal tide is simply
to sample the field nearby the range in question. Thus, if
the acoustic field has a great deal of structure due to inter-
ference effects, the fluctuations in signal level due to the
internal tide will increase in frequency and perhaps magnitude
with tidal amplitude and/or range. The dependence of the signal
level fluctuations on frequency is due simply to the higher
frequencies having more modes contributing to the results which
in turn produces a more complex interference structure in the
acoustic field.

V. SUMMARY

The effect of the first mode semidiurnal internal tide

upon acoustic wave propagation has been estimated using the
normal mode solutions to the parabolic velocity profile.
The action of the internal tide on the parabolic velocity pro-

file was approximated by allowing the minimum velocity to vary
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in a sinusoidal fashion, having a 12.42 peridd with the maximum
variance from the unperturbed value taken to be proéortional to
the internal tidal amplitude. A systematic computer study was
performed to determine the dependence of signal level and
extended angle phase on the source frequency, receiver range
and tidal amplitude. The resulfs showed that the extended angle
phase was very nearly a linear function of all three parameters.
No such simple result was obtained for fluctuations in signal
level, although in general the extent and'frequency of these
fluctuations increased with higher source frequency, Qreater
tidal amplitude and greater receiver range.

Further computer studies using an unperturbed parabolic
profile showed that as range increased, the phase was fairly
well approximated by the product of wavenumber and range. This
fact lead to the development of a simple formula which predicts
linear dependence of extended angle phase on source frequency,
receiver range and tidal amplitude. Values of extended angle
phase computed using this simple expression are in reasonable
agreement with those obtained numerically and also with those
computed by Weinberg, et al.!?

Fluctuations in signal were traced to the fact that the
effect of the internal tide was to shift the acoustic field in
range, the amount increasing linearly with range and tidal
amplitude. Again, a simple analytic expression was determined
which approximates this shift. The fluctuations in signal’level
at any range then depend upon the structure of the acoustic
field nearby, but generally will increase in frequency with

increasing tidal amplitude and range. The effect of source
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frequency upon signal level fluctuations is mainly through the
increasing complexity of the field with increasing source fre-
guency; thus, for a constant range and tidal amplitude, signal

level fluctuations decorrelate faster as frequency increases.
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EFFECT OF SHIP MOTION ON SONAR DETECTION PERFORMANCE

by

J.G. Schothorst
RVO/TNO
The Hague, The Netherlands

ABSTRACT

For an unstabilized transducer, the effect of ship motion on sonar echoes is
twofold:

1. Attenuation caused by the rotational movement of the
transducer in the vertical plane. The results show that the different
loss figures are periodic in range. The average loss (in dB) increases
about Tinearly with the amplitude (in degrees) of the swinging transducer.

2. Distortion caused by the irregular translational movement
of the transducer in the direction of the target. In order to arrive at
realistic figures for attenuation and distortion, actual ship movements are
being measured. Some samples of recorded ship movement data are presented,
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i.0

2.0

INTRODUCT ION

L]
In this paper a brief discussion will be given about the effect of

ship motion on the detection performance of a sonar. Two effects will be
dealt with: attenuation of sonar echoes due to pitch and roll of a ship
with an unstabilized sonar beam, and distortion of sonar echoes due to
movements of a sonar transducer in the horizontal plane. '

For the case that the different types of ship motion are sinusoidal,
theoretical results will be derived for the attenuation, doppler shift,
frequency spread and optimum pulse length., These theoretical results will

be applied to some samples of actual ship motion data.

ATTENUAT ION

In high seas, sonar echoes received by an unstabilized transducer

will be attenuated, since the sonar beam moves with the pitch and roll

of the ship.

In order to calculate this attenuation, only the movement in the vertical
plane through transducer and target has to be considered. The loss in
echo strength is namely due to the fact that the direction of the main
beam in the vertical plane may differ from the direction in which the
submarine is located. Depending on the elevation angle of the transducer
at the time of transmission a considerable amount of transmitted energy
may miss the target. Also energy reflected by the target may arrive at
the transducer when it points in a direction differing from the target
direction.

In calculation the loss in echo strength, the following assumptions

were made:
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a. the main beam of the transducer in the vertical plane is the
same for transmission and reception and has a sin x/x = shape.
(see formula for the beam shape on fig. 1, in which ¢ equals
elevation angle and B = 3 dB beamwidth)

b. the angle of the sound ray to and from the target with the hori-

zontal plane is close to zero

c. the movement of the transducer in the vertical plane through

transducer and target can be described by a sinusoidal function
of éime with an amplitude A less than 1.2 B (see expression for
elevation angle ¢ on fig.1. This sinusoidal movement of the ele-
vation angle should be regarded as the main Fourier component of
the total pitch/roll motion of the ship.

Combination of the expressions for beam shape and elevation angle
results in the expression for the instantaneous attenuation f(t). The
attenuation of a sonar echo however is a product of the attenuation at
the time of transmission t_ and the attenuation at the time of reception
t, + 2R/C, in which R = range (m) and C = speed of sound in water =
1500 m/s. The resulting loss in echo strength l(to,R) depends both on time
of transmission and range. Generally the time of transmission is randomly
distributed with respect to the motion of the ship, in which case the '
mean loss in echo strength can be obtained by averaging l(to,R) over t .
In addition to this mean value also the extreme values of l(to,R) have
been calculated 1in order to obtain a measure for the spread in loss of
echo strength.

A result of these calculations is presented in fig. 2 for the case
A/B = 0.8. The loss figures are plotted here as a function of R/TC, in
which T = time period of periodical movement (s). A second horizontal
axis with the range in km applies to a period T = 10.6 séconds.

A first observation of fig. 2 shows that the result is periodical
in range. The range period (equals TC/4) is of the order of 4 km.

Fig. 2 shows further that depending on the time of transmission, the
loss may be as low as the minimum curve or as high as the maximum curve.
In order to diminish this spread it might be advantageous in certain
circumstances to transmit only when the axis of the main beam is
directed horizontally. The curve '""HOR., TRANSMISSION'" indicates for this
case the loss of echo strength as a function of range.

Without such or other precautions high losses may be encountered {up to

20 dB for an amplitude of 8° and a beamwidth of 10° as is shown by fig.2).
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3.0

In high seas, large amplitudes for pitch and roll are not uncommon. This
is shown by fig. 3 and 4, which present some extreme values for pitch
and roll for a frigate in sea state 6. On the basis of this information
it may be concluded that in high sea conditions the detection perfor-
mance of an unstabilized sonar will be severely affected by the pitch

and roll of the ship.

DISTORTION

The distortion of sonar signals is caused by fluctuations in the
distance between sonar and target. For the calculation of the effect of

these fluctuations the following assumptions were made:

a. the angle of the sound ray to and from the target with the
horizontal plane is close to zero

b. the movement of the transducer in the horizontal plane can be
described by a sinusoidal function of time (see expression

for X on fig. 5).

