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This talk must begin with a justification, since at first sight 
(and possibly even after further glances) it is difficult to see 
what place a problem of classical applied mathematics (which was 
originally chosen as a companion to the author's earlier paper on 
below duct sound levels due to scattering from the sea surface) can 
rightfully claim to occupy in this gathering of ray tracers and 
computing enthusiasts . This is especially so when one realises that, 
as in the earlier paper, given here six months ago, the object is to 
formulate the problem in such a way as to obtain the maximum of 
predictive results with the minimum of computation . 

Nevertheless, this account of the effect of gravity-forced internal 
waves at the base of an isothermal layer on its efficiency as a duct 
for acoustic energy is opposite to this particular convention; it 
has the laudable aims of saving effort for the sceptical 
perfectionists, and saving face for the lazy intuitionists, by 
demonstrating that it is not necessary to develop three-dimensional 
ray-tracing programs, nor to solve numerically the wave equation for 
a duct with one sinusoidal boundary, in order to take account of 
the horizontal stratification of sound velocity introduced by 
internal waves. 
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This is a very worthwhile simplification, but to achieve it it is 
necessary to have some background as to the generation and acoustic 
effects of internal waves; we start, as always, with the classical 
picture of acoustic propagation in the upper ocean, with the 
isothermal surface duct, and associated underlying shadow zone at 
long ranges [Fig. lJ, This is the ideal, on which computations 
of field intensities can be made with relative ease, as the 
stratification purely in horizontal planes makes a two-dimensional 
ray analysis valid , 

Unfortunately, in the real world, things aren ' t that simple. Even 
if we retain the basic framework of ray theory, there are three 
major perturbing effects to be taken into account when considering 
the idealised situation as a predictive model for in-duct 
propagation. The first of these is diffraction which, as shown 
schematically in Fig. 2, can distribute energy into zones forbidden 
by simple ray acoustics. This is obviously important as far as 
energy levels in the shadow zone are concerned; there is a school 
of thought that claims that, as far as in-duct propagation is 
concerned, the effect is negligible. The argument runs that the 
effect of diffraction is merely to alter the effective depth of 
the duct, and that the "below layerll field is an integral part of 
the trapped modes . Even so it is clear that there is a net energy 
leakage by this mechanism. 

The second complication to be considered is scattering from the 
rough sea surface of energy which is seemingly entrapped within the 
duct, so that it is deflected into the thermocline region and 
escapes. This is shown schematically in Fig. 3; much work has been 
carried out on this, both numerical and analytic (the papers by 
van Ness, Schweitzer and the present author, to name but three), 
and it is fair to say that the effect of this mechanism is now 
quantifiably determined, or determinable, for most 'typical' duct 
conditions. 
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Finally, among these mechanisms, we come to anomalous refraction 
due to internal wave s , the least well documented and most 
speculative of the three. Schematically, the way in which acoustic 
energy which has been trapped in the duct can be guided out of it 
by the action of internal waves is shown in Fig. 4; the dominant 
effect is the change from upward to downward curvature on crossing 
the internal-waves profile. It was on the basis of this type of 
diagram that Schulkin made his widely accepted estimate of the 
effect of internal waves, reducing the effe ctive duct depth by 
the rms height of the typical internal wave; the argument running 
that any ray which vertexes at a greater distance than this from 
the surface will in time intersect such an internal wave and be 
refracted out of the duct. 

Unfortunately, this conclusion is invalid, as this diagram is 
totally misleading - an inevitable consequence of the distortion 
of vertical and horizontal scales to get the figure on to a 
conventional slide. What in fact happens, because the curvature 
of the acoustic rays is so small and they are being propagated 
almost horizontally, 1S that the ray path, even taking account of 
refractive differences, occupies several periods of the internal 
wave in any transition from in-duct to below-duct propagation. The 
true schematic is more like the one shown in Fig. 5 - again noting 
that this is grossly distorted - the true grazing angle to the 
internal waves is less than 1°; this, however, at least indicates 
that a ray may penetrate into the internal-wave region and even 
so re-emerge into the surface duct. 

Now we are getting to the core of the problem if some rays can 
be refracted back into the surface duct while others are lost from 
it, how do we calculate what is the effect of the internal waves 
in quantitative terms~ To do this obviously requires a more 
detailed knowledge of the mechanism of generation and propagation of 
internal waves and so I must ask you to lay down your acoustics 
and follow into the uncharted depths of oceanography. The forcing 
mechanism for internal waves is gravity (salinity can also cause 
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them, but for the purpose of this paper it will be neglected), 
and buoyancy forces are dominant. 

