
S A C L A N T  A S W  

R E S E A R C H  C E N T R E  

M E M O R A N D U M  

HIGH-RESOLUTION ANALYSIS OF NON-STATIONARY DATA ENSEMBLES . 

by 

RICHARD KLEMM 

1 OCTOBER 1980 

NORTH 
I 

ATLANTIC 
L A  SPEZIA. I T A L Y  

TREATY- 
ORGANIZATION 

This document i s  unclassified. The information i t  contains i s  published subiect to  the c o n d l t h s  of tho 
. ,legend printed on the inside cover. Short quotations from it may be made in other publications if credit i s  

given to the author(s). Except for working copies for research purposes or for use in of f ic ia l  NATO 
publicotions. reproduction requ~res the authorization of the Director of SACLANTCEN. 



Thir document in released to a NATO GovermehtA 
at the .direction of the SACLANTCEN subject to the 
following conditions: 

1. The recipient NATO Government &green to uw 
its beat endeavour. to eneure that the information 
herein disclored. whether o r  not it bear8 a recurity 
cla~lsification, is not dealt with in any manner (a) 
contrary to the intent of the provirionr of the Charter 
of the Centre, or (b) prefudicipl to the right. of the 
owner thereof to obtain patent, copyright, or other 
like itatutory protection therefor. 

a. If the technical information was originally 
releaned to the Centre by a NATO Government rubject 
to rertrictiona clearly marked on thin document the 
recipient NATO Government agrees to ure it8 be& 
endeavours to abide by the termr of the r e r t r i c t i o ~  
.o impoeed by the releasing Government. 

Published by 



SACLANTCEN MEMORANDUM SM-142 

NORTH ATLANTIC TREATY ORGANIZATION 

SACLANT ASW Research Centre 
Viale San Bartolomeo 400, 1-19026 San Bartolomeo (SP) , Italy. 

national 0187 560940 
tel: international +39 287 560940 

telex: 271148 SACENT I 

HIGH-RESOLUTION ANALYSIS OF NON-STATIONARY DATA ENSEMBLES 

by 

Richard Klem 

(Reprinted from KUNT, M .  and COULON, F .  de, eds. 
SignaZ Pmcessing: Theodes and AppZications . Amsterdmn, HZ., Noplh HoZtmd, 

1980: 711-4) 

1 October 1980 

This memorandum has been prepared within the SACLANTCEN Systems Research 
- .  Division as part of Project 02. 

L.F. Whicker 
Division Chief 



SIGNAL PROCESSING: THEORIES AND APPLICATIONS 
M. Kunt and F. de Coulon (editors) 
North-Holland Publishing Company 
a EURASIP, 1980 

HIGH-RESOLUTION ANALYSIS OF NON-STATIONARY DATA ENSEMBLES 

Richard Klemm 

SACLANT ASW Research Centre 
Viale San Bartolomeo 400 

I 19026 S. Bartolomeo (SP), Italy 

Estimation of an unknown parameter of a random data ensemble is usually done by 
maximizing a certain power estimator by varying the unknown parameter. This method 
is convenient where the data are a nonlinear function of the parameter. It is 
shown for a variety of power estimators that high resolution is always based on the 
orthogonality between the observed data and a weighting vector that contains the 
parameter. Some examples illustrate the use of these power estimators to locate 
sources by means of array antennas. 

1. INTRODUCTION 

Estimation of an unknown parameter 8 of a 
vector process can be done by applying a 
weighting vector h(8) to the data vector and 
varying 8 until the output power becomes 
maximum (path A in Fig. 1). Typical applica- 
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Figure 1: Parameter estimation: 
Deterministic signal case 
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tions are spectral analysis, beamforming for 
sensor arrays and matched filters. The reso- 
lution (sensitivity to mismatch between signal 
vector and weighting) is limited by the length 
of the data window or the aperture of an array. 
Higher resolution can be obtained by designing 
a vector orthogonal to the signal component 
contained in the data (path B in Fig. 1). The 
latter principle is well lcnown as split-beam 
technique and is widely used in sonar and radar 
systems. As these techniques use a weighting 
vector orthogonal to only one source direction, 
they will fail if more than one source is 
present. In the following more general methods 
based on the principle of orthogonality are 
discussed. 