The assumed sinusoidal movement of the transducer should be regarded

‘again as the main Fourier component of the total horizontal ship motion.

Since this kind of ship motion is generally measured by means of accele-
rometers, the effect of it will be expressed in terms of acceleration
in stead of diéplacement or velocity.

A measure for the distortion of sonar signals can quite easily be
determined with the aid of the doppler shift, which is caused by the
horizontal motion of the ship. As indicated on fig. 5 the doppler shift
Af is proportional to the instantaneous speed V in a particular direc-
tion as well as to the carrier frequency fo. The doppler shift of a
sonar echo is the sum of of this doppler shift Af at the time of trans-
mission t_and at the time of reception to+ 2R/C. The resulting doppler
shift Afs is a function of several parameters, including the time of
transmission ty and the range R.

The maximum value of the doppler shift Afs with respect to t, has been
plotted in fig. 5 as a function of the range R. Depending on the time of
transmission t, the doppler shift may be as low as zero or as high as
the plotted curve. The overall maximum of this doppler shift occurs at

range intervals of TC/2 meter (= 8 km).
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A measure for the distortion of the sonar pulse can be obtained
from the frequency spread during the pulse. This frequency spread has
been derived from the calculated doppler shift Afs for the case that
the pulse length 1<<T, the period of ship motion. In this case the
frequency spread during the pulse can be approximated by the difference
between the doppler shifts Afs at the end (t0 + T) and at the start (to)
of the pulse (see fig. 6).

The resulting expression for the frequency spread W shows again a
dependance on the time of transmission t and the range R. The.maximum
value of W with respect to~to has been plotted in fig. 6. Depending on
the actual time of transmission, the frequency spread may be as low as
zero or high as the plotted curve. The overall maximum value for this

frequency spread occurs at range intervals of TC/2 meter (» 8 km).

In this brief account of the effect of ship motion,attention is only
paid to .the '"wors:it case' situation, for which the values for doppler
shift and frequency spread are maximum., For this reason fig. 7 summarizes
the expressions for the maximum values of doppler shift and frequency
spread.

From the maximum doppler shift-formula an expression has been deri-
Ved.for the maximum error in the estimated'target radial speed. As
could be expected beforehand, this maximum error is equal to the maxi=
mum speed of the fluctuation in range between ship and target.

From the frequency spread-formula an expression can be derived
for the optimum length of a sonar pulse. As a result of the frequency
spread, the sonar pulse will be distorted and a correlation loss will
occur in a coherent sonar detector. For the worst case situation of
fig. 7 the frequency spread increases linearly with the pulse length T.
Because of this fact also the correlation loss will in the first in-
stance increase with T, For this reason, the signal to noise ratio S/N
will show an optimum when it is regarded as a function of the pulse
length T. It might be expected that the optimum value of T is of the
order of the inverse of the frequency-spread. Fig. 7 shows an expression
for. the approximated optimum value of T.

The actual optimum value appears to be very close. This actual value for
the optfmum pulse length has been obtained from a plot of computed
results of S/N (see fig. 8). Beyond the optimum pulse length, the signal

to noise ratio drops quite rapidly for increasing valuesof 1. For a
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pulse length of twice the optimum one, the signal to noise ratio S/N
is already 10 dB below its maximum value.

The 'worst case expressions'' of fig. 7 are finally applied to the
ship motion data of fig. 9. In this figure typical amplitude spectra
for horizontal accelerations are plotted for a destroyer in sea state 3.
For this reasonable sea state condition the maximum amplitude of the
acceleration is quite low (0.12 m/sz). By consequence the error in the
estimated target radial speed is not yet large.
The effect of frequency spread for this mild condition seems to be a
more important factor in the case of coherent detection. Fig. 9 indi-
cates that the maximum pulse length in this case is already limited to
a value smaller than 1 second. In high sea conditions this restriction
will be much more severe. |
According to a rough estimate of ship motion in high sea conditions, the
amplitude of acceleration in the horizontal plane may well be a féctor
10-20 larger. Accordingly, the maximum error in estimated target radial
speed will increase to 1.5 - 3 m/s and the maximum pulse length for
fo = 7000 Hz will be limited in this case to 0,18 - 0.25 seconds.

On the basis of the results discussed in this paper it may be
concluded that in high sea conditions the motion of the ship may cause
a severe degradation of the sonar detection performance. Accordingly,
the effect of ship motion should be given due attention in the design

and operation of a sonar system.
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DETERMINISTIC METHODS OF SOUND-FIELD COMPUTATION

by

C.W. Spofford and H.M. Garon
Acoustic Environmental Support Detachment
Office of Naval Research
Arlington, Virginia 22217
U.S.A.

ABSTRACT

Models for acoustic propagation in the ocean environment
have matured to a level where they are used routinely to
estimate deterministic phenomena and, most recently, have been
applied to the investigation of stochastic phenomena. This
paper reviews the capabilities and limitations of the state-of-
the-art acoustic models in the deterministic domain to assist
in their fruitful applications to stochastic problems. Formu-
lations based upon ray and wave (both normal-mode and parabolic-
equation) £echniques are developed from the acoustic wave
equation to their most advanced forms. The applicability of
these techniques to classes of stochastic phenomena is also

discussed.
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INTRODUCTION

The results of a series of carefully planned and
executed acoustic—oceanographic measurements in the past
saveral years have clearly demonstrated that the ocean has
sufficient stability to permit the prediction of a number
of acoustic phenomena by models based upon the deter-
ministic (and in this caée time-independent) acoustic
wave equation. Given that the acoustic wave equation
describes the significant features of propagation, the
investigation of a particular phenomenon devolves to the
questions of environmental inputs and solution techniques.
This paper is concerned primarily with the second question:
cgiven a complete, deterministic deécription of the ocean
environment, how does one evaluate: the acoustic field?

The first portion of the discussion reviews the
development of the three types of detefministic solutions
currently in use: ray techniques, normal-mode approaches,
and the parabolic-equation method. Solutions based upon the
three techniques are compared to illustrate the accuracies
of the various approximations. The environment is discussed
only to the extent that it influences the formulations of
a number of approaches. (For example, the continuity of the
sound-speed profile is an environmental consideration
which has consumed a disproportionate amount of the acoustic-

modeler's attention in the ray-tracing treatments.)
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Each of the techniques has certain strengths and
limitations within the context of deterministic problems,
but their applicability to stochastic problems introduces
a number of new considerations. There has been an unforfunate
tendency, paraphrasing J. B. Keller, to apply models already
discredited in the deterministic domain to the solution of
stochastic problems. The rush to carry the formulation of -
the stochastic problem as far as possible before implementa-
tion on the computer should not be so all-consuming that the
underlying deterministic problem is poorly solved. The
final section of this paper addresses some of the practical
as well as fundamental limitations of these basic techniques

when applied to study stochastic effects.
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I. MATHEMATICAL DEVELOPMENT OF THE SOLUTIONS

The propagation of sound in the sea is described math-
ematically by solutions to the wave equation. Given a
monochromatic source of angular frequency w, at position
x” in a medium with refractive index n(ﬁ)'(=co/c(§), e
a reference sound speed), then the acoustic pressure P(x)

is obtained from
[V2+k2n2 (5)] P(x) = -4td(x-x"), (1)

where the wavenumber k = w/co.