We start with a water mass which was in equilibrium at a depth z 
below the surface, under a pressure p, its density at that time 
being P, and which by some mischance has been adiabatically 
displaced a small distance 6z from this position. The general 
definition of the word 'adiabatic' in this context is beyond the 
scope of this paper, in this context it means that if the same 
supernatural agency that caused the change in the first place 
decides to put the water back ln its original place, its density 
and pressure will also revert to their initial values. Even more 
confusingly, but more importantly, it means that although sea 
water is a viscous non-Newtonian fluid we can treat it as though 
it were a perfect gas and obeys the gas laws, PO: PT and PO: P y. 
Anyway, in its new position, the density of this element is 

l/y 
s:. 1 P ( z + 6z) l 
uZ p(z) I 

whereas the local equilibrium density is P (z + 6z) 0 

element has a density deficiency of 

1 dP 1 dP P ( z) 6 z (- _. - - -) P dz yp dz 

Thus this 

relative to its surroundings, and experiences a gravity-fed 
restoring force. The equation of motion is 

G 

d s + N 2 (z) S = 0 
dz 2 

(simple harmonic motion) 

with s the vertical displacement and N, the Brunt-Vaisala 
frequency, the frequency of the oscillations. There are various 
expressions for N, all equivalent, the most convenient of which is 

~ de e dz • 
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That has introduced yet another vari a ble, 8, so I had better 
explain what that is . It is the temperature the element would 
en d up ."t t if it adiabatically was transferred to a position wh ere 
it was subject to a standard pressure of I atmosphere, and it is 

called the potential temperature , 

N is a measure of the speed of reaction of the ocean to a 
perturbation - in other words of its stability . The bigger N2 

the more stable the ocean. Figure 6 shows the actual distribution 
in one typical case, together with the in the upper ocean 

normal idealisation of it used by theorists. Normal in this case 
means 

a . t hat it i s t h e one normally u s e d; 
b. that it is a normal distribution; 
c. that any ocean to which it is a valid approximation 

is completely abnormal. 

So now we know what happens when a fluid element is displaced 
vertically; an internal wave, t h ou gh, has a horizontal particle 
velocity component, so the full equation of motion must be used. 
We can simplify them by applying Boussinesq's Approximation, which 
says that, for slow enough motions (which internal waves are) we 
can treat the fluid as incompressible except that buoyancy must 
be taken into account. The equations are the top four in Fig. 7, 
which I do not intend to go into any detail over, except to say 
that you can eliminate all the oth er dependent variables and come 
up with this general equation for the vertical component of 
velocity, w 

which holds no matter what kind of internal motion we are discussing. 
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However, we are af"te r a propagating internal wave, so we take the 
most general distur b ance which is sinusoidally pe riodic in time 
and travelling i n the horizontal direction, writing [Fig. 8J 

w W(z) exp {i(kx- nt) 1 

and find that W mu s t obey the e quation 

o 

whi ch means immediately that the disturbance decays everywhere 
except inside the region where its time frequency is less than the 
local Brunt - Vaisala frequency, So, fr om Fig . 8 that shows the 
dist ribution of N2 with depth, we can say that internal waves, 
except the very slow ones, are confined to the region of the 
thermocline . With that fact established, we can go further and 
derive a dispersion re lation between the time frequency nand 
the horizontal s pace frequency k . 

2 n oP kg 
P 1 + coth kD (kD »l ) 

In this D is the depth at which the thermocline is situated and 
oP is the change in density across it . Now in this, an increase 1n 
k causes an increase in n, but n cannot b e greater 
than the Br unt-Vaisala frequency, so we can find a maximum value of 
k for each value of N. That defines the minimum wavelength 
for a wave of this frequency, the wave's amplitude is limited by 
the depth of the region in which the Brunt- Vaisala frequency 1S 
large e nough to support it, so we have a re lation between 
amplitude and wavele ngth . 

Mo re usefully , we can plot from Fig . 9, which you can read as either 
the maximum slope a wave of given amplitude can have, or the maximum 
amplitude for a wave of given slope on the mean thermocline plane . 
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These will be the ones which have the greatest effect on acoustic 
propagation, and Fig. 10 shows the model adopted for calculating 
this effect. Sinusoids make the calculation too difficult, so 
they have been replaced by truncated prisms of the same wavelength 
and maximum slope, cut off so that the area of "intrusion " is the 
same as that under the sine wave. The assumed velocity profiles 
are the same as the ones used for the undisturbed situation 
with the rays in the region of intrusion being straight lines, as 
the perturbation occurs without change of sound velocity . To 
calculate the ray path we just use Snell's Law so the calculation 
is straightforward but tedious. 

Because it is so tedious, all that the author has considered are 
those rays which would be horizontal at the base of the undisturbed 
duct. He has not finished even these, but says that no matter what 
the internal wave, more than 90% of the time the ray ends up back 
in the duct. So it seems that everyone can go away happy in the 
knowledge that their previous neglect of internal waves, whether 
due to ignorance or indolence, was and still is justified. 
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BOUSSINESQ 's APPROXIMATE EQUATIONS 

2 
N w 0 

+ ~' 0 

GENERAL EaUATION 

2 
(~ + -b ) w 

d~ 

i . 
~ 

+ 

1.: + dw ;r; 

dw + ~' + CT · 
~ 

FOR VERTICAL VELOCITY 

N 2. (~1 
2 

~ 0 

= 

RElATION BETWEEN INTERNAL WAVE AMPliTUDE 

ANO SLOPE: OF WAVE PROFll E 

0 

0 