2. THE EIGENVECTOR METHOD (Em) 

The idea is to represent the observed vector 
process by one vector orthogonal to all signal 
components in the data. The covariance matrix 
R_ of the observed data vector is hermitian; 
therefore its eigenvectors are unitary to each 
other: R can be decomposed in a signal matrix 
plus a white-noise term: R = i+Aminl, where 
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Figure 2: Parameter estimation: Random signal case 
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the rank of is equal or less than N-1, N 
being the rank of R; Amin is the minimum eigen- 

4. APPROXIMATE ORTHOGONAL PROJECTION (AOP) 

value of R, 1 is the unity matrix. The eigen- 
vector gmin that corresponds to Amin is ortho- The eigenvector & in (1) satisfies the 

in mtn 
minimization problem g g*Rg with g*g = 1. 
Using instead of g*g = 1 the constraint gk = 
1, l<k<N, one obtains 

gonal to the subspace given by S; therefore 
high-resolution parameter estimation can be 
carried out by the expression 

P(8) = 1 1 I Gin &(el I* , 
(path B in Fig. 1) 

gin is the complex conjugate transpose of 

&in. P(8) becomes infinity whenever k(8) 

approaches the signal subspace given by 5. 
Instead of gmin in (1) a matrix of all "white 

noise" eigenvectors can be used: 
N where Pk is proportional to A 6' can be min 

re-written as follows: G = - gi g: if the rank M of the signal 
i*M+1 

matrix is smaller than N-1. Instead of (1) 
we use the power estimator 

This method may offer advantages in some 
practical cases. It has been used for spectral 
analysis in [I]. 

Hence we get 

3. ALTERNATIVE APPROACH: THE ORTHOGONAL 
PROJECTION METHOD (OPM) 

In the noise-free case (Amin = 0) we obtain 

This method creates a vector orthogonal to the 
signal components of the data covariance matrix 
without eigenvector decomposition. The 
following steps have to be carried out: 

which is the k-th row of the projection matrix 
(3) 

Replacing 9 in (1) by g, as given by ( 6 ) ,  we 
obtain a noise-dependent approximation of the 
orthogonal projection method. If the data 
vector x contains equidistant samples of a 
stationary time sequence (or a homogeneous 
field) R becomes Toeplitz. Choosing g to be 
the first column of the Toeplitz matrix %(k = 
1) we obtain the well-known maximum entropy 
method [3]. A power estimator corresponding to 
[4] is given by 

a. Rempve the white-noise portion from the 
covariance matrix in order to get S = 3 - 

I (subtract iteratively diagonal %in- 
matrices a i l  from R until the determinant 
becomes zero). 

b. Factorize 5 = y* by the Cholesky- 
algorithm. The method breaks off whenever 
any eigenvalue of 5 becomes zero. The 
number of columns of M is equal to the 
number of eigenvalues unequal to zero. 

c. Calculate the projection matrix 

Notice that P is orthogonal to 2, i. e. P S = 0. The formula looks similar to the well-known 
maximum-likelihood method (MLM), [ S ]  , 

d .  Use P(8) = 1 1 If &(8) 1 for estimation 
of 8. yk is any row of P. 

An estimator similar to (2) can be obtained by 
which is a solution of the optimization problem 
min 

taking the whole projection matrix into b"; under the constraint k(8) = 1. 
account: - 

P(9) = 1 / (&*(e) E' &(8) ) ( 4 )  As (9) can be shown to be a sum over N 



High-resolution analysis of non-stationcay data ensernbzes 

different power estimators of the form P(8) = 
N 

1 2 g ( (where the gi are obtained by 
i=l 

triangular factorization of R [3] ) , we conclude 
that also the resolution properties of the MLM 
are based on the principle of orthogonal 
projection. 

5. GENERALIZATION TO RANT.)OM SIGNALS 

If the signal is random it can be described by 
a positive definite covariance matrix [6]. 
Consequently, estimation of a random signal 
vector can be done the same way as before by 
replacing the steering vector h(8) by a 
steering matrix g(8), see Fig. 2, path B. The 
set of steering matrices is obtained by facto- 
rization of all possible signal matrices S(8) 
after removing the noise part. As S(8) is 
positive definite we can write Q(f3) = S(8) - 

I and Q(8) = H(B)P(B), where $8) is a 'min- 
NxN-1-matrix. In case of H(8) = n_ the pro- 
jection matrix P in (2) gives P.5 = 5 - 
I+J(gIj)-l = 9 so that the power estimator 
P(8) = 111 9 ~ ( 8 1 1 ~  becomes infinite as before. 
If the noise part is not removed from S(8) the 
power output will be l/(Amin -*-) instead of 

infinity when H(8) is matched to M. 
Consequently, the noise power can be used in 
order to govern a certain finite power response 
and hence, a certain resolution. 