The exact solution of this elliptic partial differential
eguation, even witﬁ'boundary conditions &t finitc ranéé and
depth vice the more appropriate radiation conditions, would
require an unacceptably lengthy iterative solution on a mesh
of impractical size even for today's large digital computers.
As an alternative, solutions have been developed which
are either approximate (ray and parabolic equation) or
exact for more restricted problems (normal modes).

The ray solutions. correspond to a high-frequency or
large k approximation which, with certain frequency-
dependent extensions, may be applicablé in deep-water cases
for frequencies as low as 25 Hz. Normal-mode solutions,
while exact in the range-independent geometry, are praétical
only for the lower frequencies (less than a few hundred
hertz, again in deep water). The parabolic equation solu-

tion is also practical only for low frequencies, however
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it does permit range variations in the environment so long

as no paths of interest are propagating at steep angles

(~20 degrees measured from the horizontal). The following

sections describe the derivations of these solutions.

In underwater-sound applications, results are typically

expressed in terms of intensity and transmission loss rather

than pressure. The intensity for a time-harmonic source -

and locally plane waves is simply

A P*p (2)
I(_}E) = p(?-{-)cz:—)‘»

where p is the density and c the sound speed. Intensities

are nsually referenced to the intensity, Io' at a unit

distance of 1 yard, hence for a constant-density medium

(reasonable within the water column)

I(x) _ P*p c(x”)

= {3)
Io c(x) PO*Po 5

Finally, transmission loss relative to one yard is defined

I
TL = 10 Loglo(:g> (4)

and in numerical caluclations the intensity at unit dis-

as

tance is taken to be 1.
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A. Ray Theory

Ray acoustics traditionally begins with the "ansatz"
or postulated solution that the acoustic field may be

written as a discrete sum of quasi-plane waves,
P(x,x”) = IA.(x,x")e T (5)

When this trial solution is inserted into the wave equation
and only the lowest order terms in k are retained, one

obtains the eikonal equation

[vox,x1]% = n? ) (62)
and the transport equation

vo[2 xx) Vo (x.x7)] = o. (6b)

The eikonal equation in turn yields a set of differential
equations describing the raj trajectories, while the trans-
port equation, requiring energy to be conserved along the
ray tube, provides the ray amplitudes.

For example, within media which are cylindrically
symmetric about the source, the rays may be represented
as propagating in a vertical plane and the intensity ratio

of equation (3) may be defined as
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I _ [cos 6~ 1
I " ( x ) (sine 3% ) ' L7
[36']2

where x is the horizontal range (x“=0), z the depth of the
field point, and the angles 6 and 6° correspond to the ray
angles meésured with respect to the horizontal at the
field point and source, respectively. The first term of
equation (7) may then be interpreted as the ray-tube's
azimuthal divergence and the second as its vertical
divergence.

An alternative ansatz to equation (5) begins with the
solution written in terms of a continuous superposition of

g 1
quasi-plane waves ( ],

o0 :
. s /2 ikE (x,E)
P(x) = e 17/4 (2}51;)/ S g(x,&)e i, (@

-
where g and f are determined by the local geometry and the
medium. Evaluated asymptotically, the integral is domin-
ated by contributions to the integrand near the points of

"stationary phase", £j, which satisfy

L3

When these points are well-separated from each other and

any singularities in g(x,£), the formulation in equation (5)

is obtained, where now
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i
g
il

1/2
g(§.€j)/(f_gg(§,6j)) (10)

and

b5(%) = £(x,E5) . (11)
These points of stationary phase then correspond to the
ray paths connecting the points x and x°. The phases ¢j
correspond to the travel times along these rays plus any
descrete phase shifts acquired by the rays (e.g. =7 at
reflection from a pressure-release surface).

Immediately below we will consider two major areas where
traditional ray theory has been found wanting, and recently
improved: approaches towards the summation of the rays;
and the breakdown of the ansatz, equation (5), in the
vicinity of the ray envelope or caustic.

1. Multi-Path Summation

While in principle there are an infinite number of ray
paths connecting the source!with each observation point in
a bounded medium, the total field is generally dominated
by less than ten paths. The ray theoretic-solutién re-
quires the fully coherent or phased sum of these paths

according to equation (5).
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a. Long-Range Surface-Image Interference

Until recently, however, computations based upon ray
theory assumed an incoherent or rms sum of paths - i.e.,
the ray intensities were summed without phase. In part,
the justification for this procedure was that a range-
smoothed transmission-loss curve was desired and it was
hoped that the incoherent sum represented a range average.
It was also postulated that uncertainties in geometry and
the medium precluded sufficiently accurate phase computa-
tions to justify a coherent summation. For high fre-
quencies (several hundred hertz) and many geometries, these
were reasonable assumptions.

‘However at low frequenc¢ies (less than 100 Hertz) it
was found that measured and incoherently computed values of
transmission loss differed markedly for shallow sources.
This should not be surprising since near the surface the
pressure should approach zero, yet the individual ray
amplitudes will remain finite. What happens, of course,
is that the rays divide into pairs whose components differ
only by a surface reflection (Figure la). In the approx-
imation of local plane waves the phase difference can be

(2]

seen (Figure 1b) to be

kAp = 2kzsin® -m . (12)
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This result was recently generalized by Pedersen to
include refraction (Figure lc) to (3]
| z

KA$ = 2kcoj sinf(z) dg -m (13)

c(Z *
£=0

Clearly for shallow-angle rays to sources at low fre-
quencies, kA¢+-m in either expression and the up- and
down-going rays destructively interfere.

The coherent combination of these pairs of paths followed
by the incoherent summation of the resulting intensities
represents a much better range average than the totally
incoherent sum. The phase difference between the paths
within a pair is predictable, preserved over significant
range intervals, and easily computable from the local geo-
'metry without requiring the computation of travel time along
the entire ray trajectory. This "semi-coherent" summation
has been incorporated in the FACT propagation loss model (4]
(along with the incoherent and fully coherent sums), and
results based upon the three summations are illustrated for
a typical shallow-source/shallow-receiver geometry in

Figure 2.

b. Multi-Path "Fluctuations"

As a source or receiver transits the complicated multi-
path interference patterns (such as the coherent curve in

Figure 2) the signal level fluctuates significantly in time.
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The intensity at the field point x is given by

1,2
I(x) = £I.428 % (I.°L) 7 cos(k(d.~6)), (14)
T 37 gmeg 3T 7

where Ij are the ray intensities at x. Assuming that the
paths near x may be represented by locally plane waves,
the phase difference between paths at range x+AX may be

obtained from that at x:
k(b5=dy) = k(4 (x)-¢m(:§))+kAx(cosej—cosem). (15)

Hence the spectrum of signal fluctuations in range (Ax)
will exhibit cextain periodicities governed by the cosines
of the angles of the interfering paths with powers propor-
tional to the products of their intensities. Similarly
if berturbations in the medium alter the phases at x with
time, the signal also fluctuates. Such temporal multipath
fluctuations are significantly larger in amplitude than any
individual focusing or defocusing effects produced by the
medium.
2. Caustics
The second major area in which the traditional approach
to ray acoustics must be augmented is the evaluation of the
acoustic field in the vicinity of a caustic. As depicted in
Figure 3a, a caustic corresponds to the envelope of a family
of rays. On the caustic the field amplitude as predicted

by equation (6a) is infinite, since the cross-section of the
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ray tube converges to zero. On the shadow-zone side the
classical field is zero since, in this region no rays

exist. In the limit as k+*> this is a reasonable descrip-
tion, however at lower frequencies, the field transité
smoothly from the illuminated region (in which real rays
exist) to the diffraction region where the field exponentially
decays and no 'real' rays exist. In fact, as the frequency
decreaées the diffraction increases to the extent that

large regions exist where it can no longer be ignored.

The solution to this problem has been to employ an
asymptotic evaluation of the continuous representation of
equation (8) involving either the method of steepest decents
Ci e meiliwd ul stationary pnase, under the assumption
that the integrand does not contain any singularities close
to the points of stationary phase.

a. Smooth Caustics

The simplest caustic system evolves from two rays
arriving at each observation point x within the illuminated
region. As the caustic is approached the two stationary-
phase points in equation (8) coalesce as do the two rays in
the illuminated region. The field at the caustic may then
be found by proper evaluation of equation (8) at this limit

[5]). However, in order

and involves fEEE (see Brekhovskik
to use this field in the context of the traditional ray

approach, it is necessary to provide a means for smoothly
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connecting the field at the caustic to the diverging field

in the illuminated region.

[6] (7]

In this respect, Kravtsov and Ludwig indepen-
dently developed a uniform'asymptotic evaluation of the
field valid on and near the caustic as a function of the

geometrical acoustic phases ¢l’ and amplitudes Al’ A2

%2
of the two rays (Figure 3b) passing through each point in
(6],

the illuminated region

p~rl/2 , eik(¢2+¢l)/2 — -in/y

[1/'* +A. ) Ai wiu~ /s -A )Ai” (- )] (16a)
e |u (A2 Al) i(-u)+iu (A2 1) AL u)|.

In equation (l6a), Ai and Ai” are the Airy function and its
first derivative with respect to the argument, where u is

_givén by

2
u=[—2~ k(¢2—¢1)] /3 . (16b)

In turn, Holford and Spofford[B] have used this result to
obtain a non-uniform expression based upon the difference
in the caustic and ray curvatures, k, and the number of rays

tangent to the caustic per unit distance along the caustic,

do,
aL '’
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dL

1 1
/s /3
.(;Tkl-—r) A’i(—-(?.nzkzlxl) Az ) v (17)
n K

where Az in the distance measured normal to the caustic

- i(k¢ -n/,)
p~(g<£x6_)‘/z (ng)‘/ze V4

surface.

The Kravtsov-Ludwig result is "uniform" in the sense that
while the coefficients of the Ai and Ai” terms require the
rays for their evaluation, they may be analytically con-
tinued from the illuminated region into the shadow zone
where there are no rays. The Holford-Spofford result
corresponds to the linear term in this analytic continuation
and is defined for Az both positive (illuminated region)
and negative (shadow zone).

b. Cusped Caustics and Four-Ray Systems

Just as the geometrical-acoustics amplitude is invalid
at smooth caustics where fg€=0, the smooth-caustic expressions
are not valid when fggg=0' In two-dimensional ray pictures
the first situation occurs along caustic curves and the
second occurs at points where two caustics are cotangent as
shown in Figure 4a. Note that inside the cusp, C, there are
three rays through each point vice the two-rays in the illu-
minated region of a smooth caustic. The nonuniform expres-

sion for the field near these cusped caustics was obtained

(91 [10]

by Pearcey and is described in some detail in Brekhovskikh

Whereas for smooth caustics the uniform field is given in
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de
dL ’
is governed by the single parameter B, where

terms of two quantities k and the cusped caustic field

P~m
X

: _ 1
_I/Zel (k¢c '"/4) '(nkB) l/“ (90_89_:_) /2

1 1
-Pe [(nk)36] /ey ,-[nk8] 72y}, (18)

X* and Y° are cusp-centered coordinates with the v” coor-

dinate the axis of the cusp, and

(X' 2 5" 3 '

‘2‘) =B(T) ' (19)

the equation of the cusp. Pe(x.y) is the Pearcey Function
and is discussed in detail in Reference [1l], and k¢c is tﬁe

geometrical-acoustics phase at the cusp.

Ludwig's general results have been applied to the
cusped caustic yielding a result similar to Equation (18)
for the uniform field near a cusped caustic in terms of
the geometrical amplitudes and phases of the three rays
associated with the cusp. Approaching the cﬁsp along
either smooth caustic, both smooth-caustic parameters, K

de

and I become infinite. The rate at which they approach

infinity determines B:

6 /(32
B= /(_3_5{:) . (20)
cusp

SACLANTCEN CP-17 40-15



SPOFFORD & GARON: Deterministic methods of sound-field computation

While B is in general quite difficult to calculate, it does
simplify considerably in the case where the éxis of the
cusp is horizontal. As it so happens, this case becomes

of extreme importance in range-independent media (i.e.,
c(x)=c(z)) since a horizontal cusp will form at the same
depth as the source.

While higher order singularities are possible, the most
complicated ray geometry typically encountered is when a
smooth caustic is quite close to a cusp as shown in
Figure 4b. 1In this case the two fields may no longer be
treated as distinct and a basic four-ray system is generated
where it is possible that even the smooth- and cusped-
caustic expressions may break down. For most cases of
interest, however, a phased sum of the twé distinct fields
has been found to be adequate. |

3. False Caustics

One of the major concerns in using ray acoustics has
been the functional representation for the sound-speed
profile since it governs the ease with which rays may be

[11] and others

traced and intensities computed. Pedersen
have shown that when a sound-speed profile with continuous

derivatives is approximated by linear ségments, there exists
the possibility of introducing false or extraneous caustics.

The actual problem, on the other hand, does not lie with

the profile representation but instead with the traditional
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approach to ray acoustics. The results of the modified

[12] (MRT) developed by Murphy and Davis

ray theory
graphically illustrate this point.