6 .  ADAPTIVE IMPLEMENTATION OF THE AOP-METHOD 

The vector g in (6) can be updated directly 
from the data by a least-squares algorithm of 
the form 

xk(t) is the k-th data sequence, ~'(t) contains 

the data at time t except for the k-th input 
channel, and g'(t) contains the weighting 
coefficients except for the k-th channel (gk = 
1). The loop gain p has to be less than 2/Amax 
of the covariance matrix of ~(t). The algo- 
rithm is particularly attractive because its 
convergence does not depend on the condition of 
l3, i.e. on the SIN ratio. 

7. EXAMPLES 

Figures 3 to 6 show examples for applying the 
above resolution methods to array processing. 
Figure 3 shows estimation of the bearing angle 
of a plane wave at 40° relative to two differ- 
ent line arrays. Both of the arrays have the 
same aperture, one of them equally spaced. As 
the spacing is about 1.2A the equally spaced 
array indicates a grating lobe at about 130° 
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Figure 3: Equal and non-equal spacing 

whereas the non-equally spaced arrays shows an 
unambiguous response. The widths of the peaks 
are about the same. The example confirms that 
the resolution properties do not depend basi- 
cally on the stationarity of the vector process 
but on how far the signal vector can be made 
orthogonal to the steering vector. Figure 4 
shows a comparison of three methods (matched 
filter type (Ml?), AOP, Em) for range estima- 
tion by matching to the circular curvature of 
an incoming wavefront. An SIN ratio of 10 dB 
is assumed. The. differences in resolution 
between the methods are remarkable. The con- 
ventional kind of matching (MF) is completely 
useldss, and the AOP is considerably degraded 
by the white-noise level. 

RANGE [ K M I  

Figure 4: Near field range estimation 

Figure 5 shows the problem of estimating the 
bearing of an acoustic source by a horizontal 
array in shallow water. In a waveguide like 
the shallow-water sound channel sound 
propagates in terms of normal modes. The 
actual source position is denoted by three 
asterisks, the vertical lines in the small 
subfigure denote the modal amplitudes, i.e. the 
spatial channel response. Modes are supposed 
to fluctuate slightly in phase. The channel 
has been modelled by a shallow-water sound 
propagation model [4]. The AOP (replacing bin 



in (1) by g(7)) looks for the energy maximum 
and, hence, obtains a considerable bearing 
error. The generalized version GAOP which uses 
a steering matrix H according to section 5 
yields a bias-free bearing estimate because H 
contains a-priori knowledge about the channel. 
The generalized EVM (GEVM) obtains a bias-free 
bearing estimate as well, but at higher reso- 
lution. Figure 6 shows how the GAOP and the 
GEVM can be used for range estimation of an 
acoustic source in the shallow-water waveguide 
by a small horizontal array. 

CONCLUSIONS 

It has been shown. that high-resolution para- 
meter estimation is based on the ortho gonality 
between a steering vector (or matrix) and 
another vector representing the signal. A new 
method based on the principle of orthogonal 
projection has been proposed (OPM). It has 
been shown, furthermore, that the maximum 
entropy method (MEM) is a special case of an 
approximate orthogonal projection method (AOP) . 
It turns out that the principle of ortho- 
gonality is the reason for the high resolution 
of the MEM; the resolution properties are not 
constricted to stationary data. The principle 
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Figure 5: Bearing estimation in shallow water 
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of maximum-entropy extrapolation of data 
records or apertures of line arrays seems to be 
an additional way of physical interpreting 
stationary data, rather than the basic reason 
for high resolution. These statements have 
been validated by many numerical examples. 
Typical examples for parameter estimation for 
nonstationary data are: 

a. non-equally spaced arrays, parti- 
cularly multi-dimensional arrays 

b. doppler estimation in staggered-PRF 
radar 

c. estimation of the position of an 
acoustic source in shallow water 
(bearing, range, depth) by hori- 
zontal, vertical and more dimensional 
arrays 

d. analysis of transformed data (e.g. 
after beamforming or FTT) 

e. arrival time of a knownsignal 

f. high-resolution parameter estimation 
in the presence of such known system 
errors as mutual coupling in electro- 
magnetic arrays or tolerances of 
receiver cha~els in arrays. 
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Figure 6: Depth estimation in shallow water 
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