MRT is based upon a generalized Wentzel-Kramers-
Brillouin (WKB) expansion of equation (8) and, as such,
includes the caustic modifications mentioned above. Murphy
and Davis have shown that this procedure leads to a fre-
quency-dependent displacement of the ordinary ray-theory
ranges. Employing the simple profile depicted in figure
5 , ordinary ray theory would predict the formation of a
caustic due entirely to the discontinuity in the gradients
of the profile at the juncture of the two segments. The
ray tangent to the caustic coincides with the minimuﬁ
(%% =0) in range on the accompaning angle (6)-vs. range (x)
plot. The MRT angle-vs.-range plot for the same case is
also shown. At a high frequency MRT still shows a caustic
(in fact, two: one associated with the minimum in range,
and another associated with the smooth maximum in range).
However, as the frequency is decreased the angle-vs.-
range curve is completely smoothed out and the caustic of
ordinary ray theory disappears.

A more complicated example (figure 6) was recently

[13]

provided by Weinberg , using three different realiza-
tions of an Epstein profile: piecewise linear, piecewise

quadratic, and cubic spline. In all three forms, the
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source was placed on the axis of the Epstein profile with
the depth of the observation point situated somewhat
shallower. The results at a frequency of 1 kHz. are also
based upon a generalized WKB expansion of equation (8).
Even at 1 kHz., all three representations provide essen-
tially the same results. Thus, with a proper analysis of
the caustic fields, the profile representation is not
critical to the total field.

This type of insight into the frequency-dependent
smoothing of the x(6) curve lead directly to the develop-
ment of the FACT model,[4] where the primary concern was
not only with speed of computation, but also being able to
provide meaningful asymptotic caustic values along with
the effects of coherence. Representing the profile in
terms of linear segmenﬁs permitted a rapid trace of the
rays but also introduced the possibility of false caustics
as discussed above. By limiting the angle-vs.-range curve
behavior for a particular ray family to two-degrees of
freedom (i.e., using a quadratic fit) and also by carefully
selecting'the rays to be traced with respect to the pro-
file, the problem of false caustics was reduced significantly.

In range-dependent media the profile representation
‘takes on a different aspect, for the primary difficulty

here is not in tracing rays, but in defining how the

medium will vary between specified profiles.
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Two methods for connecting the profiles are in common

[14]

use. The first method allows the sound-speed repre-

sentation to be arbitrary in depth but linear, quadratic,
or cubic in range at fixed depth. The second method[lsl
is based upon segmenting the region between the profiles
into triangular sectors where two vertices of the tri-
angleé correspond to two points on one of the profiles and
the third vertex corresponds to a point on the other pro-
file. Along the connecting legs of the triangle the sound-
speed varies as c(z,x)=co+az+bx. Both methods have their
drawbécks. The first method is easy to automate but leads
to ray~tracing difficulties since closed form expressions
for the ray paths are not available. Additionally, th;s
-method can lead to totally unreasonable profiles at inter-
~mediate ranges between reasonable specified profiles. The
second method is quite difficult to automate in that it
usually requires an océanographer to determine the
required connections. Aside from this problem, however,
the linearity of the sound speed leads to a closed form

expression for a ray's path within each triangular sector

enabling a relatively rapid trace.

4. Summary of Ray Acoustics

With the advances in classical ray theory described

'above,-ray acoustics can and has been successfully extended
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down to frequencies on the order of 25 Hz. The primary
difficulty with these modifications lies in their complete
automation. In many cases, especially for range-dependent
media, the ray pathologies may be so complex as to require
a hand analysis.

B. Normal Modes

Normal-mode theory in underwater acoustics is based
upon the initial requirement that the sound speed vary as
a function of depth only, i.e., c(x)=c(z). This simplifica-
tion permits the reduction of the wave equation by separa-
tion of variables, leading to a system of two linear
differential equations, one for the depth dependence of the
field, the other for the range dependence. The total;field
P(x) is then given by the product of the two separable
solutions integrated over the separation parameter, A.
Specifically, the result may be represented by a Bessel-

Hankel transformlls],

p(y:& Pz,2°, M) Ig(Ax)AdA, (21)
A=0

where Jo is the zeroth order Bessel function, and the depth

function'ﬁ"satisfies
2
[Q— +(k2n2(z)-xz)]?(z,z‘,x)= N %‘—1-[-5(2—2‘), (22)

dz

A is the radial wave number and may be assumed to be complex.
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- By modifying the integration contour an alternative to the
continuous standing-wave representation of equation (21)

can be derived,

0

P(x) = 3| Pzz7,0Ef Oxrar, (23)
°°ein
such that the zeroth-order Hankel function of the first
kind, Hél), no& represents an outgoing wave under the time-
dependence e-iwt. Equation (23) can be numerically inte-
grated as DiNapoli has done in his Fast Field Program (FFP).
In the FFP, the integral is cast into the form of a Fast
Fourier Transform by employing the asymptotic form of the
Hankel function. This procedure, coupled with a judicious
selection of the functional form of the sound-speed profile
to permit the rapid calculation of the constituents of’g,
allows a practical evaluation of equation (23).
With respect to the normal mode expansion, the

bulk of the remaining problems center about the evaluation
of the depth function'ng,z‘,k). All of these methods are
subject to the boundary constraints of a pressure-release
surface, Sommerfield's radiation condition, and continuity
conditions at discontinuities in both the water colur~ and

bottom. Additionally, the particular form of the solution
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'B(z,z',k) depends upon the functional description of the
sound speed-profile itself.

The general normal-mode expansion may be obtained by
identifying the singularities of‘skz,z’,l) and subsequently
deforming - the integration contour about the singularities.
Depending upon how the sound-speed profile is terminated,
three classes of singularities are evident: (1) a finite
number of poles along the real A axis (assuming the medium
is lossless), (2) an infinite number of complex poles, and
(3) branch points which appear pairwise. For sound-speed
profiles encountered in underwater acoustics, the branch-
point singularities are ordinarily associated with the
modeling of the ocean bottom.

In order to illustrate the physical significance of
these mathematical singularities consider a sound-speed
profile terminated by an isovelocity halfspace (c(z>zB)=CH)
such as that illustrated in figure 7. Restricting atten-
tion to the first quadrant (Re(A)>0,Im(A)>0) of the complex
A plane, the isovelocity termination will lead to a branch
point singularity at A=AH=gh and the water column will
produce a finite number of poles Am along the real A axis

- -
such that AH<Am<Amax—cmin. In a rather loose sense, con
tributions to the field from the poles along the real axis

correspond to axial rays, for Am close to Amax and
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bottom-reflected rays for_lm:AH. The influence of the
infinity of poles off the real-) axis to the field depends
on the choice of branch cut.

Most normal mode programs today are based upon the

Pekeris-type branch cut[17]

illustrated in figure 7 . The
corresponding integration contour leads to a symbolic repre-

sentation for equation (23) as

N
2miZl (residues for A_3:Im(A_)=0) (24)
m m
m=1
(o)
+ 27iZ (residues for Ama:Re(Am),Im(Am)=0)

m=N+1

f/}Pérkeris'Branén“Cut) +./?Semi-Circle.’ IX|~).

An alternative representation is obtained by employing the
Ewing-Jardetsky-Press (EJP) branch cut (figure 7),
N

2mil (residues for A_ »2Im()_)=0) (25)
m=1 m *m ,

ﬁ/}EJP Branch Cut) +./}Semi—circle,|l|~w),

where the integration at infinity along the semi-circle can
be shown to be zero for all cases of interest. Labianca[lsl
has pointed out that the Pekeris cut has practical as well

as theoretical problems, particularly since the residue sum
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diverges for ranges less than V3:(z+z°). For ranges greater
than this the residue sum converges and the two representa-
tions are equivalent.

Representing the EJP branch cut in equation (25) as a
finite integration on the real-A axis and an infinite integra-
tion along the complex-A axis, the normal mode solution can

be explicitly expressed as

N
P(x)=E _cm(xm)?m‘(z,xm)?m(z'-,Am)nél) (A x) (26
m=1

X o
min
- o f(AR,z,z,x)dARf ,
R c

=09(Ac,z,2‘.X)dAc,>
. L] A .
where the so-called eigenfunctions Pm and eigenvalues Am
satisfy the discretized form of equation (22):
dZ

.[.&.z. + (kznZ(z)-me]?m - -%T-a(zéz‘) (27)

and the particular boundary conditions, and where thet:m(xm)
are the mode-amplitude weighting factors as determined by
normalizing the eigenfunctions. Thus the normal-mode expan-
sion consists of a classical sum of modes plus a continuum

of modes which arise from the EJP branch cut. This continuous
spectrum has frequently been ignored as a result of the more

common usage of the Pekeris representation (equation (24)).
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Considerable effort in a normal-mode solution is consumed
finding the siﬁgularities of the integrand within equation
(21) . One such method involves guessing Am' integrating
the differential equation (27) to one of the boundaries
(usually the surface) and iterating on Am until the boundary
condition is satisfied within prescribed tolerances. Such
tolerances do not guarantee overall accuracy, and
control remains a persistent problem. Also since the number
of modes and the number of iterations per mode are roughly
proportional to frequency, normal-mode solutions are
practical only for low frequencies. However they do repre-
sent the exact control solution against which all others may
be tested. These tests then allow the extension of more
general techniques to the range-dependent environment with
some confidence.

Some extensions of the normal-mode solutions to range-
varying media (i.e., n(x)=n(x,z) have been attempted. These

generally fall into one of three approaches:

(i) Those which assume no cross-coupling between
modes;
(ii) Those which assume at least weak coupling

between modes at different range intervals;'
(iii) Those which require matching a boundary
condition for the total field at some x for

all =z.

SACLANTCEN CP-17 40-25




' SPOFFORD & GARON: Deterministic methods of sound-field computation

The adiabatic approach of (i) requires that all energy pro-
pagating in mode number 'n' remain in the mode independent
of rangeﬁzz’ 26]. - The phase velocity (implicit in Am), then,
varies with range as new sound-speed profiles are intro-
duced. The weak-coupling approach of (ii) requires a large
number of mode computations at different rangés ta evaluate
the weakest form of coupling between each mode and only its
immediate neighbors. The third approach, (see Kanabis[lB])
requires continuity of pressure across an interface at
arbitrary range. The field at the interface is computed

in terms of the modes just prior to the interface, and then
decomposed into the new modes defined by the profile just
after the interface. This procedure neglects any back-
scatter and requires either_a large number of mode calcula-
tions, or places rather stringent reguirements on the range

‘variation.

C. Parabolic Eguation

The final approach to be considered here is the parabolic-
eguation technique, where the solution to the elliptic waQe
equation, equation (1), is initially assumed to be of the
form

P(x) = v(x,2)H1) (kx). * (28)

The Hankel function, Hgm(kx), represents the primary radial
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dependence of the field in terms of an outward probagating
cylindrical wave.

To this point the only approximation made is the
assumption of cylindrical symmetry. The second approxima-
tion is that the observation point, x, is many wave lengths
from the source (i.e., kx>>l). Subsequently the asymptotic
form of the Hankel function may be used to obtain from

equation (28)
Vo F2ikY H Hk? (n2-1) = 0 (29)

plus terms of order ¥/kx?. Finally, employing the approxi-

mation
¢xx<<21kwx : (30)

which neglects backscatter and is generally described as
valid only for components of the field propagating at small
angles with respect to the horizontal, the parabolic

[20]

equation of Leontovich[19] and Fock -is derived:

. 1 k _ |
1¢x+iiwzz+§(n2-1)w =0 | (31)

Although the parabolic approximation has been available

for some time, only recently have efficient integration
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schemes been applied to it, namely, the introduction by

Tappert and Hardin[21]

of the split-step Fast Fourier Trans-
form numerical integration algorithm. This algorithm
marches the solution away from the source on an equi-

spaced depth grid. The value of ¥ at a new range Xx+AX

is obtained from the solution at sept x by

iAxk (n%-1)/2_, | -iAxf?*/2
Y (x+Ax%,z)=e :; l[g z

Fo (x,zn]. (32)
where :7- is the Fourier transform,}’-l its inverse, and K

the transform variable. This technique is easily‘implemented,
highly efficient, and even in the above form, sufficientlf
‘accurate for most applicatiocns.

The parabolic approximation, as expressed by the in-
equality in equation (30), has been shown to result in an
error in the phase velocity of the normal modes in layered
medialzz]. The phase velocity error, in turn, can cause
substantial shifts in the range of the caustic regions.
Recently Brock, Buchal, and Spofford[23] have been able to
reduce the magnitude of the error by using thé PE technique
to solve a pseudo-problem where thé refractive-index profile,
n(z) has been transformed into a new set of points (fi,Z).

This transformation takes on a particularly simple form for

the majority of cases of interest, namely

3=zn / ’

(33)
n=/Zn-1_ .
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Within the accuracy of the WKB approximation, the normal
modes for this new environment have the same phase velocities
as the equivalent wave-equation modes in the original
environment, and the depth transformation preserves the
relationship between observation depths and mode turning
points.

It would not be an exaggeration to say that the PE has
revolutionized propagation modeling by providing a wave
solution with full mode coupling for the range-dependent
environment. It is easy to implement, efficient, and
may be used to map out the full acoustic field in both
range and depth. Since both the range step and depth mesh
are proportiohal to the acocustic wavelength, PE, like
normal modes, is practical for low frequencies only. Com-
puter codes have been implemented for deepwater studies up
to 300 Hz, however, typical applications are limited to

approximately 100 Hz.
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iy 1 COMPARISON OF TECHNIQUES

In this section we compare frequency-modified ray theory
and the PE technique with the exact solution as given by
normal-modes. ' Consequently the examples are limited to the
range—independent environment. Additionally, the compari-
sons which will be made will be for a high-loss bottom con-
centrating on the refracted and RSR paths only.

Initially we consider a simple pressure-gradient pro-
file for a shallow source (60 feet) at a frequency of 25
Hz and a deep receiver (7200 feet). The results of the
three techniques are compared in figure 8 where,.specifically,

the three models are FACT[4]

- a ray model with caustic
corrections and surface-image interference; PE without ‘the
profile transformation described in Section I-C , and an
N-layer normal-mode model developed by Stickler at Penn
State Applied Research Laboratory[24]. While Stickler's
model can compute contributions from the continuous spectrunm,
it was run for the discrete modes only. In this geometry

a smooth caustic occurs at the receiver depth at approxi-
mately 30 nm intervals. The rapid oscillations seen within
the caustic regions of both the normal-mode and PE results
are due to the two~-ray interference. The ray—thgory model

has intentionally averaged these oscillations, since they

do not reflect a change in average level. It has, however,
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included the semi-coherent combination of paths which, for
this frequency and source depth increase the average trans-
mission loss by approximately 8 dB over the value the
incoherent summétion would yield. This figure also illus-
trates the effects of excluding the continuous spectrum in
the normal-mode calculations. For ranges less than 8 nm
the normal-mode resuits are seen to depart dramatically
from both the ray-theory and PE models, since the energy
associated with these high-angle paths is not included in
the discrete system.

The second example (figure 9) also is based upon a
pressure-gradient profile but now the 'source is at the same
depth as the receiver (7200 feet). 1In this geometry a
horizontal cusp is developed (as illustrated in figure 4a)
at 22 nm and repeats with a 22 nm period. A smooth caustic
is also present at this depth at 35 nm corresponding to the
surface reflection of one of the smooth caustics associated
with the first cusp. In this case the smooth- and cusped-
caustics are well-separated and the ray-theory results are
seen to agree with the results of the other two models.

The final case considered is based upon a typical deep-
water sound-speed profile (figure 10) where the source and
receiver are situated such that two ray families propagate:

a totally refracted (RR) family and a refracted-surface
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reflected (RSR) family. Figure 11 initially compares the
ray solution with that of normal modes (again at 25 Hz).
The agreement is generally excellent even éhough the ray
model does make a clearcut distinction between the RR and
RSR caustic regions while the mode model does not. The
apparent constructive interference between the RR and RSR
caustics is not accounted for in the ray model since these
families of rays are combined incoherently. Figures 12
and 13 compare the PE technique with the normal-mode
solution for exactly the same case. In figure 12 PE was
run without the profile transformation discussed previously,
resulting in a displacement of the PE convergence zone |
relative to the normal-mode result. With the profile
transformation PE, figure 13, now accurately matches not
only the convergence-zone ranges but much of the CW multi-
path fine structure.

In the context of fange—independent environments it is
seen that the three basic techniques have largely converged.
Wave-length dependent corrections to ray theory have been’
developed which permit its extension to much lower fre-
quencies. Many of the limitations of the pafabolic equa-
tion are now more clearly understood and the most limiting
aspects of the small-angle approximation have been overcome.
This apparentconvergence is not intended to imply that each
technique is equally applicable to any problemn. In the
next section we shall consider the applicability of these

techniques to the study of certain classes of oceanographic

phenomena.
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III. APPLICATIONS TO THE STUDY OF OCEANOGRAPHIC FEATURES

Many of the acoustically interesting oceanographic
features correspond to a medium which varies not only as a
function of range and depth but also azimuth and time. 1In
the deterministic techniques discussed above the environ-
ment is frozen in time and generally treated as azimuthally
symmetric. The effect of transverse gradients and out-of-
piane reflection can be important in some cases, however
a number of significant oceanographic features can be
analyzed without including these effects and without any
loss of generality.

Normal-mode techniques are by far the most limited

- since they cannot accbmmodate rapid vériations in range.
Instead, they can be used within the context of perturbation
theory to study the acoustic effects of small inhomgeneities
superimposed on a basically range-independent profile.
Perturbation theory has also been applied successfully by

[25]

Labianca and Harper to assess the influence of surface
roughness on 1ow-ffequency propagation. Only,the largest'
scale oceanographic features such‘as-the gradual migration
of the sound-channel axis towards the surface in the North
Pacific can be legitimately analyzed within the adiabatic =

approximationlzs]. Macro-scale features such as fronts

- and eddies are too abrupt for the adiabatic technique[27l
while probably too gradual for the abrupt transition

approaches of Kanabis, et al.
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Ray theory, in principle, is the most powerful
since it can accomodate rapid variations with refraction
through large angles. In studying small perturbations,
enough rays must be considered to adequately illuminate all
features of interest, and, if necessary, detailed caustic
calculations may be required to assess the true influence
of these features on the acoustic phase and amplitude.

For larger scale oceanographic features ray techniques are
most useful fof illustrating quatitative effects and are
especially illuminating when used in conjunction with
field-mapping computations such as PE.

PE is by far the mosﬁ versatile technique, though of
course, limited to low freguencies and shallow angles:
Fortunately the propagation paths of interest in analyzing
oceanographic features are sufficiehtly shallow to be
accurately treated, and the features themselves are not
expected to produce sufficient backscatter to violate the
parabolic approximation[28].

In studying b0£tom—reflectivity questions, normal modes
are most appropriate since they can accomodate both discon-
tinuities (which PE using the split-step FFT cénnot),
and partial reflections (which ray theory typically does

[

not). Additionally normal mode programs 23] have been

extended to include shear waves in the bottom.
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IV. SUMMARY

Concurrent advances in the applicatién of normal-mode
and ray theory to ocean acoustics, coupled with the intro-
duction and refinement of the parabolic-equation technique,
have brought what were previously considered divergent and
non-intersecting approaches into agreement over a substan-
tial common ground of applications. The demonstrated
success of these techniques in the study of deterministic
phenomena portends their fruitful application in the
stochastic domain. While each approach has its unique
strengths and weaknesses, their combined pcwer should ke
sufficient to attack a large number of previously

impenetrable questions.
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STOCHASTIC METHODS OF SOUND-FIELD COMPUTATION

by

R.R. GOODMAN
U.S. Naval Research Laboratory
Washington, D.C.
U.S.A.

The paper, which was not received in time for publication, covered the
following aspects:
I: Physical origin of the acoustic fluctuation terms
A. The development of the dynamic oceanographic equations

1. Internal waves, spectral characteristics
2. Turbulence, spectral characteristics
3. Oceanographic observations

B. The development of the fluctuation terms in the acoustic
equations
II. A Review of the general Theoretical Developments
A. Geometric Limits
B. Wave Theoretical Limits
ITI. Experimental results and their theoretical interpretation
A. Short range, high frequency
B. Long range, low frequency
IV. A Brief Review of Some Electromagnetic Applications

V. The design of future experiments

A. Spatial and temporal correlations
B. The requirement for environmental measurements in support of
acoustic experiments

1. The types of measurements
2. Spatial and temporal frequencies of them
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DISCUSSION ON SESSION 7

Reported by F.B. Jensen

FLATTE

What criterion do you have for choosing between the various
propagation models?

GARON

At the AESD we have a rule as to when we apply the wave methods

as opposed to the ray methods. This rule is usually a break point,
actually in the amount of money it is going to cost to make the
runs, but it also depends on what we are trying to get out of the
runs, Within a normal deep-water environment, I would say that the
best use of the parabolic equation and the normal mode techniques
is at frequencies less than 250 to 300 Hz. At that point it starts
to become really costly and time-consuming to make the runs.

FLATTE

You said that there are no approximations in normal mode theory,
but isn't there a question to how many normal modes you actually
have to use?

GARON

In a lossless environment. there are discrete sets of normal modes
and also a finite number of modes. Where the infinite number of
modes comes into play 1s in the evaluation of the continuous
spectrum,

FLATTE

What is the consequence of neglecting the continuous spectrum?

GARON

Both Hank Kutschale at Lamont and Dave Stickler have shown that the
continuous spectrum can contribute significantly out to ranges of
several water depths, I tried to bring out this point earlier,
that if you haven't got amy discrete modes or if the discrete modes
are interféring destructively with each other, the only thing left
is-the continuous spectrum, and then you have to calculate it.

FLATTE

In a practical sense, what limitation does that put on the applica-
bility of normal mode theory? '

GARON

I really can't say that it will actually put a limitation on you in
terms of using the modes.
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FLATTE

In case someone wants to compare the parabolic equation method with
the normal mode technique, it is nice to know which method is most
accurate, You say that normal mode theory is exact and that para-
bolic equation theory is very close, In fact, normal mode theory
also has some uncertainty in it,

GARON

That'!s right, You might also become very concerned when you know
that the bottom-bounce paths themselves are going to¢ predominate
the propagation pfoblem,

WILLTIAMS

I would like to make a comment on variability. One thing that the
oceatographers have brought out during this conference is how the
variability is distributed in space and in time, One thing is
clear, The oceanic variability cannot be described by a simple
Gaussian distribution function. This is well-grounded in fully
developed turbulence, and it is well-groundeéd in all the midro-
structure measurements ever made,

WITTING

Concerning the distribution of sound amplitudes around the mean for
somé& experimental data: we have normally found a distribution that
was Gaussian at high frequencies, but. highly non-Gaussian in all
other cases.,

BRISCOE

Also for internal-wave problems the observed variability is highly
non-gaussian,

WILLIAMS

At the microstructure conference in Grenoble almost everybody was
showing ‘'very non-gaussian statistics for the micré&structure, both
in vertical and horizontal directions.

BACHMANN

I would like to change the subject a bit and ask the following
questlons. How would a future stochastic sSound-prépagation model
look? How would the structure be? Would we first have to make a
deterministié calculation and then add some stochastic extentions
based on this deterministic field, or would it be an approach as
indicated by GOODMAN, going back to:the wave equation and starting
everything from that point?
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GOODMAN

I think there will be an entire spectrum of models, depending very
much on the role data banks will play in the future, If one is
going out making environmental measurements, very complete ones
with f&irly good sampling over long ranges, I don't think you need
to develop this very general model., On tle other hand, in those
cases where I might have to predict propagation completely on the
basiis of data tbanks, or if I wanted to make predictions for much
longer times than I can make environmental measurements, then I
would probably learn very quickly to go to a more universal model,
So I think there will be an entire spectrum of models. It will be
a function of range, the sampling that’' I havé in the experiments,
and the kind of questions I am asking of the model.

FLATTE

I have a comment on the solution to the wave equation in range-
independent situations, which in genetal is talked about in terms

of normal modes. I'm not sure what the applicability of this new
method is, but I want to put it before you. Suppose we are dealing
with an arbitrary but range-independent sound-speed profile, The
field can thé&n be‘ calculated by means of normal modes or by the
parabolic equation method, except that the parabolic equation method
has a disadvantage in this case, since you have to step along in range,
while the normal mode solution gives you the answer for the entire
field immedidtely. If you want the answer at various range points,
you still have to add up the modes for every range point, but that
goes fast. However, the parabolic equation, which enables you to
step from range position to range position where we know the amplitude
of the wave function over depth, uses the fast Fourier transform
technique to create the movement of the wave function from step to
step. The FFT technique basically enables you to reduce the number
of calculations involved ih evaluating a double integral, from n2 to
n. 1gn, This is in fact the power of the' FFT technique, If we apply
the parabolic equation method to a case with a range-independent
sound-speéd profile, it turns out that we can reduce the n steps in
range by the same technique. The FFT is used in the range variable,
and we can then redu¢e the n steps to g n steps -~ a dramatic reduc-
tion in most cases, This fact came to my attention because a group
of physicists at the University of California in Santa Cruz were try-
ing to solve the Schrddinger equation from quantum mechanics:

2
h2 Vz‘lf-—}-l— ﬂ—V(x,y,Z)‘lJ=0 )
8m4m 2mi 3t

which is dependent on time in the same way as the parabolic wave
equation:

2 2
3% 4 2k 91+k0 (n2-1) ¥ =0
dz2 ° ar
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is dependent on range. However they found this trick for reducing n
steps in time down to lg n steps without realizint that they have the
same possibility in the other dimensions. So we learn from each other,

DINAPOLI

Also the fast-field program uses the FFT technique in the range
variable, Here the field is calculated in a discrete number of range
points equal to the number of FFT points.

BACHMANN

I would like to change .subject again. I think that one way to create
a stochastic sound propagation model could be by introducing something
like the Garrett-Munk model into one of the existing computer models,
and then seek answers so such questions -as: what is the variance,
what is the spectral type of fluctuation you should expect at any
point in space, what is the angular distribution, etc, My feeliwg is
that the oceanographers already have a large portion of the necessary
input, but that the acousticians are not ready to digest it yet.

GOODMAN

I guess I don't believe that, The fact that the acoustic field is

expandéd in a scattered field and a direct field, and one performs

statistics on the scattered f1e1d lead directly to the same set of
statistics on the oceanographic propertles. Mintzer made the right
comment: Make sure that you use the right mathematical scattering-
model to go''with the statistics that you see.

BACHMANN

It's just that such a model does not exist at the moment., We have
only deterministic models, That's the state of art,
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